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Abstract

The prevalence of obesity among pregnant women is increasing. In addition to the short-term complications of obesity during pregnancy

in both mother and child, it is now recognised that maternal obesity has long-term adverse outcomes for the health of her offspring in

later life. Evidence from both animal and human studies indicates that maternal obesity increases the risk for the offspring in developing

obesity and altering body composition in child- and adulthood and, additionally, it also has an impact on the offspring’s cardiometabolic

health with dysregulation of metabolism including glucose/insulin homoeostasis, and development of hypertension and vascular

dysfunction. Potential mechanisms include effects on the development and function of adipose tissue, pancreas, muscle, liver, the

vasculature and the brain. Further studies are required to elucidate the mechanisms underpinning the programming of disease risk in the

offspring as a consequence of maternal obesity. The ultimate aim is to identify potential targets, which may be amenable to prevention or

early intervention in order to improve the health of this and future generations.
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Introduction

The prevalence of obesity (defined as body mass index
(BMI) O30 kg/m2) is increasing, even among women
of childbearing age. A survey carried out in the USA
between 2003 and 2006 reported that 32% of women
aged 20–44 years were classified as obese
(WHO 2009). In the UK, the rise in obesity among
pregnant women parallels the upward trend of obesity
in the general population (Kanagalingam et al. 2005,
Heslehurst et al. 2007). In addition to the short-term
complications of obesity for both mother and
child, emerging evidence suggests that maternal
obesity has long-term detrimental consequences for
offspring health.

One proposal to explain the link between maternal
obesity and offspring obesity is the ‘developmental
overnutrition hypothesis’. This states that high maternal
glucose, free fatty acid and amino acid concentrations
result in permanent changes in appetite control,
neuroendocrine functioning and/or energy metabolism
in the developing foetus, thus leading to risk of
adiposity (with accompanying risks of metabolic and
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cardiovascular disease) in later life (Armitage et al.
2008). There are now a number of animal studies
supporting this hypothesis, and there is emerging
evidence that a similar phenomenon occurs in humans.
Here, we discuss the evidence from animal and human
studies that maternal obesity has a permanent impact
on offspring obesity and body composition as well as
cardiometabolic health. In this developing field, much
of the literature reports the phenotypic outcomes in the
offspring, and more research is needed to dissect
potential underlying mechanisms. Studies using animal
models are attempting to separate the effects of
maternal obesity per se from ‘overnutrition’, but this is
harder to address in humans and is currently limited to
those studies including reports of gestational weight
gain. Likewise, in human studies, the challenge remains
of disentangling the direct effects of maternal obesity on
the developing child from the shared genetic and
postnatal lifestyle influences.
Timing of exposure

In many early life programming paradigms, the timing
of exposure is of critical importance in determining
the offspring phenotype (Seckl 2001). In most rodent
studies of maternal obesity, females are maintained on
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obesogenic diets (high fat and high carbohydrate or high
fat alone) until they are significantly heavier than animals
on a control diet and are maintained on the same diet
through gestation (about 20–22 days). The offspring are
then reared by their own mothers until weaning at
around 3–4 weeks of age. Thus, in many studies,
offspring have been exposed not only to maternal obesity
but also to maternal overnutrition during both pregnancy
and lactation, so that the effects of maternal obesity
per se cannot be adequately separated from those of
‘overnutrition’. While this may reflect the situation that
occurs in humans, a number of studies do suggest that
there may be particular developmental periods during
which maternal obesity/overnutrition may have impli-
cations for offspring development. Recent data suggest
that maternal obesity impairs oocyte quality in rodents
and is associated with impaired development of the early
embryo, so that programming effects in the offspring
could occur as a consequence of maternal obesity even
before fertilisation (Minge et al. 2008). Other studies
have employed cross-fostering techniques in order to
determine the importance of maternal overnutrition just
during pregnancy on the programming of offspring
obesity risk (Khan et al. 2005), while others suggest
that maternal diet during both pregnancy and lactation is
of particular importance in the programming of disease
risk in the offspring (Bayol et al. 2008, Howie et al. 2009,
Smith et al. 2009b). Finally, while for the purposes of this
review, we have focussed on animal studies reporting
programming effects in the offspring as a consequence of
exposure to maternal obesity/high calorie diet during
pregnancy alone or during both pregnancy and lactation,
the critical importance of nutrition in the early postnatal
period has also been demonstrated in a number of
animal models. Thus, in rats, offspring exposed to early
postnatal overnutrition as a consequence of suckling by
mothers on a high-fat diet, as a result of artificial feeding
with a high-carbohydrate diet or as a result of rearing in
small litters are at increased risk of obesity and
cardiometabolic disease (Plagemann et al. 1992, Khan
et al. 2005, Srinivasan et al. 2008). Importantly, such
effects are also noted in other species including
non-human primates, for example overfeeding in the
pre-weaning period increases adiposity in female
baboons in young adulthood (Lewis et al. 1986).

Thus, data from animal studies suggest that there are
various time points during early development, in which
maternal obesity and/or maternal/foetal overnutrition
may result in programming effects in the offspring. The
relevance of these findings to humans remains to be
clarified, although data discussed later in this review
suggest that the effects of maternal obesity per se, i.e. the
current body composition of the mother, may differ from
those of excessive gestational weight gain, i.e. the
consequences of the prevailing nutritional milieu during
pregnancy, indicating that there are ‘windows’ for
programming effects in the offspring.
Reproduction (2010) 140 387–398
Programming of obesity and body composition

Evidence from animal studies for programming
of obesity

An increasing number of studies in rodents show that
exposure to maternal obesity/overnutrition during both
pregnancy and lactation is associated with the develop-
ment of obesity in the offspring (Guo & Jen 1995, Levin &
Govek 1998, Bayol et al. 2007, 2008, Samuelsson et al.
2008, Shankar et al. 2008, Liang et al. 2009, Nivoit et al.
2009, Tamashiro et al. 2009, Yan et al. 2010). This
predisposition to obesity is amplified when offspring are
themselves exposed to highly palatable or high-fat diets
following weaning (Khan et al. 2003, 2004, Taylor et al.
2005, Bayol et al. 2007). In many of these studies,
offspring have been studied after exposure to maternal
obesity/overnutrition during both pregnancy and lacta-
tion, making it difficult to identify the important windows
for the developmental programming of obesity.
However, one study has shown that the offspring of rats
rendered obese as a result of overfeeding before mating,
but maintained on a standard diet during pregnancy,
became obese in adulthood (Shankar et al. 2008).
This suggests that maternal obesity at conception is
associated with an increased risk of obesity in the
offspring even with normal maternal dietary intake
during pregnancy. The programming effects of intrauter-
ine exposure to a high-fat diet in the absence of maternal
obesity on offspring obesity risk have been investigated
in several studies with variable results. For example,
while White et al. (2009) reported that maternal obesity
was necessary for the programming effects of a high-fat
diet on offspring adiposity in a rat model, another study
demonstrated that maternal pre-conceptual obesity had
no effect over and above exposure to a high-fat diet
during both pregnancy and lactation in terms of
programming effects on adiposity (Howie et al. 2009).
Likewise, exposure of females to a high calorie or a ‘junk
food’ diet just from the start of pregnancy is associated
with programming effects on offspring adiposity (Khan
et al. 2005, Bayol et al. 2008). Programming effects as a
consequence of overnutrition during pregnancy are also
seen in animals with different reproductive strategies. In
sheep, transient intake of propylene glycol (which is
metabolised to glucose) in the last trimester of pregnancy
results in lambs with increased weight and ponderal
index at birth and more rapid postnatal growth than
controls (Smith et al. 2009b).
Evidence from animal studies for programmed changes
in body composition

In addition to the programming effects of maternal
obesity on offspring obesity and fat mass, maternal
obesity impacts on body composition. In rats, young
offspring of mothers fed a junk food diet either during
gestation alone or during both gestation and lactation
www.reproduction-online.org

Downloaded from Bioscientifica.com at 08/25/2022 02:06:53PM
via free access



Maternal obesity: long-term offspring outcomes 389
exhibited increased intramuscular lipid content, semi-
tendinosus muscle atrophy, altered expression of genes
important in muscle growth and metabolism (Bayol et al.
2005) and reduced muscle force (Bayol et al. 2009).
Such changes may be programmed early in develop-
ment, as reduced myogenesis and increased intramus-
cular fat have also been reported in skeletal muscle of
late gestation foetal sheep exposed to maternal obesity,
in association with increased expression of inflammatory
markers and altered AMP-activated protein kinase
signalling (Zhu et al. 2008, Tong et al. 2009, Yan et al.
2010). These changes may play a role in altered muscle
development and impact on later muscle size and
strength. Additionally, increased intramuscular fat
accumulation and altered gene expression may be
important in the pathogenesis of insulin resistance in
these models; indeed, offspring of obese mice demon-
strate alterations in insulin signalling and mitochondrial
complex activity in muscle in early adulthood (Shelley
et al. 2009).
What are the potential mechanisms underlying
programmed changes in obesity?

Studies have suggested a number of mechanisms that
may underpin the programming effects of maternal
obesity on offspring obesity risk, including programming
of appetite and activity levels, programming of muscle
structure and function and altered adipocyte biology.

Programming effects on the brain may be of particular
importance in mediating the effects of maternal obesity
on offspring appetite and activity. The offspring of mice
maintained on a highly palatable diet during both
pregnancy and lactation demonstrate hyperphagia
before the development of obesity (Samuelsson et al.
2008), and rats exposed to a ‘junk food’ diet during both
pregnancy and lactation themselves develop an exag-
gerated preference for fatty, sugary and salty foods when
compared to control animals (Bayol et al. 2007). Such
effects may reflect programmed changes in the hypo-
thalamus, which has a pivotal role in the regulation of
appetite and food intake (McMillen et al. 2005, Taylor &
Poston 2007). However, these studies have involved
maternal exposure to high calorie diets during both
pregnancy and lactation, since the impact of overfeeding
in the early postnatal period in the programming of the
hypothalamus is well known (e.g. Davidowa & Plagemann
2000, Li et al. 2002). Detailed cross-fostering studies are
therefore needed to determine the relative importance of
the different developmental ‘windows’ for the program-
ming of effects in the hypothalamus. Nevertheless,
rodent studies using maternal exposure to a high-fat
diet from weaning (Gupta et al. 2009) or solely during
pregnancy (Chang et al. 2008) and one study in sheep in
which glucose infusions were administered directly into
foetuses (Muhlhausler et al. 2005) in later gestation have
found altered expression of orexigenic peptides in the
www.reproduction-online.org
hypothalamus of foetuses, suggesting that prenatal
exposure to increased nutrition may be sufficient to
programme alterations in the brain which may impact on
appetite control. Additionally, the risk of offspring
obesity may be further exacerbated by reduced energy
expenditure which has been observed in some, but not
all, studies (Khan et al. 2003, Bayol et al. 2007,
Samuelsson et al. 2008).

Exposure to maternal obesity may be associated with
‘programmed’ alterations in the expression of genes,
which are important in adipocyte differentiation and
function and which may be an additional mechanism
underpinning the increased risk of obesity and insulin
resistance in animal models. Alterations in adipose gene
expression may be detected from early development, for
example maternal obesity is associated with altered
expression of genes in the adipose tissue of foetal sheep,
including increased expression of lipoprotein lipase,
adiponectin, leptin and the adipogenic factor peroxisome
proliferator-activated receptor g (PPARG; Muhlhausler et al.
2007). Although the exact consequences of these
alterations in gene expression remain to be explored,
the authors speculate that they may reflect accelerated
adipocyte differentiation, with a premature transition
from a thermogenic to a lipid storage function
(Muhlhausler et al. 2007). These changes may be
persistent, since rodent studies suggest that maternal
obesity is associated with changes in gene expression in
adipose tissue in adulthood, including alterations in the
expression of genes such as PPARG, b-adrenoceptors,
insulin receptor substrate-1 (IRS1), vascular endothelial
growth factor-A (VEGFA) and tumour necrosis factor a
(TNF; Caluwaerts et al. 2007, Bayol et al. 2008,
Samuelsson et al. 2008, Shankar et al. 2008). Thus,
maternal obesity may be associated with programming
of altered adipocyte proliferation and differentiation
capacity (Bayol et al. 2008), increased expression of
inflammatory mediators (Caluwaerts et al. 2007) and
altered lipid turnover (Samuelsson et al. 2008, Shankar
et al. 2008).
Evidence from human studies

Maternal obesity and offspring obesity and body
composition

In humans, increased rates of obesity in mothers are
paralleled by an increase in large for gestational age
delivery rates (Surkan et al. 2004) and by an increase in
obesity rates in children (Ogden et al. 2006). This, and
the observation of early onset obesity even among
children in the first 6 months of life (Kim et al. 2006),
supports a relationship between maternal obesity and
offspring obesity. Maternal obesity prior to pregnancy is
associated with foetal macrosomia (Jensen et al. 2003),
and there are a large number of studies linking increased
Reproduction (2010) 140 387–398
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birth weight with risk of overweight and obesity in
childhood and adulthood (Parsons et al. 1999).

There are now several observational studies support-
ing an association between maternal obesity with
increased risk of obesity in the offspring as neonates
(Table 1), childhood (Table 2) and into early adulthood
(Table 3). Where obesity in the offspring is assessed by
BMI, studies show a clear relationship between
increased maternal pre-pregnancy BMI and BMI during
pregnancy with obesity in later life in the offspring
(Laitinen et al. 2001, Whitaker 2004, Li et al. 2005,
Reilly et al. 2005, Salsberry & Reagan 2005, Lawlor et al.
2007, Koupil & Toivanen 2008, Mesman et al. 2009,
Reynolds et al. 2009, Stuebe et al. 2009, Tequeanes et al.
2009; Tables 2 and 3). In addition to increased BMI,
there are also alterations in body composition of the
offspring of obese mothers; maternal obesity is associ-
ated with increased fat mass, as assessed by calliper
measurements of skinfold thickness or by dual X-ray
absorptiometry, in neonates (Sewell et al. 2006, Harvey
et al. 2007, Hull et al. 2008, Catalano et al. 2009,
McIntyre et al. 2010; Table 1) and in children (Burdette
et al. 2006, Blair et al. 2007, Gale et al. 2007; Table 2).
Interestingly, offspring body fat does not appear to be
associated with paternal fat mass (Shields et al. 2006).
There is some evidence that the associations of maternal
obesity with foetal growth may plateau at the highest
levels of BMI (McIntyre et al. 2010), suggesting that
either a maximal influence is present, or alternatively, as
maternal obesity can lead to offspring of both high and of
low birth weight (Rajasingam et al. 2009), other factors
that limit foetal growth may be operating. Intriguingly,
the impact of maternal obesity on offspring obesity and
body composition is maintained into adulthood, over
and above current lifestyle factors with associations
reported between maternal obesity and offspring BMI
(Laitinen et al. 2001, Koupil & Toivanen 2008, Reynolds
et al. 2009, Stuebe et al. 2009, Tequeanes et al. 2009),
and fat mass (Mingrone et al. 2008, Reynolds et al. 2009)
up to the age of 31 years (Table 3).

Maternal gestational weight gain and offspring obesity
and body composition

While, in humans, there are no studies specifically
addressing components of the diet in the context of
maternal ‘overnutrition’ and offspring outcome, gesta-
tional weight gain may reflect the exposure of the
developing foetus to the prevailing nutritional environ-
ment and thus provide an opportunity to examine the
influence of overnutrition as opposed to obesity per se.
Interestingly, the impact of maternal obesity on risk of
offspring obesity appears to be slightly different from the
impact of excessive gestational weight gain. A number of
studies have demonstrated a link between maternal
gestational weight gain and later obesity in childhood
(Oken et al. 2007, Olson et al. 2009) adolescence
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(Oken et al. 2008) and early adulthood (Mamun et al.
2009), while others have shown no effect (Catalano et al.
1995, Koupil & Toivanen 2008). In these studies, the
strength of the effect is generally less than that of
maternal obesity per se, and there is some evidence that
the effect is stronger among underweight/normal-weight
women (Mamun et al. 2009). However, a recent study
showed that the extremes of gestational weight gain
were associated with obesity in the daughters at the age
of 18 years (Stuebe et al. 2009) suggesting the
importance of good maternal nutrition, even among
women who are obese.

Interpretation of many of these studies is limited as
pre-pregnancy BMI is often self-reported, and many
studies do not have additional measurements of weight
during pregnancy. Likewise, most studies do not have
detailed measurements of maternal body composition
during pregnancy, and so it is not possible to assess the
impact of differing body fat distribution on the offspring.
Most studies have not considered the potential con-
founding effect of breastfeeding, which may be import-
ant as obese women are less likely to initiate
breastfeeding or may feed for a shorter time (Oddy
et al. 2006). In addition, most studies have only
considered obesity in the mother and have not tested
the potential paternal contribution on offspring obesity
(Lawlor et al. 2008).
Programming of metabolism

In addition to increasing the risk of offspring obesity,
maternal obesityalso impacts on offspring metabolism. To
date, most studies have investigated effects on pancreatic
function with attendant effects on glucose/insulin
homoeostasis, but studies are beginning to examine the
effects of maternal obesity on other components of the
‘metabolic syndrome’ including dyslipidaemia and
non-alcoholic fatty liver disease.
Glucose/insulin homoeostasis and pancreatic function

In animal studies, exposure to maternal obesity/over-
nutrition during both pregnancy and lactation is
associated with the development of metabolic dysfunc-
tion in offspring, including hyperinsulinaemia, hyper-
glycaemia and increased plasma levels of triglycerides,
cholesterol and leptin, features that are amplified
when offspring are themselves exposed to a high-fat
diet (Guo & Jen 1995, Bayol et al. 2008, Samuelsson
et al. 2008, Shankar et al. 2008, Liang et al. 2009,
Nivoit et al. 2009, Tamashiro et al. 2009, Yan et al.
2010). Additionally, there appears to be an age-related
decline in glucose/insulin homoeostasis in many
programming models; in mice, offspring of obese
mothers were found to be hyperinsulinaemic at
3 months of age (young adulthood), but male offspring
www.reproduction-online.org
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had developed frank diabetes with reduced plasma
insulin and decreased pancreatic insulin content by
6 months of age (Samuelsson et al. 2008). It has been
proposed that such an age-related decline in pancrea-
tic function may be programmed at an early develop-
mental stage; in sheep, maternal obesity is associated
with increased foetal pancreatic weight and a marked
increase in the number of insulin-positive cells per unit
area of the foetal pancreas, perhaps reflecting
enhanced early b-cell maturation (Ford et al. 2009).
However, such changes in early pancreatic develop-
ment may result in premature postnatal b-cell loss
and result in a predisposition to the development
of obesity and metabolic dysfunction in adulthood
(Ford et al. 2009).

Recent studies in humans have started to examine the
influence of maternal obesity on offspring glucose/insulin
homoeostasis. In a small study, offspring of obese
mothers (pre-pregnancy BMI 38.4 kg/m2) were more
insulin resistant (calculated umbilical cord glucose and
insulin concentrations using the homoeostasis model)
than offspring of lean mothers (pre-pregnancy BMI
22.0 kg/m2; Catalano et al. 2009), suggesting that the
foetus may have increased insulin secretion earlier in
pregnancy (Carpenter et al. 1996). Recent evidence from
the Hyperglycaemia and Adverse Pregnancy Outcome
study including 23 316 participants also reported an
association between increased maternal BMI and foetal
hyperinsulinaemia (assessed by cord serum C-peptide
levels), even after adjustment for maternal glycaemia
(McIntyre et al. 2010). In the latter study, BMI in the
mothers was measured in the third trimester of
pregnancy, a measurement that is less closely correlated
with maternal fat mass than BMI measured in early
pregnancy (Sewell et al. 2007), and so this may have
attenuated the findings.

There is some evidence that the effect of maternal
obesity on insulin sensitivity persists into later life with
offspring of overweight women (here defined as pre-
gravid BMI O27.3 kg/m2) having increased risk of
developing the metabolic syndrome by age 11 years
(Boney et al. 2005). One study investigated insulin
sensitivity using a euglycaemic insulin clamp in 21 lean
offspring aged 22 years of ‘obese’ parents compared with
23 lean offspring of normal-weight parents and found no
significant differences between groups (Lazarin et al.
2004). However, the mothers were overweight (BMI
27 kg/m2), rather than obese, and the study also included
fathers who were obese. A more recent larger study
examined 51 offspring in their early 20s of obese mothers
(BMI O30 kg/m2 before and during pregnancy) and 15
offspring of normal-weight mothers (Mingrone et al.
2008). Insulin sensitivity was calculated from glucose
and insulin results during an oral glucose tolerance test
using the oral glucose insulin sensitivity index, and
insulin secretion and b-cell glucose sensitivity were
computed by a mathematical model. Of note, 69% of the
www.reproduction-online.org
obese group offspring were obese and 19% were
overweight. The offspring of the obese group were
more insulin resistant, but b-cell glucose sensitivity did
not differ between groups. In this study, the BMI of the
fathers was similar in both groups. Overall, these
findings suggest that maternal obesity impacts on
offspring glucose homoeostasis, but also raises the
potential importance of other nutrients in pregnancy
regulated by insulin such as triglycerides, free fatty acids
and amino acids which also regulate foetal growth
(Schaefer-Graf et al. 2008).
Non-alcoholic fatty liver disease

There is increasing evidence that exposure to an adverse
prenatal environment may predispose offspring to
developing fatty liver, the hepatic manifestation of the
metabolic syndrome (Magee et al. 2008). Offspring of
female rats and mice exposed to a high-fat diet before
conception and during pregnancy have increased liver
triglyceride content (Buckley et al. 2005, Bruce et al.
2009, Elahi et al. 2009). This has been associated with
altered hepatic mitochondrial electron transport chain
complex activity and with increased expression of genes
involved in lipogenesis, oxidative stress and inflam-
mation (Bruce et al. 2009). An effect of maternal high-fat
diet on offspring liver triglyceride content has also been
shown in non-human primates in which the offspring of
females maintained long-term on a high-fat diet had
increased liver triglyceride content and evidence of
increased hepatic oxidative stress whether or not their
mothers had become obese, suggesting that program-
ming of liver fat may be independent of maternal obesity,
at least in this model (McCurdy et al. 2009). The impact
of maternal obesity in humans on offspring development
of non-alcoholic fatty liver disease has not been studied,
although preliminary evidence suggests that early
feeding habits may impact on development of fatty
liver disease in childhood suggesting a potential role for
early life experience in development of this condition
(Nobili et al. 2009).
Programming of blood pressure and vascular function

A number of rodent studies have demonstrated that the
offspring of mothers maintained on a high-fat diet before
and during pregnancy and through lactation develop
high blood pressure (BP; Khan et al. 2003, 2005,
Samuelsson et al. 2008, 2010, Elahi et al. 2009, Liang
et al. 2009), which deteriorates further with age
(Samuelsson et al. 2008, Liang et al. 2009). Khan et al.
(2005) cross-fostered offspring of obese rat mothers onto
normal controls and showed that exposure to maternal
obesity/high-fat diet during gestation was sufficient to
programme hypertension in the offspring. In terms of
mechanisms, in rats, the offspring of obese mothers have
Reproduction (2010) 140 387–398
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endothelial dysfunction (Koukkou et al. 1998, Ghosh
et al. 2001, Taylor et al. 2004, Khan et al. 2005)
including reduced endothelium-dependent vasodilata-
tion in both small and large vessels (Koukkou et al. 1998,
Ghosh et al. 2001, Taylor et al. 2004, Armitage et al.
2005), altered vascular fatty acid content (Ghosh et al.
2001) and increased aortic stiffness with reduced smooth
muscle cell number and endothelial cell volume
(Armitage et al. 2005). Very recent studies using a rodent
model of programming by maternal obesity have
demonstrated that the offspring of obese females develop
hypertension and increased cardiovascular response to
stress before the onset of increased adiposity or
hyperleptinaemia, accompanied by evidence of
increased sympathetic activity and increased renal
norepinephrine concentration and renin expression
(Samuelsson et al. 2010), suggesting that programming
of autonomic function might be one mechanism under-
pinning the development of hypertension in this model.
However, these findings are not consistent across all
studies (Armitage et al. 2005), so that further studies are
required to delineate the precise mechanisms of
programming of hypertension in the different models.

Despite this animal evidence, there are no data in
humans examining the association between maternal
obesity and offspring BP. This is probably due to lack of
available obese pregnancy-offspring cohorts with
measurements of BP in the offspring in adulthood.
However, a positive association was reported between
gestational weight gain and both offspring obesity and
systolic BP at the age of 3 years (Oken et al. 2007). In
addition, in a population-based cohort of 2432 individ-
uals aged 21 years, a greater gestational weight gain was
associated with greater BMI and with increased systolic
BP (0.2 mmHg per 0.1 kg, 95% CI K0.2 to 0.6; Mamun
et al. 2009). Although the latter was not statistically
significant, the effect size was of similar magnitude as the
statistically significant association with BMI. Likewise,
although maternal vascular function is altered in
pregnancies complicated by obesity with lower
endothelium-dependent and endothelium-independent
vasodilatation when compared with lean counterparts
(Stewart et al. 2007), there are no studies to
date examining vascular function in offspring of
obese mothers.
Future directions for research

As discussed above, many studies in animal models have
shown that exposure to maternal obesity/overnutrition
during pregnancy C/K lactation is associated with
programming of cardiovascular risk in the offspring. The
remarkably similar programming effects observed in the
offspring, including programming of obesity and meta-
bolic and vascular dysfunction, from different experi-
mental paradigms and in species with different
reproductive strategies suggest that identification of
Reproduction (2010) 140 387–398
common mechanisms may be possible using data from
current animal models and may indeed be relevant
to humans.

Nevertheless, extrapolating data from extant animal
studies to determine public health policy may be
difficult. Studies have employed different diets, for
example high-fat, ‘cafeteria’ and ‘junk food’ diets,
making it difficult to draw conclusions about the
potential role of particular nutrients in the programming
of disease risk. Additionally, it is not always clear
whether the diets employed were matched for other
dietary components such as protein, since low-protein
diets are well known to programme offspring metabolism
(reviewed in Davenport & Cabrero (2009)). Studies are
urgently needed to dissect the role of dietary compo-
sition in the programming of offspring disease risk.
Further studies should also be directed at identifying
critical developmental windows of importance in the
programming of disease risk to dissect not only the role
of maternal obesity versus foetal overnutrition per se but
also the relative importance of overnutrition during
critical developmental windows within pregnancy and
during lactation. Such studies are of paramount import-
ance in informing public health policy in terms of
advising women about weight management and diet
prior to and during pregnancy.

One area in which there has been much recent interest
is the potential role of epigenetic mechanisms in
developmental programming. The term ‘epigenetic
modifications’ is generally used to describe changes in
gene function which are not explained by changes in
DNA sequence and which may be mitotically and/or
meiotically heritable. Epigenetic modifications that
mediate this include DNA methylation, histone modifi-
cations and small non-coding RNA, and there is a
growing literature demonstrating altered DNA methyl-
ation and histone modifications in animal models of
intrauterine growth retardation (Waterland & Michels
2007). More recently, the role of epigenetic modifi-
cations in mediating the effects of maternal obesity on
the offspring has been investigated in several recent
studies in primates, which have shown global and gene-
specific alterations in DNA methylation and histone
modifications with maternal exposure to a high-fat diet
(Agaard-Tillery et al. 2008). In humans, emerging data
suggest that severe maternal undernutrition may result in
persistent epigenetic changes in the offspring (Heijmans
et al. 2008), but the effects of maternal obesity have not
been examined.
Other programming targets

While the focus of this review has been the impact of
maternal obesity on offspring obesity, body composition
and cardiometabolic health, there are also other long-
term adverse effects of maternal obesity on offspring
health. This has been little explored in humans beyond
www.reproduction-online.org
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childhood. However, there is emerging evidence that
maternal obesity impacts on offspring brain function
including cognitive function and psychiatric or mood
disturbances; children of women who are overweight
pre-pregnancy or gain a large amount of weight during
pregnancy have a twofold risk of attention deficit
hyperactivity disorder symptoms compared to normal-
weight women (Rodriguez et al. 2008), as well as
problems with emotional regulation (Rodriguez 2010).
These effects are substantial, and thus clinically relevant,
if causal. Preliminary data also suggest that maternal
obesity increases risk of the offspring developing
asthma (Reichman & Nepomnyaschy 2008) and eczema
(Kusunoki et al. 2008) in childhood. Future studies will
determine the impact of maternal obesity on a range of
morbidities in the offspring, including reproductive
health, and whether the effects of maternal obesity on
offspring health persist into adulthood.
How can we prevent the long-term consequences of
maternal obesity on offspring outcome?

Given the clear associations of maternal obesity with
adverse long-term outcomes for the offspring, it would
appear that interventions that result in maternal weight
loss should be beneficial to the offspring and have a
potentially great impact on public health. A follow-up
study of 111 children from 49 obese mothers who had
lost 36G1.8% body weight sustained for 12G0.8 years
with bariatric surgery (weight loss surgery) showed that
the children had lower birth weight associated with
reduced prevalence of macrosomia. At follow-up at the
age of 2.5–26 years, the children were leaner, and had
improved metabolic profiles with greater insulin sensi-
tivity and improved lipid profile (Smith et al. 2009a).
However, there remain many questions, including when
is the best time for women to lose weight when planning
pregnancy, and how should they manage their weight
when pregnant? A recent systematic review noted that
there is minimal evidence to support any specific
dietary or lifestyle intervention strategy (Dodd et al.
2008), and results of randomised controlled trials are
eagerly awaited.
Conclusions

Thus, a growing body of evidence from both animal and
human studies suggests that maternal obesity has an
impact on offspring health, which has profound
implications for public health policy. Of particular
concern is the increased risk of obesity and metabolic
sequelae in the offspring of obese mothers reported in
both animal and human studies, which has the potential
to result in an ‘intergenerational cycle’ affecting obesity
and cardiovascular disease risk across a number of
generations (Drake & Walker 2004, Drake & Liu 2010).
www.reproduction-online.org
Further studies are urgently needed in order to delineate
the mechanisms underpinning these programming
effects and identify suitable interventions to reduce the
risks of these complications in the offspring.
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