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Abstract: Spaceflight (SF) increases the risk of developmental, regenerative, and physiological
disorders in animals and humans. Astronauts, besides bone loss, muscle atrophy, and cardiovascular
and immune system alterations, undergo ocular disorders affecting posterior eye tissues, including
the retina. Few studies revealed abnormalities in the development and changes in the regeneration of
eye tissues in lower vertebrates after SF and simulated microgravity. Under microgravity conditions,
mammals show disturbances in the retinal vascular system and increased risk of oxidative stress
that can lead to cell death in the retina. Animal studies provided evidence of gene expression
changes associated with cellular stress, inflammation, and aberrant signaling pathways. Experiments
using retinal cells in microgravity-modeling systems in vitro additionally indicated micro-g-induced
changes at the molecular level. Here, we provide an overview of the literature and the authors’
own data to assess the predictive value of structural and functional alterations for developing
countermeasures and mitigating the SF effects on the human retina. Further emphasis is given to
the importance of animal studies on the retina and other eye tissues in vivo and retinal cells in vitro
aboard spacecraft for understanding alterations in the vertebrate visual system in response to stress
caused by gravity variations.
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1. Introduction

Outer space is an environment alien to both humans and other vertebrates living
on Earth. Such factors as microgravity (µg) and cosmic radiation make being in space
dangerous. Long-term orbital flights often cause organic and systemic changes in the body,
although they also trigger mechanisms of physiological adaptation to the extraordinary
conditions of spaceflights (SF). Effects of µg on the redistribution of fluids, including blood,
in the body are known. The cardiovascular system counteracts gravity when it pumps
blood to the upper body, but it also uses the pull of gravity when it distributes fluid
to the lower extremities. The conditions of µg alter the functions of the cardiovascular
system and eye blood supply [1–3]. SF is known to have a negative effect on the central
nervous system [4–7]. Moreover, muscle and bone mass loss, anemia, and immune system
suppression were also documented [8–10].

Despite the protection created in spacecrafts, cosmic radiation, as a co-factor of SF,
and µg exert a combined negative effect [11]. The eye and the retina, being one of the most
sensitive systems of perception of the environment, are exposed to both [12]. Astronauts
(cosmonauts, or taikonauts) during SF suffer a reduction and changes in vision, which are
collectively referred to as spaceflight-associated neuro-ocular syndrome (SANS) [13,14].

In recent decades, numerous µg-associated pathological and physiological changes
have been investigated at different levels of vertebrate organization, from single cells to a
whole adult organism. However, only a small portion of studies have considered the effect
of altered gravity on the visual system, the development and regeneration of eye tissues,
and, in particular, the retina of animals in vivo. Beyond the sufficiently close investigation
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and elucidation of SANS in the literature, when analyzing available information, we
find only scattered data obtained on different models of vertebrates in vivo, from fish
to mammals. There is only scarce evidence about the behavior of retinal cells and the
expression of genes and proteins in them when cultured in vitro under µg conditions. In
many cases, these are results of laboratory in vivo and in vitro experiments simulating
weightlessness close to physiological, the so-called simulated microgravity (s-µg). The
range of issues to address using a vertebrate retina model in vivo under µg conditions
is still also narrow. A few studies consider the retina development in fish and birds, the
retina regeneration in amphibians, and changes in the retina of adult mammals, mainly
small rodents. Data on the molecular mechanisms that provide the development patterns,
regeneration/recovery of the retina, and its structural changes in SF conditions are even
scarcer. There is also a very small range of studies that take into account the radiation
effects in cases of µg exposure and on animals exposed to hyper-gravity (hg). Although
the amount of information accumulated over more than half a century is not as sufficient,
often scattered and fragmentary, it provides basic views of the effect that low gravity doses
have on eye tissues: retina (both, neural portion of the retina and RPE), optic nerve (ON),
choroid, lens, and cornea of human and other vertebrates. Currently, experiments using
rodents are a priority, since the results of such approaches can potentially be transferred to a
human eye model in order to prevent or address some vision problems faced by astronauts
in SFs. However, all, without exception, studies using in vivo animal models conducted
aboard a spacecraft are relevant for the development of fundamental aspects of the visual
system biology in various animals exposed to SF conditions. Understanding the emergence
and progress of changes, the potential and the pattern of adaptation, regeneration, and
restoration of eye tissues, molecular mechanisms regulating these processes, etc. is of high
importance. The already available information in these areas requires elucidation and
generalization attempts to formulate the prospects and objectives of future studies. In
this review, we attempted to briefly highlight the data obtained by studies on the retina
of vertebrates from different taxonomic classes in vivo exposed to real microgravity (r-µg)
on biosatellites and in manned flights as well as by on-ground experiments simulating µg
and hg. Information about the changes occurring in the retina and surrounding tissues in
humans in space missions is provided in brief. The review also contains information on the
behavior of certain cell populations and retinal tissue in vitro in various cultivation modes
simulating µg.

2. Factors Accompanying Spaceflights

The major factors that influence a living organism exposed to SF conditions are µg
and ionizing cosmic radiation. Additional factors include hg experienced during takeoff
and landing, magnetic field changes, an increase in CO2 concentration, circadian rhythm
disturbance, vibration, behavioral and social constraints, etc., but the former two are the
most influential (Figure 1).

Microgravity (µg) is a small dose of gravity at which the force of normal (1 g) gravity
acts to only a low extent, and the body experiences weightlessness. SF conditions do not
mean the complete lack of the gravity effect, but its dose is significantly reduced to values
between 0.0001 and 0.000001× g (on average, 10−6) [15]. Over the years of research on
board spacecrafts and after SF, as well as in experiments using s-µg, the adverse effect of
long-term µg exposure on many systems of the body has become evident. Changes affect
the visual, central nervous, musculoskeletal, cardiovascular, and immune systems as well
as cell responses and the expression of many genes. Information collected on in vivo animal
models, on humans, and isolated cells and tissues in vitro under s-µg and r-µg conditions
has been summarized in numerous reviews elsewhere (see, for example, [9,16–19]). The
data concerning the pattern of influence of r-µg and s-µg on the structures of the eye in
general and the retina in particular are provided in the sections of the present review below.
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Figure 1. Spaceflight factors and their effects on vertebrates including humans. Microgravity and
cosmic ionizing radiation are the major factors.

Initially, it was assumed that cosmic radiation should have an effect on any living
organism, including humans. This effect results from the loss of the shield created by the
Earth’s atmosphere and magnetic field. In long-term SFs, the human or animal body is
known to be continuously exposed to low doses of cosmic radiation including heavy ions
(the so-called HZE particles) [20–22]. A study of the biological effect of space radiation
on the mammalian body simulated in the laboratory has shown that it poses a higher
cancer risk and negatively affects the functions of the cardiovascular, central nervous, and
immune systems [23–26]. In vertebrates, including humans, the retina is very sensitive and
subject to oxidative damage caused by the constant light radiation on Earth [27]. However,
oxidative damage is an additional risk in SFs during exposure to cosmic radiation [28,29].

The variation in the effect of cosmic radiation in the conditions of µg exposure and
the possible synergistic effect of the two factors are widely discussed [30–33]. Differences
of the effect of space radiation on living organisms in SF compared to this effect at 1 g on
Earth are documented from time to time, with information on this issue, however, being
scarce, and the results still contradictory and ambiguous. This is explained by the greater
attention to the role of µg and the fact that most studies are conducted without taking
into account the cosmic radiation effect. Recently, researchers [11,33,34] have paid special
attention to oxidative DNA damage and variations in signal transduction that occur during
exposure to cosmic radiation, taking into account not only chromosomal DNA but also
mitochondria. The study by Yatagai and Ishioka [31] proposes a solution for detecting
the interactive effect of µg and space radiation using a broad analysis of gene expression.
There is currently evidence that the combined effect of the two most important SF factors is
exerted at the molecular level of cell responses: damaging and signaling by ROS, damage
responses on DNA (repair, replication, transcription, etc.), and expression of gene and
protein (regulation by chromatin, epigenetic control, etc.) [34]. However, it is obvious that
this research approach requires modern methods of molecular biology to be introduced
in the practice of experiments in SF conditions and/or when simulating the latter in a
laboratory. The objective becomes even more complicated when using not only cell systems
in vitro but also analyzing the molecular genetics of cell responses under the combined
effect of radiation and µg on animal models in vivo.

The number of studies considering the effect of hyper-gravity (hg) on in vitro and
in vivo models is not as substantial compared to that of studies on µg and cosmic ionizing
radiation. On the other hand, astronauts experience, although for a short time, signifi-
cant overloads during takeoff and re-entry. The effect of hg conditions is studied using
short-arm human centrifugation as a possible countermeasure to treat not only spaceflight
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deconditioning but also provide a therapeutic approach to several pathologies [35]. Dur-
ing the experiment, many animal models have been studied, from insects to mammals
including humans [36]. Nearly all body systems investigated are influenced by hg. Sub-
stantial anomalies have been observed in the cardiovascular, immune, vestibular, and
musculoskeletal systems [37]. Thus, studies of the hg effect on changes in the mammalian
musculoskeletal system show the occurrence of muscle hypertrophy, increased myogenesis,
and inhibition of muscle degradation in vivo [38]. A similar effect on bone tissue has been
recorded: elevation of bone mass due to the upregulation of bone formation [38]. The
molecular mechanisms of the phenomenon have not yet been reported, but it is obvious
that changes occur due to the regulation of genes responsible for these processes. In some
of the studies, the hg effect on other tissues has been recorded: high doses of gravity can
induce the synthesis of nitric oxide synthase (iNOS) in mouse kidneys [39] and disrupt
the intestinal microbiota in mice [40]. A positive effect toward glial cells has been shown.
Hyper-gravity promotes astrocyte reactivity aimed at suppressing axon dystrophy and
stimulating neuronal regeneration [41]. Among numerous studies carried out to date
using high gravity doses, no evidence of this effect on the visual system and eye tissues
of vertebrates has been found except for the results of the below-described experiments
using a centrifuge and newts as the animal model. Furthermore, there are large differences
between the duration and values of hg created in laboratory-based experiments (days and
weeks) and in SF (minutes). The body size should also be taken into account. As is assumed,
the larger the body, the greater becomes its response to the impact [42]. For this reason, the
data obtained in model experiments cannot be extrapolated to humans under conditions of
overload during takeoff, subsequent SF, and re-entry to Earth.

3. Structure of the Vertebrate Eye and Retina

In the context of the review, we focus largely on the structure of the retina of the eye.
The vertebrate retina is a multi-layer neuronal structure that converts light to electrical
signals that are transmitted to the brain [43]. To perform these functions, the retina is
highly organized [44,45]. In the evolutionary series of vertebrates, the retina has a common
structure [44,45]. The laminated organization of the retina is schematically represented in
Figure 2.
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Figure 2. Diagram of the eye and retina: RPE—retinal pigmented epithelium; Ph—photoreceptors;
ONL—outer nuclear layer; OPL—outer plexiform layer; INL—inner nuclear layer; IPL—inner
plexiform layer; GCL—ganglion cell layer.

Outside, it is lined by a layer of retinal pigmented epithelial (RPE) cells that interacts
with photoreceptors and provides simultaneously perception and processing of a light
signal for transmission along the visual cascade and the optic nerve (ON) to the visual
analyzer of the brain. The head of the ON is a region where the axons of the ganglion
cell layer exit the eye. The visual cascade, in turn, is represented by cells of the nuclear
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(outer and inner, ONL and INL) and plexiform (outer and inner, OPL and IPL) layers
as well as ganglion cells that extend their axons to ON. ONL is represented by bodies of
photoreceptor cells, and INL is represented by bodies of interneurons, bipolar and amacrine
cells, and also by horizontal cells. OPL contains processes of photoreceptors interacting
with interneurons’ processes, and IPL consists of processes and synapses of interneurons
interacting with ganglion cells’ processes. Müller glia (MG) is a population of macroglial
cells within the retina. MG cells are distributed throughout the layer, providing mechanical
support, sending their long processes outward and inward, and being involved in the
formation of the outer and inner limiting membranes of the retina [46]. In addition, Müller
glia cells provide trophic support for retinal neurons [47] and serve for the guidance of
light through the NR [48]. In mammals and humans, the NR has two vascular supplies: the
choroidal vasculature underlying the RPE and vessels of the inner retina (Figure 2). The
blood supply to the inner retina is via the central retinal artery whose branches radiate
from the ON head onto the inner retinal surface and then give rise to branches that extend
into the retina through the INL, IPL, and OPL. Three interconnected plexuses in the inner
retina and choroid provide oxygen and nutrients to neurons to maintain normal function
of the retina [49,50].

4. In Vivo Experiments on Vertebrates during Space Flights and in Ground-Based Tests
4.1. Fish and Amphibians

Studies using animals from different taxonomic classes and species have always
accompanied or preceded human space flights. Previously, the feasibility, expediency, and
conditions of using animal models for research in long-term SF were analyzed [51–53]. Of
particular importance are animals with short life cycles that can provide several generations
while being aboard manned space stations. In this regard, fish offer ample opportunities to
study the development and regeneration of tissues and organs, including the retina, due to
the good knowledge, as well as the opportunity to carry out manipulations with molecular
genetics on such model. However, very little is known about the retina of fish exposed to
r-µg and s-µg conditions. The Japanese ice fish medaka was the object of investigation in a
couple of studies [54–56]. The effect of µg on the medaka retina was studied at s-µg. The
s-µg conditions are known to be different from r-µg, since s-µg platforms do not reduce
gravity but constantly change its direction. Despite these fundamental differences, the s-µg
conditions provide a generally accepted way to achieve physiological weightlessness in
animals [57]. To study the organogenesis of the eye and retina, Nishiwaki et al. [54] used a
3D-clinostat and analyzed the general course of fish development including, in particular,
the morphogenesis of developing retina. A comparison of the results obtained for the
3D-clinostat-treated group and the control group showed neither temporal differences
in the retina development nor differences in the expression of the gene encoding opsin,
which is a specific photoreceptor protein [54]. Subsequently, studies using mutant medaka
(Oryzias latipes, Cab strain osteoblast transgenic fish) [58,59] were published. However,
these publications did not provide information about the retina of fish exposed to both r-µg
and s-µg conditions. A study based on this animal model aboard the International Space
Station (ISS) was carried out later [60]. A wide range of issues concerning the development
of organs and tissues of fish, including the brain and the eye’s retina, were addressed.
Six-week-old male and female medaka were kept aboard the ISS in the Aquatic Habitat
system for 2 months. Fish of the same line and age were also used for ground-based
controls. Tissue morphology and the expression of a number of genes were studied by
RNA-seq analysis. Histological studies did not reveal significant morphological changes in
the development of tissues aboard the ISS. However, an RNA-seq analysis of 5345 genes
for six different tissues indicated significant variations in the gene expression under r-µg
conditions when compared to the respective ground-based controls. It was shown that
the profiles of the stress-related GO genes change as the organism adapts to flight. In the
brain and eyes, these turned out to be genes encoding 14-3-3 protein binding (GO:0071889),
antigen processing and the presentation of exogenous peptide antigens via MHC class
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I molecules (GO:0002479), and also apoptosis-associated genes (GO:0006915). Thus, the
major finding of the study [60] was the fact that the genes that change expression, including
those in the retinal cells of fish, are the genes involved in adaptation to SF, which is
associated with immune and stress responses of cells [60].

Studies at the cellular and molecular levels using modern methods and laboratory
models of fish, including also various mutant fish lines, exposed to r-µg and s-µg conditions,
are expected to be continued in the future. In this regard, we can mention the recent special
design of a method and equipment for optical coherence tomography (OCT) to take images
of changes that occur in the retina of s-µg-exposed adult zebrafish [61]. This device will
allow analysis of changes in the eyes of not only fish but also other small animals, including
animal models for the study of ophthalmological diseases.

To investigate the development in amphibians, Neff et al. [62] used tadpoles of Xenopus
laevis and Rana dybowskii exposed to s-µg conditions at the hatching stage. An increase in the
size of the animals’ heads and eyes was documented in the study. The authors associated
such morphogenetic changes with variations in the cytoskeleton and/or proliferative
activity of cells in the anterior region of the embryo. On the other hand, Savel’ev et al. [63]
recorded a decrease in the sizes of the retina, ganglion of the VIII nerve, and olfactory
placodes by 60, 22, and 17%, respectively, compared to the control group of developing X.
laevis. The differences in the data obtained on ecaudate amphibian species may be explained
by different factors: the developmental stages at which the animals were launched and the
rearing devices used during the SFs.

Of certain importance is the suggestion by [64] that the effect of µg which causes
changes in the expression of development-associated genes depends on the time point
of development (the so-called “developmental windows”) at which exposed animals are
particularly sensitive to µg exposure. The fact of significant changes in the expression
of β-actin under s-µg conditions within 24–72 h post-fertilization is considered as an
example. Another important suggestion is that µg during the amphibian development
has a generally insignificant effect, and the resulting changes (differences compared to
1 g controls) are compensated after the removal of the impact, i.e., these are generally
reversible [62]. Researchers [65] who studied the development of caudate amphibians
exposed aboard the MIR station adhere to the same point of view. During all postflight
development up to adulthood on Earth, no differences or abnormalities were found for the
“flown” specimens returned to Earth.

Adult caudate amphibians are used to study regeneration in vertebrates in vivo. A
group of researchers from IDB RAS has undertaken a wide series of experiments on
newts (Urodela, family Salamandridae) (reviewed in [66]), tetrapods showing the highest
regenerative potential [67]. Animals were exposed aboard the Russian Biosatellites and
an unmanned “Foton” satellite. The participation in 12 flight-based studies jointly with
IMBP RAS provided an opportunity to reproduce experiments and, thereby, obtain well-
reproducible results [66]. Among the studied regenerating tissues, we used the lens
and the retina. The data of studies in SFs and in experiments at s-µg, compared to the
results of ground-based 1 g controls, allowed identifying specifics of regeneration of these
tissues caused by µg. A study of lens regeneration showed an accelerated entry of iris
cells (a source of lens regeneration) into the proliferative phase and also an increase in
the proliferative activity of the cells at the stage of regeneration progress. This led to
higher rates of development and growth of lens regenerates in the eyes of “flown” animals
compared to the rates recorded from the ground-based synchronous controls. Furthermore,
we found that the effects of r-µg and s-µg are long-lasting, rather mediated by body-wide
factors and factors of the cell microenvironment than by direct ones [66]. Among the cell
microenvironment factors, the FGF2 and HSPs signaling pathways were preliminarily
identified [68]. In addition to lens regeneration, major focus was on the retina and RPE.
The latter, located between the choroid coat and the neural retina, performs borderline
functions, produces a wide range of regulatory factors, and is involved in the maintenance
of visual function and absorption of the light energy, and the process is known as the visual
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cycle of the retina [69]. In addition, in adult amphibian and bird embryos, RPE cells are
capable of changing phenotype to form neurons and retinal glial cells. After damage or
removal of the retina, the whole retina is formed de novo through the proliferation and
conversion of RPE cells [70–73]. In the r-µg conditions during a SF aboard Bion-11, we
applied a model of cutting ON and blood vessels [74,75] (Figure 3A). With such damage,
the retina initially undergoes cell death and degeneration. This activates RPE to be involved
in the retinal regeneration. Simultaneously, the growth of undifferentiated cells occurs on
the side of the growth region of the retina (ora serrata) in these animals. RPE cells enter the
proliferation phase, undergo cell-type conversion, and form a population of multipotent
cells subsequently differentiated into all types of retinal cells. In an experiment [74], we
operated the newts at 2 and 4 weeks prior to an SF aboard the Bion-11 biosatellite, where
the animals were then kept for 2 weeks. After the SF, the process of retinal regeneration
was studied morphologically by radioautography (3H-TdR) and immunohistochemical
methods. The most interesting results were obtained for animals operated 2 weeks before
the SF. The proliferative activity of RPE cells in this group was 1.2–1.5-fold higher in the
“flown” animals than in the synchronous 1 g control (Figure 3B). The ora serrata cells also
showed increased proliferative activity compared to that in the 1 g control. The increase
in the proliferation of source cells of retinal regeneration resulted in an accelerated retinal
regeneration compared to ground-based controls [74,75]. Therefore, the study using the
model for retinal regeneration after ON crosscut in Urodela animals exposed to r-µg has
shown that the early steps of the process (RPE cell proliferation and reprogramming) are
most sensitive to r-µg, which, in this case, has a positive effect on retinal regeneration. Thus,
an assumption can be made that, both in the development and in the regeneration of the
retina, there are periods of particular sensitivity to µg which are the stages of the progress
of proliferation and the entry of retina anlage cells into differentiation.
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Figure 3. Spaceflight and simulated microgravity effects on Müller glia cell behavior in newts
(Urodela). (A) Diagram of retinal regeneration after optic nerve crosscutting in newt: I, II—
degeneration of the original retina; III, IV—RPE transdifferentiation and formation of the regenerating
retina rudiment; V–VII—differentiation of newly formed retina and optic nerve regrowth. (B) Relative
number (%) of cells expressing GFAP in regenerating retinas in newts of basal pre-flight control (B),
synchronous on-desk control (S), and flight (F) in animal groups operated at 2 (I) and 4 weeks (II)
prior to spaceflight. (C) A model of microsurgical retinal detachment used in clinorotation experiment.
RPE—retinal pigmented epithelium; NR—detached neural retina. On the right, detached retina
morphology. (D) Relative number of Müller glia cells’ long processes (accessory prolongations) in the
dorsal (dors), central (centr), and ventral (vent) regions of the detached retina in clinorotated (dark
blue) and control (light blue) animals on day 16 after retinal detachment and day 7 of rotation.
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Experiments were also set up using s-µg that was provided by the rotation of animals
on a clinostat at 60 rpm. According to theoretical calculations, simulated microgravity
could vary from 3.21 × 10−2 to 8.05 × 10−3 g. Sexually mature newts Pl. waltl were exposed
to such conditions after microsurgical retinal detachment [76,77] (Figure 3C). It was found
that the s-µg conditions do not prevent the NR regeneration after the detachment and, vice
versa, have a positive effect on the regeneration. The animals with retinal detachment that
underwent rotation on a clinostat, compared to the animals of on-desk 1 g controls, showed
a decrease in cell death and an accelerated return of RPE to the original phenotype after the
depigmentation, dedifferentiation and first steps of cell conversion that had occurred during
the retinal detachment. In some cases, the s-µg conditions facilitated retinal reattachment,
mostly in the dorsal and central part of the eye [76,77].

When discussing the identified r-µg and s-µg-induced features of regeneration/recovery
of the newt retina, one can assume a generalizing effect exerted by the whole animal
organism experiencing physiological weightlessness on the local regulators that control the
regeneration processes [68]. These are, among others, the regulators identified in numerous
ground-based in vivo experiments. Among the key ones, the FGF2, Wnt, Notch-Delta and
other signaling pathways are known that work in cohort with the transcription factors of
early eye development expressed and epigenetic regulators [78].

When studying the regeneration of eye tissues of newts exposed to r-µg and s-µg, we
managed to obtain evidence of changes in the population of Müller glia (MG) cells of the
retina [79]. MG, as a highly specialized cell population [80] showing certain resemblance
with neural stem cells [81], is considered a potential resource for the vertebrate retina
regeneration [82–85]. However, MG cells in mammals often respond to retinal damage by
reactive gliosis. The latter is manifested as proliferation, an increase in the MG population,
and cell hypertrophy [80]. Reactive gliosis accompanies many pathological conditions
of the retina and serves to prevent glutamate neurotoxicity, in which MG cells produce
trophic factors, including some that promote the survival of photoreceptor cell [86]. In
experiments with retinal detachment under s-µg conditions, we revealed changes in MG
associated with reactive gliosis: proliferation of its cells, an increase in the abundance of
cell population, an increase in the thickness of accessory prolongations of MG cells, and
increased expression of GFAP in them [79]. After 7 days (16 days p/o) of exposure of
animals on a clinostat, the number of MG cells in the s-µg group was observed to increase
1.5–2.0-fold (with differences depending on the retinal region) (Figure 3D). The assessment
was carried out on the basis of both the number of proliferating, [3H]-TdR labeled cells and
the relative number of their accessory prolongations [77,79].

MG cell population is known to be influenced not only by growth factors and hor-
mones but also by physical factors. It has been shown that the effect of laser-induced
intraocular pressure (IOP) is accompanied by a significant increase in GFAP expression
in the rat retinal MG population [87]. In humans who are in s-µg conditions [88], r-µg in
SF [89], as well as under the influence of rapidly changing gravitational doze [90], variation
in IOP was also observed. It is likely that in our case, the reactive state of MG in newts
under the r-µg and s-µg conditions was also caused by IOP variations. Above are the results
of an experiment aboard Bion-11 [74,79] using the model for ON cutting in newts. In this
case, we also assessed the dynamics of variations in the number of MG cells on the basis of
their long processes expressing GFAP in mature retinal regenerates in animals operated
4 weeks prior to SF. The number of MG cells turned out to be almost 40% greater in the
“flown” newts than in the 1 g synchronous control. This again indicated the activation of the
MG population in the de novo formed retinal regenerates. A model for lens regeneration
after lensectomy, used in an experiment aboard the “Foton” M3 satellite, made it possible
to study the MG state soon after a 12-day SF against the background of IOP decrease
caused by the operation. Based on assessment of the intensity of GFAP+ immunospecific
fluorescence in perikarya and processes of MG cells, a conclusion was drawn about the
enhanced MG gliotic response in the SF group compared to the 1 g control. In the same
localization in MG cells, we found the expression of HSP90, which is one of the cell stress
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indicators [91]. The intensity of expression of this protein in MG cells of the retina in the
“flown” animals also turned out to be higher than in the 1 g control [79,92].

The available array of data provides ample evidence of the activation of MG cells in the
retina of newts exposed to r-µg and s-µg conditions. The activation of MG toward the de-
velopment of gliotic response is manifested, according to our experiments, as consistent cell
responses: proliferation, self-reproduction, and also hypertrophy of cells with an increase
in the thickness of GFAP+ processes. The results obtained indicate the development of
reactive gliosis in the retina of µg-exposed newts. Thus, the extraordinary flight conditions
and s-µg do not block, but, on the contrary, contribute to the regenerative processes in
the Urodela retina after damage and pathological changes. This may be explained by the
activation of the mechanisms responsible for maintaining and preserving the structure and
function of the retina, including heat shock proteins [93].

In the USA–Russian joint study of the hg effect on the eye tissue regeneration in newts
Pl. waltl, the focus was on the regeneration of the lens and also the tail and a limb [94].
However, the hg conditions unexpectedly exerted the most pronounced effect on the eye’s
retina (Figure 4). Four groups of animals were used in the study. The first served as
a “basal” 1 g control on day 9 post-lensectomy; the second was a control group kept
in an aquarium; the third was subjected to centrifugation (hardware of Ames Research
Center, 8 feet in diameter); and the fourth group served as synchronous (repeating all the
conditions except hg) 1× g control. Centrifugation was conducted at 2× g (30.5 rpm) for
12 days. The right eyes of the animals of all groups served for non-operated control. No
morphological features of the retina were revealed in the stationary on-desk 1 g control.
Upon completion of centrifugation (day 21 p/op) in the 2× g group, the regeneration of
the lens was significantly suppressed against the background of the retinal detachment
recorded, which was presumably the cause of this suppression. The occurrence rate of
disjunction of RPE cells and photoreceptors was about 70%. Retinal detachment was
found not only in the operated eyes but also in the contralateral, non-operated ones. These
cases in the 2 g group were evidence of the occurrence of detachment beyond association
with lensectomy or other factors except hg. In cases of extensive detachment, there was
retinal folding with cell death observed inside the folds. RPE cells initiated the conversion,
migrated beyond their layer, and dedifferentiated. In some cases of NR detachment, the
neovascularization took place on the dorsal side of the retina and in the ON head and bed
regions. An antibody labeling against FGF2 and its receptors (FGF2R) in the 2 g group
revealed a decrease in the expression of both the FGF2 ligand and FGFR2. In the centrifuged
animals, the pattern of HSP70 expression also changed compared to the 1× g control. In the
detached retina, the HSP70+ signal was additionally registered in INL and also in ganglion
cells and ONs. It was assumed that the cases of retinal detachment at 2× g were caused by
variations in the IOP level that occurred in centrifuged animals [94].

Under 2 g conditions, the healing of the cornea after its incision in the lensectomized
eyes was inhibited: healing of the stromal and endothelial cornea layers was delayed.
The inhibition of regeneration and recovery of eye tissues under 2 g conditions in newts
is consistent with the information about the pattern of the hg effect on the amphibians’
development. Inhibition and abnormalities of development and growth were observed
in experiments on the frogs Rana rugosa and Xenopus laevis that developed to the tadpole
stage at hg (from 2 g to 10 g). Autopsy showed that brains, notochords, and muscles were
reduced [95]. Patterns of the hg effect on the developing retina of ecaudate amphibians
were identified in the study by Kawakami et al. [96]. The authors used the centrifugation
of developing X. laevis embryos at 2× g and 5× g. They investigated cell death in the
developing brain and eyes by the TUNEL method and gene expression using in situ hy-
bridization. The 5 g group, compared to the 1 g control, showed a delay in the development
in general and microcephaly and microphthalmia in particular. The developmental delay
occurred against the background of high cell death and changes in the expression of the
“developmental” genes Xag1 and Xag1. However, no such significant changes at 2 g, as
those at 5 g, were detected. According to the data obtained, hg can cause a slowdown in
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the overall development and also emergence of eye and retinal abnormalities, with the
expression of the inhibitory effect of hg being dose-dependent [96].
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Unfortunately, no other information about similar experiments and the effects of
variations in the gravity dose on the retina regeneration processes in lower vertebrates has
appeared in the literature to date. However, new data are desirable for two reasons. The
first is the aquatic or semi-aquatic lifestyle of these animals (with neutral buoyancy) and, in
this regard, their presumably different sensitivity to an altered level of gravitational load
compared to terrestrial vertebrates and humans [97,98]. For this reason, understanding the
differences in the effects of low and high g levels on the development of tissues, including
the eye, would be a significant contribution to the animal gravitational biology research,
in particular, to studies of adaptive and compensatory mechanisms. The second reason is
that these classes of animals are indispensable objects for the regeneration research, since
they exhibit the best regenerative potential and are well studied. The study of regeneration
and mechanisms to control it under an altered influence of gravity is also one of the
objectives of gravitational biology. Of particular importance is to identify the regeneration’s
relationships with the age and size of the animal, the duration of flights, the gravity levels,
space radiation, etc.

4.2. Birds

Birds have been used in experiments set up to study the embryonic development under
r-µg conditions. For this purpose, the development of quail embryos is a convenient model
by many criteria [99]. Fertilized eggs require only 17 days at 37 ◦C for development. A series
of experiments with the early development of Japanese quail embryos (Coturnix coturnix
japonica) exposed to r-µg conditions produced the following results: a slight delay in weight
and body size gain [100], weak development of gastrointestinal tract tissues [101], and a
delay in spinal cord development [102] and osteogenesis processes [103]. The disorders
of eye morphogenesis were observed on the same model in an experiment aboard the
Cosmos-1129 biosatellite [104]. Morphological and quantitative results were obtained for
quail embryos aged 3 to 12 days (E3–E12). The results were compared to those for the
groups of synchronous 1 g and laboratory-based controls. The main focus was on the study
of the characteristics of anomalies in the eye development. Cases of abnormal formation of
the inner layer of the cup, the prospective neural retina, were recorded at the optic cup stage,
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which is a key period in eye development (E3). The disorganization of neuroblasts and their
migration toward the optic cup cavity was also observed here. On day 7 of development,
during the period of active cell growth, significant morphogenetic changes were found in
the eye anlagen of birds developing in SF. In some cases, small eye anlagen were formed that
also had folding in the prospective neural retina and RPE. This indicated a dysregulation
of retinal self-organization and its morphogenesis. Dysregulation was manifested as a
reduction in the eye’s growth rate against the background of high proliferative activity of
the anlage cells and also as a disproportional growth in the prospective RPE and neural
retina. On day 10 of development (E10), as the eye tissues differentiated, the disorders
detected on day 7 became even more pronounced. At that time, disturbances of the layered
structure of the developing retina, a reduction in the vitreous body size, and a disturbance
of the pecten oculi structure were recorded. The changes also affected the anterior part
of the eye: the thickness of the cornea increased, and its layers became separated. It is
worth noting that one similar case was found in the synchronous 1 g control. At stage E12,
a microphthalmic eye that had hypertrophied choroidal and scleral coats was observed
to develop in one individual from the SF group. The abnormalities of development of
the quail eye, in particular the retina, recorded after SF were generally similar to the
dominant types of eye development disorders in birds and mammals [105]. However,
we still cannot state with certainty that these changes are directly related to r-µg. In
this experiment, eye development anomalies were found in birds exposed to complex
conditions aboard a biosatellite, where mechanical effects, among other ones, are also
likely. Japanese quail embryos were again used to study the bird’s eye development in the
USA-Russian joint experiment. Bird embryos were incubated at the MIR station at ages
E14 and E16 [106]. Quantitative measurements, morphological, immunochemical analysis
and electron microscopic studies were carried out to analyze the results of the experiment.
Special attention was paid to the cornea: its dimensions, transparency, innervation, and
ultrastructure were studied. As a result, no significant differences in the eye development
were found in embryos developing under r-µg conditions compared to 1 g controls. The
authors suggest that the lack of changes in the eye development in birds exposed to manned
flight conditions is associated with the stable maintenance of IOP by animals during this
developmental period and in SF conditions aboard the MIR station that differ from those
aboard a biosatellite [106].

Previously, in a study of the hg effect, researchers used chicks at 2 weeks posthatch which
were subjected to a 2× g hyper-gravity environment by chronic whole-body centrifugation
for 7 days [107]. The animals were sacrificed at 3 weeks posthatch and then subjected to
morphological and quantitative analyses. Compared to 1 g controls, 2 g exposure changed the
parameters of retinal layers’ thickness: decreased mean widths of the ONL and INL, and also
IPL were observed. However, the changes affected the ONL, OPL, and ganglion cell layers to
a lesser extent. We could not find any other, more recent information about the hg effect on
the condition of the bird retina, its development, or regeneration.

Despite numerous challenges encountered in setting up in vivo experiments on models
of developing birds [108], it should be noted that the conditions of their life support and
development were preliminarily well designed. For this reason, the use of bird embryos
exposed to r-µg and/or to other doses of µg can be further expected. In these future
studies, the range of issues of eye development’s relationship with changes in µg dose is
also likely to be extended, for which bird models (quail, chick, and pigeon) can be very
useful. Such studies in conditions of altered gravity could be as follows: the development
and establishment of retinotectal projections, retinal regeneration in bird embryos, role of
SF-related peroxidation and apoptosis of cells, behavior of MG, etc.

At the end of this section, it is also important to note that previously conducted studies
on fish, amphibians and birds are within the framework of the fundamental questions being
solved by gravitational biology. These studies are quite far from the direct, recent tasks of
human stay in outer space. Direct extrapolation of the results to humans is impossible for
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many reasons—first of all because of evolutionarily fixed species features. However, the
results seem important in a broad biological context.

4.3. Mammals

Significantly more studies have been conducted on mammals (mainly rodents) as
models exposed to r-µg and s-µg conditions than on other vertebrates. This is largely
because the results obtained contribute, to a greater extent, to the development of coun-
termeasures for mitigating the SF effects on human eyes. Studies on mammals allow
the prediction of changes causing optical complications in humans during SF, identify
conditions for preadaptation, and, thereby, better prepare astronauts for long-term space
missions. In early experiments by Philpott et al. [109,110] conducted aboard the Cosmos
782 and 936 biosatellites, first attempts were made to identify changes in the eye tissues
of adult rats during a 3-week SF. The material was fixed shortly after the SF and on day
25 after the biosatellite landed. To test the effect of cosmic radiation, it was simulated by
exposure to neon and argon radiation [110]. In general, the morphology of the rat retina
fixed shortly after the landing did not differ significantly from that in the ground-based 1 g
controls. However, necrotic cells were found in the ONL, and macrophage aggregations
were present at the level of the OLM of the retina. On day 25 postflight, the state of the
retina corresponded to the native one. Subsequently, the experiment on rats was modified:
another control group of animals was introduced, which was subjected to centrifugation
onboard to simulate 1× g conditions [110]. No differences were found between the flight-
stationary and flight-centrifuged animals, but changes were seen between these two groups
and the ground-based controls. The latter were similar to those recorded earlier [109] and
those obtained during exposure to high-energy particles. Affected photoreceptor cells in the
ONL showed swelling, clearing of cytoplasm, and disruption of membranes. As a result, a
conclusion was drawn that µg and environmental conditions other than cosmic radiation
do not contribute to the observed damage of retinal cells of rats [110]. In a study of eye
specimens from rat pups “flown” in the NIHR1 and R2 spaceflight mission conducted
by NASA, a histological examination of the retina showed no differences in development
between the flight and control animal retina at E20, P1, P3, and P8 [111]. However, the
retina of the experimental animals in the SF group was found to be much thinner [112].

After the experiments with developing neonatal rats exposed to s-µg aboard a space
shuttle, the authors [113,114] concluded that there is a high probability of disturbances in
the structure and function of the developing retina and, moreover, that the SF conditions
aboard the shuttle can induce retinal degeneration in rats during development. On day 9 of
SF, not only the retinas were at different stages of development in some of the individuals
exposed for 3 days during their postnatal development, but also the outer segments
of photoreceptors were not developed, which was accompanied by disturbances in the
RPE underlying the photoreceptors. Significant disturbances were also recorded from
GCL [113,114].

Recently, extensive research was conducted on mice exposed to r-µg conditions in
space shuttle missions and under s-µg. An important fact was documented that cosmic
radiation in combination with µg can induce oxidative damage in the rodent retina, leading
to the apoptosis of retinal cells [28,29]. In an experiment set up by [29], mice were exposed
aboard Atlantis (STS-135). The authors studied the expression of genes regulating the
mitochondria-associated apoptotic pathway and also the levels of mRNA encoded by
genes regulating the production of reactive oxygen species (ROS) in comparison with the
data for 1 g on-Earth controls. As a result, an upregulation of ROS-associated genes was
detected in tissue samples of “flown” animals compared to the 1 g controls. In parallel, the
“flown” mice showed an increase in the number of apoptotic cells in the INL and GCL of
the retina. As the authors suggested, µg in combination with cosmic radiation pose the
major risk of retinal cell degeneration in astronauts after flights [29]. The integral effect
of SF factors is also evidenced by other studies conducted also on rodents but with other
tissues considered [115].
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Thus, a study by Mao et al. [29] provided evidence that one of the important mecha-
nisms of changes in the mouse retina during SF is a reaction similar to cellular oxidative
stress. This assumption is consistent with the statements by Stein T.P. [116] and Yang
et al. [117] that SF promotes peroxidation reactions in rodents and humans upon return to
Earth under 1 g conditions. The effect is suggested to be more pronounced after a long-term
SF and can persist up to a few weeks after spacecraft landing. In humans, an increased lipid
peroxidation in erythrocyte membranes, a decrease in the blood level of antioxidants, and
increased urinary excretion of molecules that are markers of oxidative damage to lipids and
DNA were recorded. Observations on rodents showed an increased production of lipid
peroxidation products and a decreased activity of antioxidant enzymes after SF [116,117].

Subsequently, Mao et al. [118] analyzed eye tissues to identify possible mechanisms
of the r-µg effect on oxidative stress-associated retinal cell apoptosis as well as changes
in the profile of expressed proteins in adult mice aged 9 months that were aboard the ISS
for 35 days. The mice were kept under r-µg and, additionally, subjected to centrifugation
on board (µg + 1 g), while a series of control 1 g experiments were set up on Earth.
The data obtained for the groups of r-µg-exposed animals showed a 64% increase in the
death of retinal vascular endothelial cells compared to the habitat 1 g control groups on
Earth. According to the proteomic analysis, many key pathways responsible for cell death,
cell repair, inflammation, and metabolic stress were significantly altered in the µg mice
compared to the habitat 1 g control animals. A comparison with the µg + 1 g group animals
also revealed differences in the expression of a number of regulatory proteins associated
with the structure and metabolism of endothelial cells as well as with the immune response.
The differences between the r-µg and µg + 1 g groups suggest that artificially created 1 g
conditions aboard a spacecraft have a certain protective effect toward the vascular system
of the mouse retina under SF conditions [118].

On Earth, the main methods simulating the redistribution of blood in the anterior part
of the body that occurs under r-µg conditions are head-down tilt for human subjects [119]
and tail suspension (TS) for small rodents [120] (Figure 5). In the study by Li et al. [121],
prolonged TS was used for rats to reproduce the conditional µg effect on the redistribution
of fluids in the cephalic region. After 35 days, the authors observed a number of significant
changes in the eye and retina, in particular: the IOP changed, the choroid grew thicker, and
the demyelination of ON occurred. At the cellular level, there was a decrease in the viability
of retinal ganglion cells and ON oligodendrocytes. At the molecular level, inflammation-
related factors were identified in the retina and ON. However, it is still unclear how the IOP
changes during the experiment and whether IOP variations depend on the duration of TS of
rats. The questions about the probability of compensation and reversibility of the detected
disturbances also remain open [121]. These data agree well with the results of an earlier
study [122] on the same model, TS, of rats. The changes occurring in the ON and retina were
observed for 12 weeks. It was found that the conditions induce not only ultrastructural
changes in the ON but also functional depression and substantial damage to retinal cells.
In the ON, swelling of axons and disintegration of myelin were recorded. The number of
apoptotic cells in GCL increased. The authors of both studies [121,122] regarded the findings
as the result of changes in blood circulation in the cephalic region of rodents in general and
the vascular system of the eyes in particular. Approximately the same issue was addressed
in TS experiments on mice [123]. The state of the microvascular system was assessed
on days 15 and 30 of experiment. After one month of experiments simulating cephalad
shifting of blood, it was found that the exposure significantly changed microcirculation in
the eye, in particular, in the ON head region, as well as electrophysiological parameters
of the eyes. The authors emphasized that the changes recorded were only temporary
and reversible. The mice could adapt to the changes in retinal microcirculation, which
suggested the need to simulate conditions more similar to the outer space environment
for retinal evaluation. The question was raised about the relationship of the severity of
disturbances and probability of their reversibility with the time of s-µg exposure [123].
Theriot et al. [124] reported the results of the study evaluating the effects of hindlimb
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suspension (HS), one more analog of microgravity, on the rat retina. The study has been
focused on the molecular and histological alterations in the retina. Several pathways and
CSNK1A1-TP53 in particular were identified suggesting that stress is imposed by the
HS treatment. It affected the retinal vasculature, oxidative and inflammation status, RPE
function, and glial activation. The most significant genes showed gender- and age-specific
expression for the first time. The IOP is regarded by the authors as one of the factors
influencing the transcriptional responses in the retina [124].
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Figure 5. Various ground-based facilities for simulating microgravity in vivo and in vitro:
(A) horizontally-oriented fast rotating clinostat that we used for caudate amphibians; (B) tail sus-
pension (TS) model often used in experiments with small rodents; (C) head-down tilt used for
human subjects to induce cephalad shifting of blood that takes place under microgravity conditions;
(D,E) simple rotary systems for organotypic cultivation that we used in experiments on newt (D) and
rat (E) whole-mount retinas.

Thus, changes in the state of rodent eyes against the background of cephalad shifting
of blood can affect the microcirculation of the retina vascular system, provoke variations
in IOP, and cause changes in the ON structure and the ganglion layer of the retina. The
phenomenon of IOP variations in the altered dose of gravity is already mentioned above
in the description of the studies on lower vertebrates, amphibians, and birds that were
used in experiments with exposure to µg and hg conditions. It should also be noted that
an earlier targeted investigation of this issue [125] revealed an increase in the IOP and in
retinal vascular diameters of the vessels supplying the retina in 11 test subjects exposed
to µg produced by parabolic flight onboard a KC-135 aircraft. The results showed that
effects on the eye occurred very rapidly: within 20 s of exposure to artificial µg [125]. As
noted in the literature, studies of conditions for IOP variations associated with µg in SF
and in model experiments can help address the problem of ground-based ocular disorders
such as glaucomatous optic neuropathy [126]. The phenomenon of oxidative stress and
activation of ROS production with the subsequent apoptosis of retinal cells is another
reason for the high risks posed by SF, µg conditions, and cosmic radiation. Studies of
this phenomenon through experiments in SF and s-µg exposure are also a supplementary
source of knowledge about the causes and consequences of oxidative stress of retinal cells
and the occurrence of retinal degenerations associated with oxidative stress on Earth. The
data obtained on rodents exposed to r-µg and s-µg conditions largely explain the changes
observed in astronauts during SFs (see below). The effect of high g doses on the rodent
retina has also been studied preliminarily. Kim et al. [127] considered the effect of 10 g
on the IOP and retina of adult mice exposed to centrifugal acceleration for 4 h. After the
centrifugation, IOP was measured, then the eyes were enucleated, and morphological and
immunochemical studies of vascular endothelial growth factor-A (VEGF-A), VEGF receptor
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1 and 2 (VEGF-R1,2), GFAP, and glutamine synthetase (GS) were carried out. The results
indicated an increase in IOP with the lack of morphological differences in the retina of the
centrifuged mice compared to the 1× g control. The levels of expression of the molecules
studied were higher in the 10 g treated mice compared to the 1 g control. The authors
conclude that the IOP, as well as the risks of hypoxic damage to the retina, increases at high
g doses [127]. Table 1 summarizes the information obtained in long-term SF factors-related
studies using vertebrate animals in vivo subjected.

Table 1. In vivo experiments on vertebrate animals during space flights and in ground-based tests.

Animal (Class, Species) Experimental Conditions Research Direction

Fish

Japanese Medaka
Oryzias latipes

Spaceflight
Simulated microgravity

Medaka model development [55,56,59]
Gene expression [54,60]

Eye, retina development [54]

Amphibia
Frogs

Xenopus laevis
Rana dybowskii
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4.4. Human

A vast array of information about changes in the human visual system during human
orbital flights aboard space stations has been accumulated to date. In this section, we
will only overview basic data, focusing in more detail on changes in the astronaut’s retina
structure. In humans, ocular changes/disorders are considered as one of the major com-
plications in a long-term SF aboard the ISS and when returning to Earth. Approximately
60% of astronauts who have been at the station for about six months and 29% of those in
shuttles’ flights for two weeks manifest significant ocular changes that eventually lead to
a decrease in visual acuity (see, e.g., [1,3,128–130]). After SF, a substantial percentage of
astronauts have anatomical changes in the posterior eye tissues such as optic disc edema,
globe flattening, and choroidal folds [131] (Figure 6). In particular, hyperopic drift with
posterior flattening and choroidal folds are reported to directly affect the retina’s structure
as a vision sensor. Changes in the vascular system feeding the retina [132] accompany
IOP fluctuations [125]. The changes in ocular tissues in astronauts during SF, also known
as visual impairment and intracranial pressure syndrome, affect their vision and ability
to perform space operations. A combination of such changes is uniformly referred to as
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spaceflight-associated neuro-ocular syndrome (SANS) [3,130,133]. The observed changes
are caused by the redistribution of fluid in the upper part of the human body and by the
condensation of venous blood and lymph in the upper part of the body and the head. This
phenomenon, in turn, is associated with the elimination of hydrostatic pressure gradients
in the fluid-filled body systems under SF conditions [1].
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The effect of altered hemodynamics in the eye’s retina was previously associated
with biomechanical flows in choroid vessels in the posterior sector of the eye [134]. In
the study of Nelson et al. [135], focus was on variations in IOP and intracranial pressure.
When discussing the hemodynamic factor provoked by the conditions of gravitational
changes, the authors noted the inconstancy of intracranial pressure, its potential to change
depending on the position of the human body, the breathing pattern, etc. [136]. Thus, the
major triggers of the observed ocular changes, recorded from astronauts during long-term
SFs, are suggested to be orbital and cranial cephalad fluid shifts and SF-induced intracranial
hypertension [1,137]. However, it is noted that there may actually be more physiological
causes of the manifestation of SANS symptoms [130,138].

During long-duration SFs, nearly all astronauts exhibit changes within the spectrum
of SANS. Their close relationship with structural changes in the retina has been specially
analyzed [139–141]. Studies of [139,142] showed that the global total retinal thickness at
the ON head, and also the peripapillary choroid thickness, significantly increase after long-
duration SF compared to those before SF. In a study [143] based on the optical coherence
tomography method, the peripapillary total thickness of the retina was evaluated as an
early sign of ON disc edema in 19 crew members who had been aboard the ISS for 191 days.
There was no strict association of changes in the retinal thickness with the development
of optic disc edema in the astronauts after SF. The authors emphasized that other, optic
disc edema-inducing factors should be considered in future research [143]. However, in
a study by [140] using objective quantitative imaging modalities, the optical biometry of
the structure of eye tissues was studied in 11 astronauts before, during, and after 6 months
of SF. Parameters of changes such as peripapillary edema, axial length, anterior chamber
depth, and refraction were taken into account. As a result, SF-associated peripapillary
optic disc edema and choroid thickening in both eyes during early SF, which persisted
throughout the mission, were recorded. It was traditionally noted that the altered ocular
morphology, observed in association with SF, may be attributable to the chronic headward
fluid shift that occurs immediately upon entering µg and remains throughout the duration
of µg. Thus, despite some contradiction among the results obtained, the relationship of
certain structural changes in the retina after cessation of the gravitational fluid pressure
gradient and cephalad fluid shift in humans can be considered proven.
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This key knowledge, as the result of ongoing research, helps to develop countermea-
sures for preventing or mitigating the risk of negative consequences for humans before
and during long-term manned SFs [144]. Attempts have been made to understand how
the effect of SF on the tissues of the posterior sector of the eye, ON head and bed, retina
and its vascular system can be relieved [143,145]. Pardon et al. [145] used a short-term
in-flight application of 25 mm Hg lower-body negative pressure and 10- to 20-min exposure.
Lower-body negative pressure is a technique that redistributes blood from the upper body
to the dependent regions of the pelvis and legs, thus reducing central venous pressure
and venous return [146]. An acute exposure to 25-mm Hg lower-body negative pressure
did not alter the ON head or retinal morphology, suggesting that longer durations of
a fluid shift reversal may be needed to mitigate SF-induced changes. Marshall-Goebel
et al. [143] tested three mechanical means of countermeasure separately and in various
combinations to reduce the anterior shift of the fluid caused by the position of the body
in a similar way as it occurs in SF. It was found that the countermeasures may need to be
implemented for multiple hours a day. The essential issues that are currently discussed
concern differences in the results of ground- and flight-based experiments and the necessity
to fill these knowledge gaps for developing potentially reliable countermeasures in the
future [130].

The findings as regards the cellular, tissue, physiological and functional features of the
human eye’s state under r-µg and s-µg conditions are the vivid evidence of the dependence
of the SANS manifestation on other systems of the human body, in particular the circulatory
and lymphatic systems. Furthermore, the effects manifested during and after the cessation
of µg exposure on a human presumably correlate and depend on the time spent in these
conditions as well as on the individual characteristics of the body and its adaptability.
Another challenge consists in the impossibility of clarifying the specific role of all factors
and their combinations during SF (r-µg, hg and cosmic radiation, etc.) in the changes in
the eye and, specifically, in the human retina recorded to date. The major challenge of
identifying the causes and results of ocular changes also becomes obvious due to the lack of
direct access to human eye tissues for research at the cellular, ultrastructural, biochemical,
and molecular levels.

5. Studies of Retinal Cells In Vitro

In vitro studies on cultured vertebrate retinal cells, along with in vivo experiments,
can contribute to understanding the effects of SF conditions on the vertebrate retina and the
causes of SANS in astronauts. In vitro studies provide an opportunity to analyze changes
in retinal cells at the molecular level, to disclose the molecular mechanisms mediating the
effect of µg, radiation, and other factors during SFs. Exposure to s-µg in vitro is used when
rotating tissues and cells in liquid media or on solid substrates for a variety of purposes and
also in experiments with differentiated and stem cells of vertebrates [19,147]. Alterations in
s-µg-exposed cells such as differentiation, adhesion, migration, and proliferation have been
reported among other changes [17,18,148]. As mentioned above, RPE plays an essential
role in maintaining the blood–retinal barrier, being involved in the metabolism of the visual
cycle. There is evidence in the literature that s-µg can cause damage in human RPE cells
in vitro, including changes in the cytoskeleton and gene expression [149,150]. A study by
Roberts et al. [149] revealed pathological changes in isolated primary human RPE cells
exposed to s-µg. S-µg (0.01 gravity) was provided by cultivating RPE cells in a rotating
NASA-designed bioreactor for 24 h. The cells were analyzed at 48 h after rotation using
comet assay and also by biochemical methods for detecting the level of production of
prostaglandin E2 (PGE2), which is a marker of inflammatory response and a known risk
factor for RPE cells. The results showed DNA breaks in RPE cells and the induction of
PGE2 synthesis by them. Additionally, it was reported that the negative effect of s-µg
on RPE cells can be mitigated/eliminated by pretreatment with cysteine, which is an
agent having an anti-inflammatory effect. A human RPE cell line (ARPE19) was used in
experiments in the Random Positioning Machine system simulating µg [151]. The results
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indicated negative effects of exposure on cells: decreased cell viability, apoptosis, blockage
of the S-phase of the cell cycle, oxidative stress caused by increased ROS production, and
activation of the Nrf2–HO-1 signaling pathway. These data, when considered together,
become an example of the identification of molecular mechanisms acting in RPE cells
under µg conditions and, with a high probability, also mediating the manifestation of
SANS in humans in long-term SFs. A study by [152] was based on lines of human retinal
cells and bovine aortic endothelial cells. These were co-cultivated under conditions of
rotation in a bioreactor. As a result, a rapid (within 18–36 h) upregulation of vascular
endothelial growth factor (VEGF) and FGF2 was revealed in retinal cells grown under s-µg
as compared to monolayers. The authors [152] suggested that these experimental conditions
contribute to accelerated capillary formation due to more effective three-dimensional cell
assembly and differentiation. This, in turn, may be associated with the promoting of s-µg
cell-to-cell interaction and/or secretion of growth and differentiation factors. Recently,
Nguen et al. [153] have used the technique of clinorotation in a bioreactor simulating µg
for cultivating a human RPE cell line ARPE19. A comparison of the results with the 1 g
control in a static 2D culture has shown the formation of multicellular spheroids, a decrease
in cell migration, and, additionally, an increase in intracellular ROS and mitochondrial
dysfunction. Moreover, it has been found that s-µg activated autophagic pathways and
also ciliogenesis. In a study of mitophagy activation, a possible trigger of the process
is described: activation of the mTOR–ULK1–BNIP3 signaling pathway. The study has
allowed suggesting a compound, TPP-Niacin, which is capable of effectively resisting
the s-µg-induced oxidative stress and mitochondrial dysfunction. However, as is rightly
noted in this regard, additional experiments are required on primary RPE cells in vitro
and on animal models in vivo [153]. Son et al. [154] observed that s-µg stimulates the
epithelial–mesenchymal transition (EMT) of human ARPE19 cells and induces vascular
endothelial growth factor (VEGF) expression. The authors demonstrated also that an
antioxidant Ishophloroglucin A could inhibit microgravity-stimulated or VEGF-induced
EMT by reducing VEGF–VEGFR2 signaling [154].

A study using s-µg, generated by clinorotation, was carried out to identify changes
in MG cells [155]. Observations were conducted during 15 min to 32 h of cell rotation
in vitro. After a 30-min exposure, there was a disorganization of F-actin microfilaments and
intermediate filaments of the cytoskeleton of MG cells. This, in turn, led to changes in the
shape of MG cells, condensation of chromatin in them, and DNA fragmentation. It is worth
noting that after 20 h of rotation in 1 g conditions, these negative changes were leveled
out, the cytoskeleton was reorganized, and cells in the M phase were detected. In the
study by [156], performed in vitro on primary MG cells of adult rats, natural antioxidants
(aloin and ginkgolide A flavonoids) were tested in order to clarify their protective role
in the cultivation of MG cells exposed to cosmic radiation. The latter was simulated
using cosmic galactic rays at the Brookhaven NASA Space Radiation Laboratory. The
results demonstrated a positive effect of antioxidants on the viability of MG cells through a
decrease in ROS production in them. The authors propose this approach to mitigate the
SANS manifestations and also to reduce the ROS production by cells of the aging retina of
vertebrates and humans on Earth [156]. As mentioned above, endothelial vascular cells of
the human retinal choroid are another retinal cell population (besides RPE and MG) highly
sensitive to µg effects. Zhao et al. [157] cultured these cells for 3 days under conditions of
rotation on a rotary system that provided µg. At the cellular level, the cells had a shrunk
cell body, condensation and vacuolization of chromatin, mitochondrial cavitation, and
apoptosis. It was also found that the s-µg effect on choroid vascular cells causes changes in
the cellular ensemble, a decrease in the number of F-actin microfilaments, and activation
of the Bcl-2 apoptosis pathway and the PI3K/AKT pathway [157]. Studies of retinal cells
in vitro are summarized in Table 2.
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Table 2. Studies of retinal and vascular cells subjected to microgravity in vitro.

Type of Cells Kind of Experiment Aims of the Study

Primary cell culture of human RPE S-µg, rotating bioreactor Cell death, inflammatory response, gene
expression, cell protection [149,150]

Human RPE cell line (ARPE19) S-µg, random positioning machine
system

Cell viability, cell cycle, oxidative stress,
ROS production, signaling [151]

-“- S-µg, rotating bioreactor
Spheroid formation, cell migration, ROS
production, autophagy, signaling, cell
protection [153]

-“- S-µg, rotating clinostat Epithelial–mesenchymal transition, cell
protection [154]

Muller glia cell line (C6) S-µg, rotating on clinostat Cytoskeleton changes, mitotic activity [155]

Rat Muller glia primary cell culture Simulated cosmic Radiation ROS production, cell viability, protection by
antioxidants [156]

Human retinal cells and bovine aortic
endothelial cells
Vascular cells of the human
retinal choroid

S-µg, cell co-cultivation, rotating
bioreactor
S-µg, rotating bioreactor

Growth factor expression,
capillary formation [152]
Apoptosis, chromatin condensation,
signaling [157]

We used an organotypic 3D rotational cultivation of whole-mount retinas. The retinas
were isolated from the eyes of mature newts and adult Wistar rats. In the former case,
cultivation was long term (for up to 30 days), and in the latter, it was for 10 days [158]. The
major objective of the study was to clarify the behavior and role of potential cell sources
of retinal regeneration (RPE and MG), while the rotation conditions were used only as a
technique to improve the trophy of cells. Nevertheless, the data obtained can be considered,
among other things, as a result of the effect of low-dose gravity compared to a static culture
that usually demonstrates rapid cell death. Data on the retinal tissue culture showed an
increase in the viability of retinal cells, an increase in the rate of tissue reconstruction in both
animal species compared to in vivo conditions, and regenerative responses of cell sources
of retinal regeneration/recovery [158,159]. In an analogous study, the formation of retinal
organoids from mouse iPSCs was considered [160]. When setting up the experiment, the
authors used the conditions of cultivation in a rotating-wall vessel (RWV) bioreactor, which
creates not only optimal chemical environment for the development of the process but also
low-g. As a result, retinal organoids were formed that reproduced the basic structure of
the retina. It is important that the selected conditions had a stimulating effect on the rate
of development of retinal organoids. The latter demonstrated a greater cell proliferation
and a larger size compared to static cultures. The amplification of the cells continued as
they differentiated, which led to an increase in the size of organoids by 40%. Although the
authors [160] considered rotation conditions only as a way to improve the metabolism of
cultured cells, such a consistency with our results seems at least noteworthy.

Special studies are also being conducted to determine the effect of ionizing radiation on
the state of rodent and human photoreceptor cells under conditions of retinal explantation,
cell cultivation, and γ-irradiation. These studies reveal species-specific differences in DNA
repair in rod-photoreceptors following exposure to radiation [161], a greater degree of
photoreceptor stability compared to other cellular types of the retina [162], as well as the
dependence of the degree of photoreceptor damage on the chromatin structure [163]. These
independent studies can make an additional contribution to understanding the combined
effects of space flight factors, including ionizing radiation on retinal cells.

Despite the wide range of opportunities that cultivation with s-µg simulation in vitro
provides, direct extrapolation of any data to an organism in vivo is not valid. As we can see
from the data above, the results of the experiments vary depending on in vitro conditions,
cultivation of single cells or whole-mount retinal tissue, cell types, animals from which
cells were obtained, etc. It is also important that the s-µg effect on tissues and cells in
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whole organism in vivo is mediated by their systemic and local environment, which is
significantly different from the culture medium. Nevertheless, there is no other way to
study fine molecular mechanisms of the altered effect of gravity on cell populations that, in
our case, are retinal cells. We should also note that, as in experiments in vivo, RPE, MG
cells, and choroid vascular cells in vitro turn out to be populations of non-neuronal retinal
cells highly sensitive to s-µg. These, along with GCL cells, fibers, and glial ON cells, will
obviously be the focus of in vitro experiments.

6. Conclusions

The eye is the most important sensory organ for human and the overwhelming
majority of vertebrate species. In SF conditions, during takeoff and adaptation of the
animal and human body upon returning to Earth, the retina and the visual system in
general are exposed to a combination of SF-related factors. The most important of these
are variations in the gravity level and cosmic radiation. For more than half a century of
human exploration of outer space, state of the eye has been among the most essential issues
addressed by scientific studies in real SF and conditions simulating SF in ground-based
experiments both in vivo and in vitro. Despite the relatively long history of the eye and
retina research, today, it is possible to draw largely preliminary conclusions based on the
results obtained. This is mostly due to the differences in goals and approaches, the wide
range of animal models used and the low accessibility of SFs to set up experiments. In
case of using animals developing in SF conditions (fish, ecaudate amphibians, and birds),
despite some inconsistency of the data, there has been a probability of anomalies of the eye
and retina development and, at the molecular level, changes in the expression of genes and
proteins associated with cell stress and adaptation. The suggestions about the existence
of certain stages of animal development at which the retina is most sensitive to the µg
and radiation effects are important. Such a period in the vertebrate eye development is
most likely the optic cup stage, which is a key one in the retina’s histogenesis. The issue of
reversibility/compensation of emerging retinal anomalies during the further development
of animals in SF and/or after returning to Earth remains unresolved. Studies on the retina
of Urodela species have allowed a conclusion about the positive effect of SF and s-µg factors
accelerating retinal regeneration, as well as the possible role of HSPs and FGF2 signaling
pathways in this process. Furthermore, a probability of the gliotic response from the retinal
MG cells was found. However, hg conditions provoke retinal detachment in these animals.
Thus, variations in the gravity level and other SF-related factors can probably have a
multidirectional effect, stimulating or inhibiting certain processes in the retina depending
on the taxonomic class of animals, their age, size, conditions of µg exposure, and also the
presumed initial pre-adaptation to µg existing in aquatic or semi-aquatic forms.

In contrast to data on lower vertebrates, studies of changes in the mammalian (rodent)
retina under r-µg and s-µg conditions yield more uniform results. They provide evidence of
a high probability of oxidative stress, increased ROS production, and partial cell death in the
retina caused by these processes. There is a general opinion that this phenomenon is caused
by the cephalad shifting of blood occurring in SF conditions or simulated in TS tests. It is
also the cause of changes in the vascular system of the retina and ON and is also manifested
as inconstancy and variations in IOP. At the molecular level, an enhanced expression of
stress- and inflammation-related genes is reported and discussed. In astronauts in SFs, the
changes in ocular tissues, also known as visual impairment intracranial pressure syndrome,
affect the vision and ability of space operations. A combination of such changes, referred
to as spaceflight-associated neuro-ocular syndrome (SANS), is manifested, among other
things, as some structural changes in the retina. Such manifestations as globe flattening,
choroidal folds, choroid thickening, and peripapillary optic disc edema are known.

The data obtained through in vitro experiments under s-µg conditions, when com-
pared to stationary (1 g) cultures, provide evidence about the behavior of three important
cell populations of the retina, RPE, MG, and choroid vascular cells, which are regulators
of retinal functions and cell viability. The results generally confirm the findings in vivo
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such as the high probability of peroxidation, DNA damage, cell death, and proinflamma-
tory response under conditions of µg exposure. However, studies of the retina develop-
ment/regeneration processes or obtaining of retinal organoids in vitro showed that s-µg,
which occurs in 3D rotational cultivation, vice versa, has a positive effect [164,165].

Further biological and medical studies of the retina in SF and under s-µg will focus
on a few obvious aspects within the framework of space exploration and basic research.
The former implies the retinal research aimed to predict negative effects of SF and the
development of countermeasures for preventing or mitigating these effects in astronauts
during long-term flights. The latter is an integral part of space exploration and makes a
significant fundamental contribution to the development of gravitational biology, which is
a vast field of science. In the future, it seems necessary (1) to study cellular and molecular
events occurring in the vertebrate and human retina and in the visual system in general
in response to effects of SF-related factors; (2) study the adaptive and compensatory
mechanisms of retinal cells in animals and humans during SF and upon return to Earth;
and (3) develop technical potential for conducting research by up-to-date methods, in
particular by single-cell RNA sequencing and spatially resolved transcriptomics. The
challenges and considerations relevant for robust experimental design to enable the growth
of these methods in experiments under SF conditions are already discussed [166].
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