1	
2	Impact of microplastic beads and fibers on waterflea (Ceriodaphnia
3	dubia) survival, growth and reproduction: Implications of single and
4	mixture exposures
5	Shima Ziajahromi ^{1*} , Anupama Kumar ² , Peta A. Neale ¹ , Frederic D.L. Leusch ¹
6	
7	¹ Australian Rivers Institute, Griffith School of Environment, Griffith University, Gold Coast, QLD
8	4222, Australia
9	² Commonwealth Scientific and Industrial Research Organisation, Waite Road, Urrbrae 5064,
10	Australia
11	
12	
13	Re-submitted to:
14	Environmental Science & Technology
15	
16	Date of re-submission: October 2017
17	
18	
19	
20	
20	
21	
22	*Corresponding author: Shima Ziajahromi; email: shima.ziajahromi@griffithuni.edu.au
23	
24	
25	

26 Abstract

There is limited knowledge regarding the adverse effects of wastewater-derived microplastics, 27 28 particularly fibers, on aquatic biota. In this study, we examined the acute (48 h) and chronic (8 d) 29 effects of microplastic polyester fibers and polyethylene (PE) beads on freshwater zooplankton 30 Ceriodaphnia dubia. We also assessed the acute response of C. dubia to a binary mixture of microplastic beads and fibers for the first time. Acute exposure to fibers and PE beads both showed 31 32 a dose-dependent effect on survival. An equitoxic binary mixture of beads and fibers resulted in a 33 toxic unit of 1.85 indicating less than additive effects. Chronic exposure to lower concentrations did 34 not significantly affect survival of C. dubia, but a dose-dependent effect on growth and 35 reproduction was observed. Fibers showed greater adverse effects than PE beads. While ingestion of fibers was not observed, scanning electron microscopy showed carapace and antenna deformities 36 after exposure to fibers, with no deformities observed after exposure to PE beads. While much of 37 38 the current research has focused on microplastic beads, our study shows that microplastic fibers pose a greater risk to C. dubia, with reduced reproductive output observed at concentrations within 39 40 an order of magnitude of reported environmental levels.

- 41
- 42 TOC Art

44

46 1. INTRODUCTION

47

Microplastics are widespread emerging contaminants that have been found globally in the 48 marine and freshwater environments.¹ Microplastics can enter the aquatic environment as both 49 primary and secondary microplastics from aquatic and land-based sources.^{2,3} Recently, wastewater 50 51 treatment plant (WWTP) effluent was reported as a significant land-based source of microplastics to both the marine and freshwater environments.⁴⁻⁶ Wastewater-derived microplastics originate from 52 53 synthetic clothing and cleansing products, and primarily include polyester fibers and polyethylene (PE) beads and fragments.⁴⁻⁶ These wastewater-based microplastics may be taken up as food by a 54 variety of aquatic organisms.^{7,8} For example, PE microplastics have been detected in the stomach of 55 filter feeders (Lepas sp.).⁹ Similarly, Taylor et al.¹⁰ found microplastic fibers, including acrylic, 56 57 polyester and polypropylene, in deep-sea organisms. Uptake of microplastics by aquatic organisms 58 can lead to long-term accumulation of microplastic in their digestive tract, with one study reporting that PE microplastics make up as much as 58% of the stomach content of filter feeders (Lepas sp.).⁹ 59 60 This decreases the intake of actual food, which may adversely affect growth and reproduction rates.¹¹ In the long term, it can also lead to increasing mortality, due to blocking of the digestive 61 tract or decreased nutrient uptake.¹² 62

Recent studies have demonstrated the trophic transfer of microplastics in aquatic food 63 webs.^{13,14} Consequently, it is important to understand the potential effects of microplastics on lower 64 trophic levels organisms, such as zooplankton, as this may have implications for higher level 65 organisms through biomagnification.¹³ Ingestion of microplastics, such as fibers and fragments, has 66 67 been reported in zooplankton in the Northeast Pacific Ocean, revealing the need for toxicity studies on such organisms.^{15,16} Recently *Daphnia magna* has been used as a planktonic freshwater model 68 69 organism for microplastic toxicity tests and this can provide insights into the potential effects of microplastics on lower trophic level organisms.^{11,17} Further, the detection of microplastics, 70 71 particularly fibers and beads, in freshwater ecosystems such as rivers, lakes and estuaries demonstrates the requirement for toxicity studies using freshwater organisms.¹⁸⁻²⁰ 72

In a recent study Rehse et al.¹⁷ examined the short-term impact of two different size ranges of 73 74 PE microplastics (1-4 µm and 100-106 µm) on D. magna and reported that only 1-4 µm microplastics were ingested, which is the size range that is preferably ingested by filter feeders. 75 Rehse et al.¹⁷ also reported no significant physical effects on *D. magna* after a 48 h short-term 76 exposure to 1-4 μ m microplastics at concentrations ranging from 12.5 mg/L (2.5×10¹⁰ microplastic 77 particles/L) to 400 mg/L (8×10^{11} microplastic particles/L). However, after a prolonged exposure of 78 96 h, 75% immobilization was reported at the 200 mg/L concentration.¹⁷ While ingestion of larger 79 PE microplastics (100 µm) was not observed in Rehse et al.¹⁷, a recent study by Jemec et al.⁸ 80 81 surprisingly reported uptake of large synthetic fibers (62-1400 µm) by *D. magna*, resulting in high mortality after a short-term exposure. Further, Ogonowski et al.¹¹ examined exposure to 1-5 µm PE 82 microplastics at concentrations ranging from 10^5 to 10^8 particles/L on D. magna over 21 d and 83 84 reported 50% mortality at the highest concentration. This study also found approximately 30% lower food intake after exposure to PE microplastics at 2.2×10^5 particles/L. 85

It should be mentioned that the high microplastic concentrations used in the reported studies are unlikely to be environmentally realistic. To date, there is no reported data on the concentrations of microplastics in the 1-20 µm size range due to technical limitations to isolate and characterize small microplastics in environmental samples.²¹ However, it is generally assumed that the environmental concentrations of smaller microplastic particles are much higher than those currently reported for microplastics in the range of 20 to 300 µm in marine and freshwater ecosystems.^{11,22,23}

In this study we examined the toxicity of two common wastewater-derived microplastics, namely PE beads and polyester fibers, following acute and chronic exposure in a freshwater zooplankton (*Ceriodaphnia dubia*) with a focus on mortality, growth and reproduction. We aimed to test lower microplastic concentrations than have previously been tested in *D. magna*, with the lowest fiber concentrations tested during chronic exposure experiments in the range of environmentally relevant concentrations previously reported for surface waters in the Southern North Sea $(6.5 \times 10^2 \text{ particles/L})^{24}$ and in wastewater effluent $(6.1 \times 10^2 \text{ particles/L})^{.25}$ Higher 99 concentrations were used for the acute experiments, but it should be noted that the concentration of 100 fibers and PE beads used in the current study were around 100 times lower than previously used in 101 acute and chronic tests with *D. magna*.^{8,11}

To date, studies have investigated the effects of individual microplastics on aquatic 102 103 organisms; however, in the aquatic environment organisms are exposed to combinations of microplastics that may lead to additive, synergistic or antagonistic effects. While polyethylene and 104 polyester have different densities, density modification²⁶ and other environmental factors such as 105 mixing due to surface circulation and wind²⁷ can lead to the simultaneous occurrence of different 106 types of microplastics in the water column. Therefore, we also investigated the mixture toxicity 107 108 response by exposing C. dubia to a combination of PE beads and polyester fibers as both of these microplastics are found together in the aquatic environment.^{28,29} 109

110

111 2. MATERIALS AND METHODS

112 **2.1.** Microplastics preparation for bioassays

113 Microplastic fibers were prepared by cutting the fleece surface of orange fluorescent clothing (100% polyester, density 1.38 g/cc) and chopping the fibers into small pieces. The chopped fibers 114 were then soaked in ethanol (70%) overnight to remove possible contamination, washed with 115 deionized water and dried at room temperature. Pristine spherical white 1-4 µm PE microplastic 116 117 beads were supplied by Cospheric, USA (density of 0.987 g/cc). The pristine PE beads and cleaned fibers were used to limit potential contamination from plasticizers. Spherical polyethylene 118 119 microplastics have been widely reported in cosmetic products with the size reported to be as small as 8 µm.³⁰ Stock solutions of microplastics at specific concentrations for bioassays were prepared 120 121 by adding dry microplastics to moderately hard water (MHW), which was also used for bioassays. 122 Since PE beads and polyester fibers have different densities than MHW and have a tendency to aggregate, a small amount (0.1% v/v) of Tween-20 surfactant (Sigma-Aldrich, USA) was used to 123 disperse the microplastics.¹¹ To achieve a well-dispersed suspension the mixture was vigorously 124

mixed using a vortex (BioCot, Stuart) for 2 min after the addition of Tween-20 and treated in an ultrasonic bath for 30 min (Figure S1 in the Supporting Information (SI)). The suspension was then re-vortexed immediately before use in the bioassays.

- 128
- 129

9 **2.2. Microplastics counting procedure**

130 While microplastic toxicity studies typically use concentrations in mg/L units, microplastics 131 detected in the aquatic environment are generally reported in number of particles/L. Therefore, it is 132 necessary to convert between mg/L and number of particles/L to put the bioassay results into an 133 environmental context. To determine the number of 1-4 µm PE beads in the stock solution we used 134 a hemocytometer based on the same approach used for cell counting.¹¹ Counting was done with three replicates and the total number of microplastics per litre of stock solution was then calculated. 135 136 The number of microplastics in each concentration (x) used for bioassays was then calculated using 137 Equation 1, where $TMPs_{stock}$ is the total number of microplastics in the stock solution, C_x is the concentration (x) of microplastics in the bioassay and C_{stock} is the concentration of microplastics in 138 139 the stock solution. More details about the concentrations of the stock solutions and the microplastics 140 calculations are provided in the Section S1 of the SI.

141

142 MPs (particles/L) =
$$\frac{(\text{TMPs}_{\text{stock}}(\text{particles}/L) \times C_x (\text{mg}/L))}{C_{\text{stock}} (\text{mg}/L)}$$
(1)

143

Since fibers had a larger size range than the PE beads, the hemocytometer was not appropriate. Fiber counting was done using a subsample approach. Five subsamples of the 100 μ L were taken from stock solution and microplastics were counted using a camera-connected Stereo Microscope (Olympus, SZX9, Japan). The 100 μ L subsample was chosen as it could provide the best visual counting area under the microscope. To reduce error, the number of fibers in each subsample was recorded using the point-counting tool available in the CellSens Standard image analysis software. The counting was repeated twice for each of the five aliquots and the average number of fibers was then calculated. The number of fibers at each concentration was calculatedaccording to Equation 1.

153

154 **2.3.** Fiber characterization and size distribution determination

Fourier transform infrared spectroscopy (FTIR) with attenuated total reflection (ATR) mode on a Nicolet iS50 spectrometer, equipped with both an in-built diamond single bounce sampling accessory and a Continuum infrared microscope (Thermo Fisher Scientific, Madison WI, USA) was used to confirm the polymer type of the fibers. A sample of fiber was taken from the clothing used for bioassays, and pressed on to diamond crystal of the ATR accessory and their spectrum was obtained at 4 cm⁻¹ resolution and 64 scans. Fluorescent fibers were also visually examined using a Nikon Eclipse 80i fluorescent microscope at 465-495 nm.

To determine the size distribution of the fibers used for the bioassays, 10 subsamples of 100
μL of stock solution were taken and the size of fibers in each subsample was obtained by measuring
the length of fibers using image analysis software (Figure S2). This procedure was done in triplicate
for each aliquot to determine the average size range of microplastic fibers in the stock solution.

166

167 **2.4. Test organism** (*C. dubia*)

The stock of C. dubia neonates was obtained from the laboratory stock at the Commonwealth 168 169 Scientific and Industrial Research Organization (CSIRO), Adelaide, SA. Culturing was performed 170 in 800 mL beakers using diluted mineral water and was maintained at 25°C in a photoperiod of 16 h 171 light and 8 h darkness according to the US Environmental Protection Agency (USEPA) guidelines.³¹ MHW supplemented with 2 µg/L selenium (Na₂SeO₄) was used as the test media for 172 bioassays. The MHW was prepared in the laboratory using analytical grade reagents based on 173 USEPA standard protocol.³¹ All toxicity tests were performed using third brood neonates less than 174 24 h old. 175

176

177 **2.5. Bioassays**

178 **2.5.1. Single and mixture acute bioassays**

Three separate 48 h bioassays were designed to examine the short-term effects of microplastics in *C. dubia*. The experimental design included single exposure to PE beads and polyester fibers separately as well as exposure to a mixture containing both PE beads and polyester fibers. For single acute exposure, *C. dubia* were exposed to a concentration range of 0.5 to 16 mg/L of PE beads and 0.125 to 4 mg/L of polyester fibers, which corresponds to 1.7×10^4 to 5.4×10^5 particles/L for PE beads and 1.1×10^3 to 3.4×10^4 particles/L for polyester fibers. The studied concentrations in both mg/L and number of particles/L can be found in the SI (Table S1).

The concentration range was selected based on preliminary range finding experiments (Section S2; Table S2 in the SI). A 48 h acute immobilization test using copper(II) sulfate pentahydrate (CuSO₄.5H₂O) as a known reference toxicant with a concentration range of 5 to 20 μ g/L was carried out according to the USEPA guidelines to ensure that the *C. dubia* neonates were appropriately sensitive.³² Assay negative controls including a water control (MHW only) and a solvent control (Tween-20, 0.1% v/v).

192 All bioassays were conducted in 50 mL glass beakers containing 25 mL test media and 5 193 cultured neonates were randomly transferred to each test vessel. No food was added during the 194 acute experiments and all treatments were done with four replicates. All treatment groups were 195 incubated at 25°C under constant conditions. After the 48 h exposure, water quality parameters such 196 as dissolved oxygen (DO), pH and electrical conductivity (EC) were measured (Hach, HQ40d, US). 197 The survival of neonates in each treatment group was recorded after 48 h using a stereo microscope 198 (Lecia Wild M3Z, US). Neonates that failed to move after 15 s of physical stimulation (gentle prodding with a plastic pipette) were considered dead.³² At the end of the test, alive and dead 199 200 individuals were collected for gut analysis and microscopy. The LC₅₀ values and 95% confidence 201 interval (CI) for both the PE beads and polyester fibers were calculated. To reduce potential 202 microplastic contamination, all experiments were conducted in glass beakers, which were washed

with ultrapure water (18.2 M Ω •cm) prior to each test and were covered with cling wrap during handling and incubation. Additionally, new and unopened glass scintillation vials were used for microplastic stock solution preparation to avoid potential contamination.

A 48 h mixture exposure with both PE beads and polyester fibers was also designed to test the potential toxicity of microplastics in equitoxic mixtures. The concentrations used for the mixture toxicity tests were selected based on individual LC_{50} values for PE beads and polyester fibers, with identical fractions of their individual LC_{50} values for each microplastic.^{33,34} Four concentrations below the LC_{50} value (1/16 LC_{50} , 1/8 LC_{50} , 1/4 LC_{50} and 1/2 LC_{50}), one at the LC_{50} value and one concentration above the LC_{50} value (2× LC_{50}) were used (Table S3). The mixture exposure was conducted using the same procedure as described for the single acute tests.

213

214 **2.5.2.** Chronic bioassays

215 Two parallel 8 d exposure bioassays were conducted for PE beads and polyester fibers, according to USEPA protocol.³² For both types of microplastics, C. dubia were exposed to six 216 concentrations. The exposure concentrations used for chronic bioassays were 62.5 to 2000 µg/L for 217 PE beads and 31.25 to 1000 μ g/L for polyester fibers, which corresponds to 2.1×10³ to 6.7×10⁴ 218 particles/L for PE beads and 2.7×10^2 to 8.6×10^3 particles/L polyester fibers. The details of used 219 220 concentrations can be found in the SI (Table S4). It should be noted that the lowest tested fiber concentrations, including 31.25 μ g/L (2.7×10² particles/L) and 62.5 μ g/L (5.4×10² particles/L), were 221 222 within the range of reported environmental concentrations; however, the higher concentrations were likely to be above environmental realistic levels. 223

At each experimental concentration, 1 neonate (<24 h old) was transferred to a 50 mL glass beaker containing 25 mL test media, with the media changed every 48 h. All treatment groups including negative controls (both MHW and Tween-20) were carried out with ten replicates. Before starting the test and every 48 h after media renewal, all test solutions were spiked with green algae (*Selenastrum capricornutum*) at a concentration of 8×10^5 cells/mL and orange algae (*Dunaliella*) *salina*) at a concentration 1 mL/L. Survival and the number of new offspring were recorded on a daily basis during the exposure period. At the end of the test, all adults and neonates were collected and fixed in glutaraldehyde (2.5%) and kept at 4°C for further inspection. The 8 d reproduction EC₅₀ values and 95% confidence interval (CI) for both the PE beads and polyester fibers were calculated.

234

235 **2.6. Visual analysis of** *C. dubia*:

236 The gut content of C. dubia after acute and chronic exposures to microplastics was visually 237 examined using a camera-connected stereo microscope (Olympus, SZX9, Japan) and image analysis 238 software (cellSens Standard). All C. dubia samples were washed three times with ethanol (99%, 239 Sigma Aldrich) before microscopy to remove glutaraldehyde. The gut of C. dubia exposed to different concentrations of PE beads and polyester fibers was visually inspected and compared to 240 241 the negative control sample (MHW). To visually determine the fullness of the gut for PE exposed *C. dubia*, the gut was divided to five parts with specific percentile (Figure S3) and the percentage of 242 gut fullness was determined accordingly.³⁵ To further inspect fluorescent fibers, C. dubia exposed 243 244 to fibers were also inspected under a fluorescent microscope (Nikon Eclipse 80i) at 465-495 nm.

Growth was assessed by measuring the body size of all adults and neonates (up to 25 individuals) from each chronic treatment group using the stereo microscope in the same way as described for fiber size measurement.

248

249 **2.7. Morphological analysis of** *C. dubia*

Since visual inspections only provide information about the uptake of microplastics by *C*. *dubia*, scanning electron microscope (SEM) imaging was conducted on adult *C. dubia* to assess morphological alterations, such as deformities, after chronic exposure to better understand the adverse effects of microplastics. The samples were washed with 2% osmium tetroxide and gently dehydrated in an increasing series of ethanol (30, 40, 50, 60, 70, 80, 90, 100%). In the next step, the samples were dried to the critical point in a critical point dryer (Leica EM CPD300). Prior to using
SEM the samples were coated with a thin layer of platinum (approximately 10 nm) using a
Cressington 208HR sputter coater. SEM images were obtained using a Philips XL30 FEG SEM,
using secondary electron (SE) mode, a 10kV beam and spot size 3 at a 10mm working distance.
Images were collected at various magnifications including at 200×, 350× and 800× for each sample.

260

261 2.8. Data analysis

Data were analyzed using GraphPad Prism (version 7) statistical software. Log-logistic concentration-effect curves were used to determine the LC₅₀ and EC₅₀ values and the 95% confidence intervals using non-linear regression. To determine the significance of effects in the chronic bioassays, data were analyzed by one-way analysis of variance (ANOVA) and statistical difference was set at $\alpha = 0.05$.

267

268 **2.9. Mixture modeling:**

The mixture effects of PE beads and polyester fibers were evaluated based on the toxic unit (TU) model, which is defined as the total of the effect contributions of each component in the mixture. The TU for mixture of microplastics was calculated using the following equation.³³

272
$$TU = \frac{LC_{50} PE(mix)}{LC_{50} PE(alone)} + \frac{LC_{50} fiber(mix)}{LC_{50} fiber(alone)}$$
(2)

Using this model, TU less than one indicates more than additive effects (e.g. synergism),
while a TU greater than one indicates less than additive effects (e.g. antagonism).

Further, the two common mixture toxicity models, concentration addition (CA) and independent action (IA), were applied to predict the effect of the binary mixture. CA assumes that the mixture components are acting according to the same mode of action, while IA assumes that the components have different modes of action.^{36,37} Due to the different morphology of the microplastics, a common mode of action was not expected. The LC₅₀ value based on the CA prediction (LC_{50,mix}) was calculated using Equation 3, where p_i is the fraction of each microplastic component in the mixture and LC_{50i} is the LC_{50} value of each mixture component i. The effect based on independent action was calculated using Equation 4, where E_i represents the effect of each mixture component i.

(3)

(4)

285
$$LC_{50,mix} = \frac{1}{\sum_{i=1}^{n} \frac{p_i}{LC_{50i}}}$$

284

286
$$E_{IA} = 1 - \prod_{i=1}^{n} (1 - E_i)$$

287

It should be noted that all mixture toxicity calculations were conducted in units of particles/L, rather than mg/L. This is because we expect that the effect is related to the number of microplastics present, rather than their mass.

291

292 **3. RESULTS AND DISCUSSION**

293 **3.1. Properties of fiber microplastics and size distribution**

ATR-FTIR analysis confirmed that the textile fibers used for toxicity tests were polyethylene terephthalate (PET), a common polymer in the polyester family. The FTIR spectra are shown in Figure S4. Examining the size range of fibers used for bioassays showed a range from 25.7 ± 10 to $1,150\pm160 \mu m$ with an average length of $280\pm50 \mu m$. The majority of fibers were within the 100-400 μm size range (Figure S2).

299

300 3.2. Single acute effects

The acute and chronic LC₅₀ values of reference toxicant (copper sulfate) in this study were in the normal range of 12.2 (95% CI: 10-14.8) and 13.1 (95% CI:11.9-14.4) μ g/L, respectively. Mortality of negative controls (both MHW and Tween-20) was \leq 5% and no significant difference was observed between the negative controls with and without Tween-20 (t-test, p=0.37). Further, 305 negative controls were checked visually under the microscope and no microplastic contamination 306 was found in the control treatments. The recorded water quality parameters such as pH, EC and DO 307 for acute bioassays with polyester fibers and PE beads after 48 h were comparable and within the 308 recommended range based on USEPA protocols (Table S5).

309 The 48 h LC₅₀ values for PE beads and polyester fibers were 2.2 mg/L (95% CI: 1.9-2.6) and 1.5 mg/L (95% CI: 1.3-1.7), respectively, which corresponds to 7.4×10^4 PE beads/L and 1.3×10^4 310 fibers/L (Table 1). The mortality of C. dubia after acute exposure to PE beads and polyester fibers 311 312 increased with increasing concentration in a dose-dependent manner (Figure 1A). This differs from the findings of Jemec et al.⁸ who did not observe a dose-dependent response in *D. magna* mortality 313 314 during acute exposure to microplastic PET fibers with length range of 62-1400 µm, which is similar 315 to the fibre size range in the current study. This could be attributed to the larger size of *D. magna* compared to C. dubia, as well as the different exposure conditions such as variable exposure of D. 316 magna to microplastics fibers during bioassays due to sedimentation of microplastics,⁸ with no 317 318 sedimentation of PE beads or fibers observed in the current study.

Complete (100%) mortality was observed at concentrations of 4 mg/L (i.e. 3.4×10^4 319 particles/L) for polyester fibers and 8 mg/L (i.e. 2.7×10^5 particles/L) for PE beads during acute 320 321 bioassays. Moreover, C. dubia exposed to fibers often showed abnormal swimming behavior, 322 especially at the higher concentrations, and were found entangled in the fibers, resulting in inability 323 to swim and complete immobilization. This observation may explain the higher toxicity of polyester fibers to C. dubia compared to PE bead microplastics. Previous research on a freshwater organism 324 (H. azteca) also showed greater toxicity of microplastic fibers compared to PE microbeads during 325 acute exposure, which was attributed to the longer residence time and slower egestion of fibers.³⁸ 326

327

328 **3.3. Acute mixture effects**

329 The TU of the equitoxic mixture of polyester fibers and PE microplastics was calculated at 330 1.85, indicating less than additive effects. In other words, the effect of the binary mixture was less 331 than expected based on the effects of the individual microplastics (Figure 1A). To further explore 332 the mixture effects the models of CA and IA were applied, which assume that mixture components 333 are either acting according to similar or dissimilar modes of action, respectively. These models are 334 typically applied to chemical mixtures and to our knowledge have not been applied to mixtures of 335 microplastics. While the modes of action by which these microplastics induce an effect in C. dubia is unclear given apical effects were studied, it appears that the microplastics are impacting on C. 336 dubia through different exposure pathways. For example, C. dubia ingested PE beads, while fibers 337 338 appeared to restrict the mobility of C. dubia through entanglement. Consequently, IA is expected to be a more representative model. The experimental LC₅₀ value of the mixture was 8.7×10^4 339 340 particles/L, with the IA LC_{50} prediction within a factor of 1.3 of the experimental mixture (LC_{50}) 1.2×10^5 particles/L). In contrast, the CA prediction was approximately a factor of 2 lower than the 341 experimental mixture LC₅₀ (LC₅₀ 4.2×10^4 particles/L). This fits with observations from the 342 literature for chemical mixtures that CA is the more conservative model,³⁹ though IA appears to be 343 344 more representative in the current study.

345 The current study is the first to examine the mixture effects of microplastics. Similar to the transition from ecotoxicology to nanotoxicology ⁴⁰, the application of conventional ecotoxicology 346 347 methods and mixture toxicity models to microplastics requires further investigation. For example, 348 the physicochemical properties of microplastics, such as their size and morphology, as well as their 349 potential to aggregate and undergo sedimentation, can affect toxicity. Consequently, the application 350 of mixture toxicity models developed for chemicals to microplastics needs further work, including 351 using different microplastic mixture ratios, as only one equitoxic mixture was considered in the 352 current study.

353

354 **3.4. Chronic effects**

355 Sensitive endpoints of growth, reproduction and time to first brood were examined during 356 chronic exposure of *C. dubia* to PE beads and polyester fibers (Figure 2, Tables 3 and 4). Mortality 357 of the negative controls (both MHW and Tween-20) was observed to be \leq 5% and no microplastic contamination was found in the negative control samples. The mean time to first brood did not 358 359 significantly change (ANOVA p=0.3) with increasing test concentrations for PE beads and 360 polyester fibers, and was calculated between 4.0-4.5 d for PE beads and 4.0-4.4 d for polyester 361 fibers (Tables S6 and S7). A dose-response relationship was observed during chronic exposure with a significant reduction in number of neonates with increasing microplastic concentration (Figures 362 1B and 2, Tables 3 and 4). The survival rate of C. dubia adults was observed to be $\geq 90\%$ for all 363 364 studied concentrations except at the highest concentration for both PE beads and polyester fibers, 365 which both induced 40% mortality (Tables 3 and 4). Despite the excellent survival of adults during 366 chronic exposure, the body size of adults and the number of neonates were negatively affected by 367 exposure to both PE beads and polyester fibers (Figure 2). With polyester fibers, a significant reduction in neonate numbers and adult body size was observed at a concentration of 500 µg/L (i.e. 368 4.3×10^3 particles/L) and above (Figure 2B), while higher exposure to PE microbeads was needed to 369 produce a similar effect (1000 and 2000 μ g/L (i.e. 3.3×10^3 and 6.7×10^4 particles/L) for neonate 370 371 numbers and adult body size, respectively; Figure 2A).

372 Although exposure to both PE beads and polyester fibers resulted in decreased body size and 373 reduced the total number of neonates, the effect with polyester fibers was more pronounced. For 374 example, a concentration of 1000 μ g/L (i.e. 3.3×10⁴ particles/L) of PE microbeads produced a 56% 375 reduction in the total number of neonates compared to the negative control (MHW), whereas the same exposure concentration of polyester fibers significantly (ANOVA, P=0.0001) reduced number 376 of neonates by 84% compared to the negative control (Figure 2). The EC₅₀ values for reproduction 377 378 also indicated greater adverse effect of polyester fibers (EC₅₀ 429 µg/L (95% CI: 345-539)) 379 compared to PE beads (EC₅₀ 958 µg/L (95% CI: 760-1353)) (Table 2). No significant difference 380 was found in the body length of neonates after both PE bead and polyester fiber exposure (Tables 381 S6 and S7). It should be noted that microplastic fibers within the range of environmentally relevant concentrations $(6.1 \times 10^2 - 6.5 \times 10^2 \text{ particles/L}^{24,25})$ did not have a significant effect on the exposed 382

383 organisms, with adverse effects on reproduction and adult body size occurring at concentrations384 around six times higher than previously reported in the environment.

385 Exposure to PE beads was expected to lead to accumulation of microplastics in the digestive 386 tract, given they are in the size range of C. dubia's typical food source. The inability for self-387 cleaning and egestion of microplastics may lead to blockage of the digestive tract and inhibition of food uptake.⁴¹ The reduced food consumption rate in the presence of microplastics has previously 388 been reported in other aquatic organisms such as crab and lugworm.^{41,42} During chronic exposure, 389 390 the lower food uptake would negatively impact the level of energy reserves, likely forcing C. dubia to preferentially invest more of the limited available energy in survival rather than growth and 391 392 reproduction, resulting in reduced number of offspring. This was previously observed for *D. magna* after exposure to silver nanoparticles.⁴³ In the current study, chronic (8 d) exposure to both PE 393 beads and polyester fibers resulted in a decreased reproductive output (Figures 1B and 2). A 394 395 positive correlations between depletion of energy reserves and reduced reproduction rate in D. *magna* has been reported after exposure to nanopolystyrene.²³ 396

Abnormal swimming behavior was only observed in *C. dubia* exposed to polyester fibers, with their movement often inhibited as a result of entanglement in twisted fibers. While ingestion of fibers was not observed in the gut of *C. dubia* using the stereo microscope, the reduced reproduction and growth seen during chronic exposure to fibers is likely to be associated with inability to tolerate fibers as a stressor in the environment and loss of energy as a response to physical contact with fibers and damage to body. The potential for physical damage was investigated further in Section 3.5 below.

While microplastic beads and fibers are negatively affecting growth and reproduction of *C*. *dubia*, the mode of action of microplastics, particularly fibers, and effects on the cellular function of *C. dubia* are unknown. Jeong et al.⁴⁴ has recently provided first evidence regarding the mode of action of nano-sized microplastics in a marine copepod (*P. nana*). This study showed permeation of nano-sized polystyrene microbeads (0.05 μ m) to the cell membrane and induction of the oxidative 409 stress response, leading to cell damage and reduction of growth rate and reproduction output.⁴⁴
410 Further work is required to understand the mode of action of larger microplastics.

411

412 **3.5. Visual and morphological analysis**

The gut content of all surviving *C. dubia* after acute and chronic exposure was visually analyzed using a stereo microscope. White PE beads were observed in the gut of *C. dubia* after 48 h exposure to all concentrations (0.5 to 16 mg/L) (Figure 3B). The level of gut fullness increased with test concentrations. For example, the percentage of gut fullness increased from <50% at concentrations of 0.5 and 1 mg/L to 100% at concentration of 4 mg/L (Figure S3). However at concentrations above 4 mg/L the gut of all examined organisms was observed as 100% full.

419 The test organisms exposed to fibers were inspected under both stereo and fluorescent 420 microscope. While no fibers were observed in the gut of C. dubia, small bubbles were observed 421 under the carapace of exposed organisms to fibers (Figure 3A), which increased with increasing 422 exposure concentrations and is likely a response to environmental stress. A similar phenomenon has previously reported for *D. magna* exposed to silver nanowires.⁴⁵ PE beads were also found in the 423 424 gut of surviving C. dubia after chronic exposure, which was correlated to the test concentration. For instance, higher level of gut fullness was observed at the highest concentrations while the gut of C. 425 426 dubia exposed to the lower concentrations only showed spots of microplastics (Figure S5).

427 Apart from reduced body size of C. dubia after exposure to polyester fibers and PE beads (Figure 2), we also observed deformations in the body of C. dubia after 8 d exposure to polyester 428 429 fibers using scanning electron microscopy. Deformities, such as carapace and antenna deformities, were observed at polyester fiber concentrations of 500 μ g/L (4.3×10³ particle/L) and 1000 μ g/L 430 431 $(8.6 \times 10^3 \text{ particle/L})$, with completely deformed carapaces (Figure 4 A) compared to the negative 432 controls (MHW) (Figure 4 C). Moreover, the seta of the antenna displayed an abnormal shape and 433 were split (Figure 4 B) compared to the negative control (Figure 4 D), which could be due to 434 physical contact with the fibers. Although damage to antenna may potentially be caused by handling during sample preparation for SEM, we did not find the same damage in the negative
control organisms, nor in *C. dubia* exposed to the lower concentration of fibers (Figure S6).
Interestingly, we did not observe any noticeable deformations in *C. dubia* exposed to PE beads.
This observation may explain the greater adverse effects in *C. dubia* after exposure to polyester
fibers.

440

441 **3.6. Implications and outlook**

442 The results from this study demonstrated dose-dependent effects after acute and chronic 443 exposure to both PE beads and polyester fibers, with fibers consistently showing greater negative 444 effects than PE beads. Further, the microplastic fibers caused a 50% reduction in reproductive output of *C. dubia* at concentrations approximately six times higher than the reported environmental 445 concentrations. Consequently, more subtle effects may occur at lower concentrations. Unlike 446 447 previous studies, we did not observe any ingested fibers in C. dubia. However, malformations were 448 observed in the carapace of organisms exposed to polyester fibers. This demonstrates that the 449 adverse impact of microplastic fibers on exposed aquatic organisms is not solely due to ingestion 450 but also external physical damage, and that the latter can significantly affect survival, growth and 451 fecundity of C. dubia. We have also evaluated the short-term effect of a binary mixture of PE beads 452 and polyester fibers, which is the first of its kind to be reported for microplastics. The results 453 showed less than additive effects after acute exposure to a mixture of PE bead and polyester fiber microplastics, with the effect of the mixture similar to the predicted effect based on the model of 454 455 independent action. It should be noted that applying conventional toxicity testing methods to 456 microplastics, as well as mixture toxicity models developed for chemicals, may have limitations and requires further validation. Therefore, it is important to identify the mode of action and to develop 457 458 new approaches for microplastic toxicity testing in the future. We also suggest more studies on the 459 acute and chronic effects of binary mixture with different types of microplastics to provide better 460 predictions on mixture effects.

461 Acknowledgement

Shima Ziajahromi is supported by a Griffith University International Postgraduate Scholarship. The authors acknowledge Dr. Marijana Marcovic (CSIRO Land and Water, SA) for assistance with setting up the bioassays, and Hai Doan and Debra Gonzago (CSIRO Land and Water, SA) for culturing and technical assistance. We would like to thank Dr. Gwenda Mayo and Dr. Ken Neubauer (University of Adelaide) for assistance with SEM imaging. We also thank Dr. Llew Rintoul (Queensland University of Technology) for FT-IR analysis of fiber microplastics.

468

469 Supporting Information: Further information about microplastic counting and preliminary
470 bioassays, as well as additional bioassay data, is provided.

471

472 **References**

473

474 (1) Driedger, A. G. J.; Dürr, H. H.; Mitchell, K.; Van Cappellen, P., Plastic debris in the

475 Laurentian Great Lakes: A review. J. Great. Lakes. Res. 2015, 41 (1), 9-19.

- 476 (2) Ziajahromi, S.; Neale, P. A.; Leusch, F. D., Wastewater treatment plant effluent as a source
- 477 of microplastics: Review of the fate, chemical interactions and potential risks to aquatic organisms.
- 478 Water. Sci. Technol. 2016, 74 (10), 2253-2269.
- 479 (3) Hammer, J.; Kraak, M. H.; Parsons, J. R., Plastics in the marine environment: The dark side
- 480 of a modern gift. *Rev. Environ. Contam. Toxicol.* **2012,** 220, 1-44.
- 481 (4) Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B., Wastewater treatment works (WwTW) as
- 482 a source of microplastics in the aquatic environment. *Environ. Sci. Technol.* **2016**, *50* (11), 5800-8.
- 483 (5) Mason, S. A.; Garneau, D.; Sutton, R.; Chu, Y.; Ehmann, K.; Barnes, J.; Fink, P.;
- 484 Papazissimos, D.; Rogers, D. L., Microplastic pollution is widely detected in US municipal
- 485 wastewater treatment plant effluent. *Environ. Pollut.* **2016**, *218*, 1045-1054.

- 486 (6) Ziajahromi, S.; Neale, P. A.; Rintoul, L.; Leusch, F. D., Wastewater treatment plants as a
- 487 pathway for microplastics: Development of a new approach to sample wastewater-based
- 488 microplastics. *Water. Res.* **2017**, *112*, 93-99.
- 489 (7) Khan, F. R.; Syberg, K.; Shashoua, Y.; Bury, N. R., Influence of polyethylene microplastic
- 490 beads on the uptake and localization of silver in zebrafish (Danio rerio). *Environ. Pollut.* 2015,
 491 206, 73-9.
- 492 (8) Jemec, A.; Horvat, P.; Kunej, U.; Bele, M.; Krzan, A., Uptake and effects of microplastic
 493 textile fibers on freshwater crustacean Daphnia magna. *Environ. Pollut.* 2016, *219*, 201-209.
- 494 (9) Goldstein, M. C.; Goodwin, D. S., Gooseneck barnacles (Lepas spp.) ingest microplastic
- 495 debris in the North Pacific Subtropical Gyre. *Peer.J.* **2013**, *1*, e184.
- 496 (10) Taylor, M. L.; Gwinnett, C.; Robinson, L. F.; Woodall, L. C., Plastic microfibre ingestion
 497 by deep-sea organisms. *Sci. Rep.* 2016, *6*, 33997.
- 498 (11) Ogonowski, M.; Schur, C.; Jarsen, A.; Gorokhova, E., The effects of natural and
- anthropogenic microparticles on individual fitness in daphnia magna. *PLoS. One.* 2016, *11* (5),
 e0155063.
- 501 (12) Welden, N. A. C.; Cowie, P. R., Long-term microplastic retention causes reduced body
- 502 condition in the langoustine, Nephrops norvegicus. *Environ. Pollut.* **2016**, *218*, 895-900.
- 503 (13) Farrell, P.; Nelson, K., Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus
- 504 maenas (L.). *Environ. Pollut* . **2013**, *177*, 1-3.
- 505 (14) Setala, O.; Fleming-Lehtinen, V.; Lehtiniemi, M., Ingestion and transfer of microplastics in
 506 the planktonic food web. *Environ. Pollut* 2014, *185*, 77-83.
- 507 (15) Cole, M.; Lindeque, P.; Fileman, E.; Halsband, C.; Goodhead, R.; Moger, J.; Galloway, T.
- 508 S., Microplastic ingestion by zooplankton. *Environ. Sci. Technol.* **2013**, *47* (12), 6646-55.
- 509 (16) Hamer, J.; Gutow, L.; Kohler, A.; Saborowski, R., Fate of microplastics in the marine
- 510 isopod Idotea emarginata. Environ. Sci. Technol. 2014, 48 (22), 13451-8.

- 511 (17) Rehse, S.; Kloas, W.; Zarfl, C., Short-term exposure with high concentrations of pristine
- 512 microplastic particles leads to immobilisation of Daphnia magna. *Chemosphere*. **2016**, *153*, 91-9.
- 513 (18) Castañeda, R. A.; Avlijas, S.; Simard, M. A.; Ricciardi, A.; Smith, R., Microplastic
- 514 pollution in St. Lawrence River sediments. Can. J. Fish. Aquat. Sc. 2014, 71 (12), 1767-1771.
- 515 (19) Eriksen, M.; Mason, S.; Wilson, S.; Box, C.; Zellers, A.; Edwards, W.; Farley, H.; Amato,
- 516 S., Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar. Pollut. Bull.
- 517 **2013,** 77 (1-2), 177-182.
- 518 (20) Zhao, S.; Zhu, L.; Wang, T.; Li, D., Suspended microplastics in the surface water of the
 519 Yangtze Estuary System, China: first observations on occurrence, distribution. *Mar. Pollut. Bull*520 2014, 86 (1-2), 562-8.
- 521 (21) Huvet, A.; Paul-Pont, I.; Fabioux, C.; Lambert, C.; Suquet, M.; Thomas, Y.; Robbens, J.;
- 522 Soudant, P.; Sussarellu, R., Reply to Lenz et al.: Quantifying the smallest microplastics is the
- 523 challenge for a comprehensive view of their environmental impacts. *Proc. Natl. Acad. Sci. USA*524 **2016**, *113* (29), E4123-4.
- 525 (22) da Costa, J. P.; Santos, P. S.; Duarte, A. C.; Rocha-Santos, T., (Nano)plastics in the
- 526 environment Sources, fates and effects. Sci. Total. Environ. 2016, 566-567, 15-26.
- 527 (23) Besseling, E.; Wang, B.; Lurling, M.; Koelmans, A. A., Nanoplastic affects growth of S.
- 528 obliquus and reproduction of D. magna. *Environ. Sci. Technol.* **2014**, *48* (20), 12336-43.
- 529 (24) Dubaish, F.; Liebezeit, G., Suspended microplastics and black carbon particles in the Jade
 530 system, Southern North Sea. *Water. Air. Soil. Pollut.* 2013, 224 (2).
- 531 (25) Talvitie, J.; Heinonen, M.; Paakkonen, J. P.; Vahtera, E.; Mikola, A.; Setala, O.; Vahala, R.,
- 532 Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study
- in the coastal Gulf of Finland, Baltic Sea. *Water. Sci. Technol*. **2015**, *72* (9), 1495-504.
- 534 (26) Moret-Ferguson, S.; Law, K. L.; Proskurowski, G.; Murphy, E. K.; Peacock, E. E.; Reddy,
- 535 C. M., The size, mass, and composition of plastic debris in the western North Atlantic Ocean. *Mar.*
- 536 *Pollut. Bull.* **2010**, *60* (10), 1873-8.

- 537 (27) Lusher, A. L.; Burke, A.; O'Connor, I.; Officer, R., Microplastic pollution in the Northeast
- 538 Atlantic Ocean: validated and opportunistic sampling. Mar. Pollut. Bull. 2014, 88 (1-2), 325-33.
- 539 (28) Mani, T.; Hauk, A.; Walter, U.; Burkhardt-Holm, P., Microplastics profile along the Rhine
 540 River. *Sci. Rep.* 2015, *5*, 17988.
- 541 (29) Baldwin, A. K.; Corsi, S. R.; Mason, S. A., Plastic debris in 29 Great lakes tributaries:
- 542 Relations to watershed attributes and hydrology. *Environ. Sci. Technol.* 2016, *50* (19), 10377543 10385.
- (30) Napper, I. E.; Bakir, A.; Rowland, S. J.; Thompson, R. C., Characterisation, quantity and
 sorptive properties of microplastics extracted from cosmetics. *Mar. Pollut. Bull.* 2015, *99* (1-2),
 178-85.
- 547 (31) USEPA Methods for measuring the acute toxicity of effluents and receiving waters to
 548 freshwater and marine organisms; Washington, DC, 2002.
- 549 (32) USEPA Short-term methods for estimating the chronic toxicity of effluents and receiving
 550 waters to freshwater organisms; Washington, DC, 2002.
- (33) Spehar, R. L.; Fiandt, J. T., Acute and chronic effects of water quality criteria-based metal
 mixtures on three aquatic species. *Environ. Toxicol. Chem.* **1986**, *5* (10), 917-931.
- 553 (34) Arora, S.; Kumar, A., Binary combinations of organophosphorus pesticides exhibit
- differential toxicity under oxidised and un-oxidised conditions. *Ecotoxicol. Environ. Saf*. 2015, *115*, 93-100.
- 556 (35) Li, M.; Huang, C. P., The responses of Ceriodaphnia dubia toward multi-walled carbon
- nanotubes: Effect of physical–chemical treatment. *Carbon.* **2011**, *49* (5), 1672-1679.
- 558 (36) Backhaus, T.; Faust, M., Predictive environmental risk assessment of chemical mixtures: A
- 559 conceptual framework. *Environ. Sci. Technol.* **2012**, *46* (5), 2564-73.
- 560 (37) Jonker, M.; Svendsen, C.; Bedaux, J. J. M.; Bongers, M.; Kammenga, J. E., Significance
- 561 testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture
- 562 dose-response analysis. *Environ. Toxicol. Chem.* **2005**, *24* (10), 2701-2713.

- 563 (38) Au, S. Y.; Bruce, T. F.; Bridges, W. C.; Klaine, S. J., Responses of Hyalella azteca to acute
- and chronic microplastic exposures. *Environ. Toxicol. Chem.* **2015**, *34* (11), 2564-72.
- 565 (39) Backhaus, T.; Altenburger, R.; Boedeker, W.; Faust, M.; Scholze, M.; and Grimme, L. H.,
- 566 Predictability of the toxocity of a multiple mixture of dissimilarly acting chemicals to Vibrio
- 567 Fischeri. Environ. Toxicol. Chem. 2000, 19 (9), 2348-2356.
- 568 (40) Kahru, A.; Dubourguier, H. C., From ecotoxicology to nanoecotoxicology. *Toxicol*. 2010,
 569 269 (2-3), 105-19.
- 570 (41) Watts, A. J.; Urbina, M. A.; Corr, S.; Lewis, C.; Galloway, T. S., Ingestion of plastic
- 571 microfibers by the crab carcinus maenas and its effect on food consumption and energy balance.
- 572 Environ. Sci. Technol. 2015, 49 (24), 14597-604.
- 573 (42) Wright, S. L.; Rowe, D.; Thompson, R. C.; Galloway, T. S., Microplastic ingestion
- decreases energy reserves in marine worms. *Curr. Biol*. **2013**, *23* (23), R1031-3.
- 575 (43) Zhao, C. M.; Wang, W. X., Comparison of acute and chronic toxicity of silver nanoparticles
- and silver nitrate to Daphnia magna. *Environ. Toxicol. Chem.* **2011**, *30* (4), 885-92.
- 577 (44) Jeong, C. B.; Kang, H. M.; Lee, M. C.; Kim, D. H.; Han, J.; Hwang, D. S.; Souissi, S.; Lee,
- 578 S. J.; Shin, K. H.; Park, H. G.; Lee, J. S., Adverse effects of microplastics and oxidative stress-
- 579 induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina
- 580 nana. Sci. Rep. 2017, 7, 41323.
- 581 (45) Sohn, E. K.; Johari, S. A.; Kim, T. G.; Kim, J. K.; Kim, E.; Lee, J. H.; Chung, Y. S.; Yu, I.
- 582 J., Aquatic toxicity comparison of silver nanoparticles and silver nanowires. *Biomed.Res. Int.* 2015,
- *2015*, 893049.

584 585

586

- 587
- 588

589 Table 1: *C. dubia* 48 h (acute) lethal concentrations (LC₅₀ and LC₁₀) for PE beads and polyester 590 fibers in mg/L (95% confidence interval (CI)) based on survival (Figure 1A), with number of 591 particles/L at each effect concentration.

Test	LC ₅₀		LC ₁₀		Slope	df	R ²	SS	Sy.x
material	mg/L	Number of particles	mg/L	Number of particles	-				
Polyester fibers	1.5 (1.3-1.7)	1.3×10 ⁴	0.6 (0.4-0.9)	5.5×10 ³	-2.4	26	0.94	4618	9.9
PE beads	2.2 (1.9-2.6)	7.4×10^{4}	1.1 (0.7-1.8)	3.9×10 ⁴	-3.5	22	0.90	2592	14.4

592 df: degrees of freedom; SS: absolute sum of squares; Sy.x: standard error of the estimate

593

Table 2: *C. dubia* 8 d (chronic) effect concentrations (EC₅₀ and EC₁₀) of PE beads and polyester

595 fibers (95% confidence interval (CI)) based on reproduction output (Figure 1B), with number of

596 particles/L at each effect concentration.

Test	EC ₅₀		EC ₁	Slope	df	R ²	Sy.x	
material	μg/L	Number of particles	μg/L	Number of particles	-			
Polyester fibers	429 (345-539)	3.5 ×10 ³	208 (136-325)	2.4×10 ³	-3.1	58	0.75	28
PE beads	958 (760-1353)	3.2×10 ⁴	84.3 (29.1-244)	2.7×10 ³	-0.8	58	0.58	16

⁵⁹⁷ df: degrees of freedom; Sy.x: standard error of the estimate.

598

599

Concentration (µg/L)	Adult Survival (%)	Number of neonates in each brood 602 (mean ± S.D.)				
		First brood	Second brood	Third brood		
Negative Control	100	3.0 ± 0.7	6.8 ± 2.3	11.2 ± 4.1		
62.5	100	3.2 ± 0.7	5.7 ± 1.0	9.6 ± 4.3		
125	100	2.4 ± 0.9	4.9 ± 1.1	7.5 ± 3.2		
250	100	2.5 ± 1.1	4.0 ± 1.9	9.1 ± 4.7		
500	100	2.7 ± 0.4	5.0 ± 0.8	7.1 ± 2.9		
1000	100	1.5 ± 1.4	4.9 ± 2.9	$5.5\pm1.5*$		
2000	60	0.9 ± 0.9	3. ± 1.9*	$3.5 \pm 2.1*$		

Table 3: Survival and reproduction of *C. dubia* exposed to PE beads during chronic bioassays.

603 Note: * shows significant difference (p <0.05); Negative Control represents MHW.

Table 4: Survival and reproduction of *C. dubia* exposed to polyester fibers during chronic

606 bioassays.

Concentration (µg/L)	Adult Survival (%)	Number of neonates in each brood $(mean \pm S.D)$		
		First brood	Second brood	Third brood
Negative Control	100	3.0 ± 1.2	4.9 ± 1.3	16.3 ± 3.2
31.25	100	3.0 ± 0.6	6.1 ± 1.6	17.9 ± 0.9
62.5	100	2.8 ± 1.0	$9.6\pm4.3^{*}$	16.7 ± 7.0
125	100	2.7 ± 0.8	5.4 ± 0.8	$20.3\pm2.2*$
250	100	2.9 ± 0.8	3.9 ± 1.8	$12.5 \pm 5.1*$
500	90	1.8 ± 0.8	$2.5\pm1.6^{\ast}$	$5.3 \pm 3.5*$
1000	60	1.8 ± 0.9	$0.2\pm0.4*$	$2.8\pm2.6^*$

607 Note: * shows significant difference (p <0.05); Negative Control represents MHW.

- 608 List of figures
- Figure 1: Dose-response curves of (A) survival after single and mixture acute exposure, and (B)
 reproduction after chronic exposure of *C. dubia* to PE beads and polyester fibers.

611

Figure 2: Average size of adults (mm) and reproduction rate (number of neonates) during chronic exposure to PE beads (A) and polyester fibers (B). Data is represented as mean \pm SD. Asterisks show the concentrations with significant reduction of body size and total number of neonates (ANOVA, p < 0.05). Control represents water (MHW) sample.

616

Figure 3: *C. dubia* after acute exposure to polyester fibers (bubbles under carapace shown with the red arrow) (A), PE beads (gut full of white microplastics) (B), and negative control (MHW) (C), and chronic exposure to polyester fibers with reduced body size and no eggs in the body (D), PE beads with less eggs in the body (E) and negative control (MHW) (F). The concentration of both types of microplastics was 1000 µg/L for chronic and 4 mg/L for acute.

622

Figure 4: SEM micrograph of *C. dubia* with a deformed body surface (A) and an abnormal shaped antenna (B) after 8 d exposure to polyester fibers at concentrations of 1000 μ g/L, as well as negative control (MHW) with *C. dubia* with a normal body shape and antenna (C and D, respectively). Arrow points to the damaged part of antenna.

- 627
- 628
- 629
- 630
- 631
- *c*22
- 632
- 633

Fiber

Bead

(B: polyester fibers)

control

643

644

*

*

*

*

- _ . _

