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Abstract

Background: Limited knowledge exists on early HIV events that may inform preventive and therapeutic strategies. This
study aims to characterize the earliest immunologic and virologic HIV events following infection and investigates the usage
of a novel therapeutic strategy.

Methods and Findings: We prospectively screened 24,430 subjects in Bangkok and identified 40 AHI individuals. Thirty
Thais were enrolled (8 Fiebig I, 5 Fiebig II, 15 Fiebig III, 2 Fiebig IV) of whom 15 completed 24 weeks of megaHAART
(tenofovir/emtricitabine/efavirenz/raltegravir/maraviroc). Sigmoid biopsies were completed in 24/30 at baseline and 13/15
at week 24. At baseline, the median age was 29 years and 83% were MSM. Most were symptomatic (87%), and were
infected with R5-tropic (77%) CRF01_AE (70%). Median CD4 was 406 cells/mm3. HIV RNA was 5.5 log10 copies/ml. Median
total blood HIV DNA was higher in Fiebig III (550 copy/106 PBMC) vs. Fiebig I (8 copy/106 PBMC) (p = 0.01) while the median
%CD4+CCR5+ gut T cells was lower in Fiebig III (19%) vs. Fiebig I (59%) (p = 0.0008). After 24 weeks of megaHAART, HIV RNA
levels of ,50 copies were achieved in 14/15 in blood and 13/13 in gut. Total blood HIV DNA at week 0 predicted reservoir
size at week 24 (p,0.001). Total HIV DNA declined significantly and was undetectable in 3 of 15 in blood and 3 of 7 in gut.
Frequency of CD4+CCR5+ gut T cells increased from 41% at baseline to 64% at week 24 (p.0.050); subjects with less than
40% at baseline had a significant increase in CD4+CCR5+ T cells from baseline to week 24 (14% vs. 71%, p = 0.02).

Conclusions: Gut T cell depletion and HIV reservoir seeding increases with progression of AHI. MegaHAART was associated
with immune restoration and reduced reservoir size. Our findings could inform research on strategies to achieve HIV drug-
free remission.
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Introduction

Three decades after the discovery of antiretroviral therapy

(ART), complete eradication of HIV infection has not been

achieved except under unique circumstances [1]. A slightly less

difficult target may be the long-term, drug-free remission of HIV

or functional cure through modulation of immune responses; the

basis for therapeutic vaccination approaches that, to date, have

not provided evidence of control [2]. Preservation of immune

function by preventing the CD4 depletion in acute HIV infection

(AHI), which occurs prominently in the gut, may be a prerequisite

to achieving functional cure [2]. Gut CD4 T cell destruction and

mucosal breakdown are linked to immune activation in chronic

HIV – a key driver of chronic CD4 decline [3,4]. Data on

immunologic and virologic events as early as Fiebig stages I to III

in humans infected with HIV are lacking; yet, such knowledge

could inform the design of preventive HIV vaccines and

therapeutics [5,6].

Definitions of AHI vary by study but generally include persons

with HIV viremia in the absence of IgG antibody to HIV proteins

[7]. Because of high HIV viremia and infectiousness of acute

transmitted-founder viruses [8], AHI subjects are more likely to

transmit HIV [9]. Symptomatic AHI, sometimes referred to as

acute retroviral syndrome (ARS), is characterized by a flu-like

syndrome that coincides with peak HIV viremia, and occurs

around three weeks after infection [5].

The best practice for clinical management of AHI is currently

unknown. Highly active ART (HAART) instituted during early

infection could alleviate CD4 loss, suppress viremia, and limit the

size of the latent reservoir. However, there is no conclusive

evidence for improved long term clinical outcome, and treatment

is not always benign [4,10]. Therefore, treatment of AHI is

optional in guidelines [11]. Theoretically, usage of a CCR5

inhibitor and/or an integrase inhibitor in addition to standard

ART in AHI may reduce HIV spread and limit immune damage

[10].

HIV circulating recombinant form (CRF) 01_AE, and to a

much lesser extent, subtype B are prevalent in Thailand [12]. We

investigated the clinical, immunologic and virologic characteristics

of AHI Thai subjects as well as the short-term outcomes of using

multi-targeted HAART. We hypothesized that 1) Real-time

pooled nucleic acid testing (NAT) and sequential enzyme

immunoassay (EIA) of high prevalence HIV-seronegative subjects

from HIV voluntary counseling and testing centers (VCT) in

Bangkok would yield volunteers with AHI that is predominantly

non-subtype B, and 2) The use of 5-drug ART will have a

significant impact on immunity and HIV viral burden.

This study informs the usage of a novel therapeutic strategy with

a CCR5 inhibitor in addition to an integrase inhibitor and reverse

transcriptase inhibitors in the earliest clinical stage of HIV

infection.

Methods

The RV254/SEARCH 010 study is an ongoing prospective,

open-label study in Bangkok, Thailand (clinicaltrials.gov identifi-

cation NCT00796146). The study was approved by the institu-

tional review boards (IRBs) of Chulalongkorn University in

Thailand and the Walter Reed Army Institute of Research in

the United States. All subjects gave informed consent. Samples

from subjects who had VCT for HIV at The Thai Red Cross

Anonymous Clinic and at the Silom Community Clinic were

screened in real-time by pooled NAT and sequential EIA

according to published methods [13]. Thai subjects who fit the

AHI laboratory criteria for Fiebig stages I to IV [14] were enrolled

(Figure 1) and had clinical and laboratory assessments at days 0, 2,

3, 5, 7, 10, weeks 2, 4, 8, 12, 16, 20, 24, and every 12 weeks

thereafter up to 192 weeks. A checklist of ARS symptoms was

employed by an HIV physician to assess all potential symptoms at

the baseline and subsequent visits until all symptoms had resolved.

Laboratory assessments included CD4, HIV RNA, liver

transaminases, creatinine, lipids and urinalysis. Plasma and

peripheral blood mononuclear cells (PBMCs) were cryopreserved

at all visits. Sampling of gut-associated lymphoid tissue (GALT)

occurred at weeks 0 and 24 by sigmoidoscopy as an optional

procedure (24 subjects at baseline and 13 subjects at week 24), and

mucosal mononuclear cells (MMCs) were isolated from GALT.

Initiation of ART was voluntary and done as part of enrollment

in an accompanying local protocol (clinicaltrials.gov identification

NCT00796263), approved by the Chulalongkorn University IRB,

and all subjects gave informed consent. Treatment was started on

average 3 days (range 0–5 days) from enrollment. The regimen

consisted of 5 antiretrovirals [tenofovir (TDF) 300 mg once daily,

emtricitabine (FTC) 200 mg once daily, efavirenz (EFV) 600 mg

once daily, raltegravir (RAL) 400 mg twice daily and maraviroc

(MVC) 600 mg twice daily] for the first 24 weeks followed by

simplification to 3 drugs with TDF, FTC and EFV. EFV was

discontinued in subjects with intolerance or resistance, in which

case dose adjustment of MVC to 300 mg twice daily was

implemented. The first 10 subjects received the 5-drug regimen.

Subsequently subjects were randomized 1:1 (in a block of 30) to 5

drugs (MegaHAART) vs. 3 drugs (HAART with TDF, FTC, EFV)

ART.

Laboratory methods
Diagnosis of acute HIV infection (AHI). All samples were

first screened with HIV antigen/antibody combination detection

assay EIA (AxSYM; Abbott Laboratories, Wiesbaden, Germany

or Roche HIV Combi Assay; Roche Diagnostics, London, UK).

Negative samples were screened by pooled NAT using either

Roche Amplicor v 1.5 ultrasensitive assay with a lower

quantitation limit of 50 copies/ml (Roche Diagnostics,

Branchburg, NJ, USA) or Aptima HIV-1 RNA qualitative assay

with a lower quantitation limit of 30 copies/ml (Gen-Probe Inc.,

San Diego, CA, USA). Subjects were confirmed to have AHI if

they had positive HIV RNA by another method and had negative

non-IgM sensitive (2nd generation) EIA (Genetic Systems rLAV

EIA, BioRad Laboratories, Redmond, WA). For samples that were

positive for HIV antigen/antibody combination detection assay

EIA, the 2nd generation EIA was done immediately. Subjects were

confirmed to have AHI if they had negative 2nd generation EIA

and also a positive HIV RNA. For Fiebig staging purposes, an

IgM-sensitive (3rd generation) EIA (Genscreen HIV 1/2, Bio-

Rad, Marnes la Coquette, France), a standard HIV-1 p24 antigen

assay (ABL Inc., Kensington, MD) without immune-complex

dissociation and Western Blot were done on AHI samples.

AHI subjects were enrolled if they were Thai and fulfilled

laboratory criteria for Fiebig stages I to IV as follows: Fiebig I -

positive HIV RNA, negative p24 antigen, negative 3rd generation

EIA; Fiebig II – positive HIV RNA, positive p24 antigen, negative

3rd generation EIA; Fiebig III - positive HIV RNA, positive p24

antigen, positive 3rd generation EIA, negative western blot; Fiebig

IV - positive HIV RNA, positive or negative p24 antigen, positive

3rd generation EIA, indeterminate western blot. All subjects had to

have a non-reactive EIA by non-IgM sensitive EIA.

The corresponding mean cumulative durations from onset of

HIV infection according to Fiebig et al are 5 (Fiebig I), 10.3 (Fiebig

II), 13.5 (Fiebig III) and 19.1 (Fiebig IV) days [14]. For this study,

we reported duration from history of HIV exposure within the last
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30 days to Fiebig stage diagnosis at screening and at baseline for

each subject. For subjects who had multiple dates for possible HIV

exposure, the average duration was used.

Isolation and Immunophenotyping of PBMCs and

sigmoid colon MMCs. PBMCs were cryopreserved in RPMI

1640 medium (Invitrogen, Carlsbad, CA, USA) containing 20%

heat-inactivated fetal-calf serum (FCS; Invitrogen, Carlsbad, CA,

USA) and 10% dimethylsulfoxide (DMSO; Sigma, St. Louis, MO,

USA). For immunophenotyping cryopreserved PBMCs were

thawed and washed once in RPMI 1640 media containing 2%

heat-inactivated FCS, and 1% penicillin/streptomycin (Invitrogen,

Carlsbad, CA, USA), re-suspended in complete RPMI 1640 media

and rested over night before staining.

MMCs were isolated from 20–25 pieces of gut-associated

lymphoid tissue collected from the sigmoid colon by sigmoidos-

copy using Radial Jaw 3 biopsy forceps (Boston Scientific, Natick,

MA, USA). The biopsy pieces were placed in complete RPMI

1640 RPMI media containing 10% human AB serum (HAB;

Gemini Bio-Product, West Sacramento, CA, USA), 1% HEPES,

1% L-Glutamine, 0.1% Gentamicin (Invitrogen, Carlsbad, CA,

USA), 1% Penicillin/Streptomycin and 2.5 mg/ml Amphotericin

B (Invitrogen, Carlsbad, CA, USA). Samples were then digested

using 0.5 mg/ml Collagenase II (Sigma, St. Louis, MO,

USA).Isolated MMCs from one donor were pooled, washed twice

and then counted using Trypan Blue exclusion. MMCs were

directly used for phenotypical characterization.

Immunophenotyping analysis was performed on cryopreserved

PBMCs and freshly isolated MMCs. Cells were first stained with

Aqua Live/Dead dye (Invitrogen, Carlsbad, CA, USA) following

staining with anti-CD4-QDot605 (Invitrogen, Carlsbad, CA,

USA), anti-CD3-PE-TexasRed (Invitrogen, Carlsbad, CA, USA),

anti-CD8-V450 (BD Horizon, San Diego, CA, USA), anti-CD27-

AlexaFluor700 (BD Pharmingen, San Diego, CA, USA) and anti-

CD45RO-PE-Cy7 (BD, San Jose, CA, USA) for 20 min at room

temperature. Subsequently cells were washed with PBS and

stained with anti-CCR5-APC-Cy7 (BD Pharmingen, San Diego,

CA, USA) for 30 min at 37uC. Cells were acquired on a custom

built BD LSRII cytometer (BD, San Jose, CA, USA). At least

150,000 total events were acquired in the lymphocyte light scatter

gate and the data were analyzed using FlowJo software version 8

or higher (TreeStar, Ashland, OR, USA). Initial gating used

forward scatter height versus forward scatter area plot to exclude

doublets, and forward scatter height versus a sideward scatter

height plot to isolate lymphocytes. Dead cells were excluded by

Aqua Live/Dead staining and subsequently CD3+ and CD4+ T

cells were included. The gating strategy is shown in Figure 2.

Frequencies of CCR5+ T cells are expressed as frequency of

CD4+ T cells. Effector memory (EM) T cells were defined as

Figure 1. Description of the patient disposition. MegaHAART: Five antiretrovirals (ARVs) including tenofovir, emtricitabine, efavirenz, raltegravir
and maraviroc.
doi:10.1371/journal.pone.0033948.g001
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CD27- and CD45RO+ and central memory (CM) T cells as

CD27+ and CD45RO+ CD4+ T cells.

HIV quantification. At baseline and during follow up, HIV

RNA in plasma was performed using Roche Amplicor v 1.5

ultrasensitive assay with a lower quantitation limit of 50 copies/ml

(Roche Diagnostics, Branchburg, NJ, USA). For gut tissue, frozen

samples were weighed then homogenized in AVL buffer (QIAamp

Viral mini kit Cat No. 52,904) using a mini mortar and pestle.

Extraction was completed per kit instructions. The Siemens

Quantiplex HIV-1 3.0 assay was used to measure HIV-1 RNA

copy number. Results were expressed as copies/mg of tissue.

Total HIV DNA in gut and blood. Quantifications of total

HIV DNA were performed as described previously [15]. Primers

and probes have been specifically designed for CRF01_AE and B.

Briefly, PBMCs and sigmoid biopsies were digested with proteinase

K and lysates were directly used for amplification. A modified

nested PCR was used to quantify both HIV DNA and CD3 gene

copy numbers. As a standard curve for both quantifications, serial

dilutions of ACH2 cells (NIAIDS reagent program) ranging from

36105 to 3 cells were amplified together with experimental samples.

HIV sequences and the CD3 gene were co-amplified for 12 cycles in

triplicate wells. PCR products were diluted and HIV and CD3 copy

numbers were determined in separate second amplification

reactions on the Rotor-gene Q instrument (Qiagen). Data from

elite controllers and chronic HIV patients on suppressive therapy

were used for comparison. Their samples were run in the same

laboratory. Although the primers and probes have been modified

from a clade B assay to enable detection of both clade B and

recombinant CRF01_AE for this particular study, the limit of

detection of both assays is comparable (1 copy per reaction tube). To

validate our assay, we amplified the same samples with the 2 assays

and saw a strong positive correlation between the assays (r = 0.93,

p,0.0001).

HIV subtyping/sequencing. HIV-1 infected plasma samples

were assigned subtypes using the multi-region hybridization assay, a

real-time PCR based assay designed specifically for subtypes B, C

and CRF01_AE (MHAbce) utilizing probes to 8 regions throughout

the HIV-1 genome [12].

Cytokines. Interferon (IFN)-a and interleukin (IL)-17 were

measured using a custom Q-Plex IR ELISA Array (Quansys

Biosciences, Logan UT). Images were captured using the Odyssey

imaging system (Li-Cor, Lincoln NE) and analyzed using Q-View

Plus software (Quansys Biosciences). Interferon gamma-induced

protein (IP)-10 was measured by standard ELISA (Invitrogen,

Carlsbad CA).

Biomarkers. Biomarkers were measured in cryopreserved

EDTA plasma, D-dimer was measured using an enzyme-linked

fluorescent assay on a VIDAS instrument (bioMerieux Inc.,

Figure 2. Gating Strategy used to determine the frequency of CD4+CCR5+ T cells. The gating strategy applied for mucosal mononuclear
cells (MMC) and peripheral blood mononuclear cells is shown representative on a set of MMC. Initial gating used forward scatter height versus
forward scatter area plot to exclude doublets, and forward scatter height versus a sideward scatter height plot to isolate lymphocytes. Dead cells
were excluded by Aqua Live/Dead staining and subsequently CD3+ and CD4+ T cells were included. Frequencies of CCR5+ T cells are expressed as
frequency of CD4 T cells. Effector memory (EM) T cells were defined as CD272 and CD45RO+ and central memory (CM) T cells as CD27+ and
CD45RO+ CD4+ T cells.
doi:10.1371/journal.pone.0033948.g002
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Durham, North Carolina, USA). Hyaluronic acid (HA) was

measured using HA test kits (Corgenix, Inc, Westminster,

Colorado, USA). C-Reactive Protein (CRP) was measured by

electrochemiluminescence (Meso Scale Discovery, Gaithersburg,

Maryland, USA). Soluble CD14 (sCD14) was measured by ELISA

(R&D Systems, Minneapolis, Minnesota, USA). Lipopolysaccharide

(LPS) levels were quantified by first diluting fasting plasma samples,

collected in EDTA tubes, to 10% with endotoxin-free water and

subsequent heat inactivation of plasma proteins for 15 minutes at

80uC. Measurements of the samples were made with a Limulus

Amebocyte Assay (Lonza). Samples were measured in duplicate and

background was subtracted.

Statistical analysis
For this publication, data captured between April 2009 and

December 2010 of subjects with Fiebig I to IV at enrollment were

analyzed. This included baseline information of the first 30

subjects and 24-week treatment outcome data of the first 15

subjects treated with megaHAART (Figure 1). Fifteen subjects

were excluded from the 24-week treatment outcome analysis

because two had elected not to start ART, 11 had not yet reached

week 24 (3 were on megaHAART and 8 were on HAART), and 2

had reached week 24 but were randomized to HAART. The latter

two patients were excluded as the goal for the initial phase of the

study was to evaluate the impact of megaHAART on immunity

and HIV reservoir. At baseline, all variables were analyzed for the

30 subjects. The non-parametric Wilcoxon rank-sum test was used

to compare the quantity of HIV DNA in PBMCs as well as other

continuous variables between patients by Fiebig stage. Changes in

CD4+ T cells, CD4+CCR5+ T cells, HIV RNA, HIV DNA

content, plasma cytokines and inflammatory biomarkers from

baseline to week 24 in 15 subjects with data for all time points were

assessed using the Wilcoxon matched-pairs signed-rank test. The

total HIV DNA in PBMCs at baseline was used as a predictor of

reservoir size at week 24. Correlation between the two variables

was assessed by Spearman’s rank correlation coefficient. Statistical

tests were 2-sided with p-values,0.05 considered statistically

significant.

Statistical analyses were performed using Prism version 5.01

software (Graphpad, software inc.) and STATA/IC version 11.2

for windows (Statacorp LP, TX, USA).

Results

Diagnosis of AHI and characteristics of AHI subjects
Between 20 April 2009 to 31 December 2010, 24,430 samples

were prospectively screened to identify 40 subjects with AHI

(Figure 1). Twenty-six were identified by pooled NAT (negative

HIV IgM antibody – Fiebig I/II) and 14 were identified by

sequential EIA (positive HIV IgM antibody – Fiebig III/IV) with

an overall AHI incidence of 1.7/1000 screened; 95% confidence

interval 1–2.7/1000. Seven did not enroll in the study 23 were

not able to be contacted and 4 were non-Thais. Thirty-three

subjects enrolled in the study but 3 were excluded from the

baseline analysis as they had progressed to Fiebig V at enrollment.

Subjects were mostly young MSM with an estimated time of

HIV exposure of about two weeks (Table 1). The median CD4

count was 406 cells/mm3 and the plasma HIV RNA was 5.5

log10copies/ml. The median gut HIV RNA was 596 copies/mg

tissue and 6 had levels ,50 copies/mg tissue. Most (70%) were

infected with HIV-1 CRF01_AE. The seven non-typable samples

by MHAbce contained CRF01_AE (n = 3), B (n = 3) and

CRF01_AE/B (n = 1) genetic material. Almost 80% had R5

HIV virus by the Trofile assay, and 10% had primary NNRTI

resistance. Most (n = 26) were symptomatic with fever, myalgia

and fatigue being the most common manifestations, occurring

around 11 days after estimated time of exposure (Table 2). Notably

absent were respiratory symptoms. The mean duration (SD) from

onset of HIV exposure by self-reporting history to Fiebig stages

was 12 (9.6) days for I, 16 (5.6) days for II, 18 (7.8) days for III, and

29 (3.6) days for IV.

The first 15 subjects on megaHAART had treatment outcome

data up to week 24 (Figure 1). They had similar characteristics as

the whole cohort (Table 1). Figure 2 shows a rise in HIV RNA

between the screening and baseline visits [mean (SD) of 3 (1.6)

days] suggesting that our subjects are captured early before

reaching peak viremia. After treatment, plasma HIV RNA

declined rapidly with 6/15 achieving HIV RNA,50 copies/ml

by week 4 and 14/15 having undetectable HIV RNA at week 24

(Figure 3). At week 24, HIV RNA in gut tissue was below 50

copies/mg tissue in all 13 subjects tested. Median peripheral blood

CD4 count rose by 188 cells/mm3 at week 2 followed by a

sustained rise to 591 cells/mm3 at week 24. Four discontinued

EFV before week 12 due to CNS symptoms (1), rash (1) and

primary NNRTI resistance (2).

Gut T cell depletion during AHI and its restoration
following megaHAART

For the sigmoid biopsy flow analysis, data for 22 subjects at

baseline and 11 subjects at week 24 were available for analysis. At

baseline, a significant decrease in the median frequency of

CD4+CCR5+ T cells with progression of Fiebig stages was

observed with 53% at Fiebig I and 19.3% at Fiebig III (p = 0.001)

(Figure 4A). The loss of CD4+CCR5+ T cells between Fiebig I

and Fiebig III mainly occurred within the effector memory (EM:

CD27-CD45RO+) and central memory (CM: CD27+CD45RO+)

CD4+ T cell sub-sets. The median frequency of CD4+CCR5+
EM T cells dropped from 56% at Fiebig I to 18% at Fiebig III

(p = 0.008) while CM T cells dropped from 80% to 46% from

Fiebig I to Fiebig III, respectively (p = 0.001).

This association was not seen for PBMCs, where the frequency

of CD4+CCR5+ T cells at Fiebig I was 9.1% (n = 6) compared to

9.6% at Fiebig III (n = 8) (p.0.05). However there was no change

in the frequency of CD8+CCR5+ T cells in the gut mucosa (Fiebig

I: 91.6%; Fiebig III: frequency 94.6%, p.0.05) that could

contribute to the changes observed in the frequency of

CD4+CCR5+ T cells. Additionally we observed that in the gut

mucosa CD4+CCR5+ T cells depletion increased with higher total

HIV DNA, p = 0.05 and r = 0.46.

After 24 weeks of megaHAART, the median frequency of

CD4+CCR5+ T cells in the gut mucosa showed an increased

trend compared to baseline (baseline: 41%, 24 weeks: 64%,

p.0.05). However, in five subjects with a frequency of

CD4+CCR5+ T cells below the median baseline value of 40%,

a significant increase in the frequency of CD4+CCR5+ T cells

from baseline to 24 weeks of treatment of 14% to 71% (p = 0.02),

respectively, was observed (Figure 4B). The increase in

CD4+CCR5+ T cells was mainly seen in the EM (baseline:

36%, 24 weeks: 82.2%, p = 0.02) and CM subsets (baseline: 18%,

24 weeks: 62.6%, p = 0.003). In contrast, a variable response to

treatment was observed in patients with baseline CD4+CCR5+
frequency above the median of 40% (Figure 4C). The same trend

(although not statistically significant) could be observed for the

actual count of CD4+CCR5+ T cells with those patients having a

median baseline value below 40% showing an increase in their

CD4+CCR5+ T cell count after treatment (baseline: median 696,

24 weeks: median 7165, p,0.05). Additionally there was no

change observed in the frequency and actual count of

Gut T Cell Depletion during Acute HIV Infection
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CD8+CCR5+ T cells in the sigmoid colon (baseline: 93% and

median: 16812, 24 weeks: 93% and median: 18320, p.0.05). In

the peripheral blood, no significant changes in the frequency of

CD4+CCR5+ T cells were observed as a response to 24 weeks of

megaHAART (baseline: 9%, 24 weeks: 8.3%, p.0.05).

HIV reservoir. The size of the HIV reservoir was

determined by quantifying the total number of HIV DNA

copies per 106 cells in PBMCs and in gut mucosal tissue. Data

on HIV DNA in PBMCs were available for 29/30 subjects at

baseline and 15/15 at week 24. The total HIV DNA in PBMCs

was significantly higher in subjects at Fiebig III (median 550

copies/106 PBMCs, n = 15) and Fiebig II (median 96 copies/106

PBMCs, n = 5) compared to those at Fiebig I (median 8 copies/106

PBMCs, n = 7) AHI, p = 0.01 (Figure 5A). As more than 95% of

the reservoir is harbored by CD4+ T cells (Chomont N,

unpublished data), we estimated the frequency of infection of

CD4+ T cells in the blood based on their percentage among

PBMCs (measured by flow cytometry). We saw similar results

when infection frequencies in CD4+ T cells were used (Figure 5B)

rather than infection frequencies in PBMCs. The median total

HIV DNA were significantly higher in Fiebig III (2308.5 copies/

106 CD4) and Fiebig II (319.7 copies/106 CD4) compared to

Fiebig I (20.5 copies/106 CD4) subjects (p = 0.01 and 0.02

Table 1. Baseline characteristics of acute HIV-infected subjects.

Characteristics Cohort with baseline data (n = 30) Subgroup with 24-week mega HAART outcome data (n = 15)

Median (IQR) age, years 29 (25, 32) 29 (25, 30)

Gender Male: Female, n 26:4 13:2

Risk behavior, n (%)

MSM 25 (83) 12 (80)

Heterosexual male 1 (3) 1 (7)

Heterosexual female 4 (13) 2 (13)

Mean (SD) duration since onset of HIV, days 18 (9.1) 15 (8.4)

Fiebig stage, n (%)

I 8 (27) 3 (20)

II 5 (17) 2 (13)

III 15 (50) 8 (53)

IV 2 (6) 2 (13)

Acute retroviral syndrome, n (%) 26 (87) 12 (80)

Median (IQR) CD4, cells/mm3 406 (298, 555) 381 (298, 525)

Median (IQR) plasma HIV RNA, log10 copies/ml 5.5 (5.1, 6.4) 5.7 (5.4, 6.4)

Primary drug resistance, n (%)

NRTI T215F (n = 1) None

NNRTI K103N (n = 2), Y181C (n = 1) K103N (n = 2), Y181C (n = 1)

PI None None

HIV subtype by MHAbce*, n (%)

CRF01_AE 21 (70) 8 (53)

B 1 (3) 1 (7)

Nontypable 7 (24) 6 (40)

Tropism by Trofile, n (%)

R5 23 (77) 10 (67)

Dual R5/X4 1 (3) 0

Unable to be amplified 6 (20) 5 (33)

*MHAbce: A multi-region hybridization assay distinguishes subtypes B, C and CRF01_AE [12]. One sample was not done due to low plasma HIV RNA. MSM: Men who
have sex with men, NRTI: Nucleoside reverse transcriptase inhibitor, NNRTI: Non-nucleoside reverse transcriptase inhibitor, PI: Protease inhibitor.
doi:10.1371/journal.pone.0033948.t001

Table 2. Clinical manifestations of acute retroviral syndrome.

Symptoms N (%)
Mean onset (range) from HIV
exposure, days

Overall 26 (87) 11 (1–20)

Fever 23 (77) 11 (1–20)

Myalgia 18 (60) 10 (1–20)

Fatigue 17 (57) 8 (1–19)

Oral ulcer 16 (53) 13 (6–20)

Skin rash 15 (50) 14 (4–32)

Sore throat 15 (50) 9 (1–22)

Headache 15 (50) 12 (1–20)

Anorexia 11 (37) 12 (1–21)

Diarrhea 11 (37) 10 (1–19)

Arthralgia 8 (27) 9 (1–18)

Nausea and vomiting 5 (17) 15 (10–21)

Adenopathy 4 (13) 17 (11–22)

Weight loss 4 (13) 10 (7–14)

doi:10.1371/journal.pone.0033948.t002

Gut T Cell Depletion during Acute HIV Infection

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e33948



Figure 3. Plasma HIV RNA and CD4 response to megaHAART. The mean time from the screening visit to week 0 is 3 days (standard deviation
1.6 days).
doi:10.1371/journal.pone.0033948.g003

Figure 4. Frequency of CD4+CCR5+ T cells in sigmoid colon in acute-HIV infected subjects. In the sigmoid colon of acute HIV infection
patients, the frequency of CD4+CCR5+ T cells declined significantly from Fiebig I (median: 53%) to Fiebig III (median: 19.3%) (p = 0.0008) (Figure 4A).
After 24 weeks of megaHAART, the frequency of CD4+CCR5+ T cells was restored in patients with a baseline frequency below the median value of
40% (Figure 4B) while patients with a frequency above the median value of 40% at baseline showed a variable response to treatment (Figure 4C).
For Figure 4A, each dot represents an individual subject with horizontal bars showing median values and interquartile ranges. For Figures 4B and 4C,
each line represents changes of gut CD4+CCR5+ T cells from baseline to week 24 in an individual subject. Blue line – Fiebig I; black line – Fiebig II; red
line – Fiebig III. Data from two Fiebig IV subjects were not included in the analysis.
doi:10.1371/journal.pone.0033948.g004
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respectively). The total HIV DNA in PBMCs (Figure 5C) and in

CD4+ T cells (Figure 5D) at baseline predicted reservoir size at

week 24, (r = 0.8, p = 0.0002). After megaHAART, the median

total HIV DNA declined from 1513 copies/106 CD4 at baseline to

106 copies/106 CD4 at week 24 (p = 0.002).

By week 24, acutely treated subjects achieved total DNA levels

(median 40 copies/106 PBMCs) lower than those in virologically

suppressed, chronically HIV-infected patients on long-term

standard HAART (median 109 copies/106 PBMCs, n = 14), and

9 patients had levels as low as those seen in elite controllers who

maintain undetectable viremia without ART (median 4.5 copies/

106 PBMCs, n = 13) (Figure 5E). Three of 15 acutely treated

subjects had undetectable total HIV DNA in PBMCs.

HIV DNA data in gut tissue were available in 19/30 subjects at

baseline and 7/15 at week 24. The median total gut HIV DNA

was 336 copies/106 cells in Fiebig III (n = 11) and 10 copies/106

cells in Fiebig I (n = 5) (p.0.05). The total HIV DNA in gut

among the 7 subjects with week 24 results decreased from 319

copies/106 cells at baseline to 39 copies/106 cells at week 24

(p = 0.047).

Plasma inflammatory biomarkers. Significantly lower

levels of plasma IFNa (Figure 6A), IL-17 (Figure 6B) and

interferon gamma-induced protein (IP-10) (Figure 6C) were seen

following treatment. Of the inflammatory markers measured, only

D-dimer showed a significant reduction following 24 weeks of

megaHAART whereas plasma LPS, CRP, sCD14 and HA

concentrations were not different from baseline (Figures 7A to 7E).

Discussion

At the incipient stages of HIV infection, there is a massive loss of

GALT-associated CD4+ T cells in animal models of simian

immunodeficiency virus (SIV) and HIV in humans as a

consequence of direct infection [3,16,17]. Increased gut perme-

ability and chronic activation of CD4+ T cells by bacterial

products further potentiates T cell loss [3,4,16]. The clinical

course of acute CRF01_AE infection has not been described

before. In our study, we identified subjects in the earliest stage of

infection (90% were Fiebig I–III) and evaluated the immunologic

and virologic changes in both peripheral blood and gut before and

after aggressive ART. We demonstrated that gut T cell depletion

and HIV DNA reservoir size increased as Fiebig stage progressed,

and gut total HIV DNA correlated with the depletion of gut CD4+
T cells. Importantly, the amount of total HIV DNA at entry into

the study predicted reservoir size after treatment. These findings

favor early intervention during AHI to limit immune destruction

and HIV reservoir size, and also highlight that immune

destruction begins in the earliest days after infection. The latter

finding raises concerns regarding the interpretation of these data in

the context of protection when considering treatment in later

stages of primary infection [10].

It is thought that the early depletion of the GALT, the largest

reservoir of CD4+ T cells in the body, is a blow from which the

host may not recover even after prolonged ART in the chronic

phase of infection [2,3,5,18]. We employed a strategy that blocked

HIV at three steps in the viral life cycle -at entry (CCR5 inhibitor),

reverse transcription [nucleoside reverse transcriptase inhibitors

(NRTIs) and non-NRTI) and integration (integrase inhibitor)-and

found a marked reduction in viral burden in both gut and plasma

HIV RNA and DNA. The extent of HIV DNA reduction after 6

months of therapy exceeded that achieved in chronically infected

patients following almost 5 years of conventional three-drug ART.

Importantly, in persons whose gut CD4+CCR5+ T cells were

depleted, megaHAART was associated with reconstitution of gut

CD4+CCR5+ T cells to the normal range. This has not been

described in published data of macaques or humans treated with

standard HAART which may reflect ART timing and/or regimen

[17,18,19,20]. Lower CCR5 may reduce the replication of HIV by

the fusion inhibitor enfurvitide, and a similar mechanism may be

at work for MVC [21]. CD4+ CM T cells are preserved in elite

controllers and natural SIV hosts suggesting that maintaining

CD4+ CM T cells and limiting HIV integration may be crucial to

achieving drug-free control of HIV replication [2,5,22]. Our data

showed that both CM and EM CD4+CCR5+ T cells are

predominantly depleted in the gut during AHI, and institution

of ART during Fiebig I to III reconstituted these subsets.

Decreased IFNa and IL-17 levels following treatment may be a

consequence of the diminished viral reservoir leading to reduced

immune activation, but further studies are needed [23]. Damage

to the gut mucosal barrier leading to microbial translocation has

been proposed as a cause of ongoing immune activation despite

successful ART in chronic HIV infection reflected by elevated

inflammatory biomarkers such as those investigated in our study

[24,25]. These markers have been linked to HIV progression and

complications in chronic HIV infection [26,27]. In contrast to the

cytokine rise seen prior to peak viremia [28], elevated levels of

markers of gut microbial translocation have not been consistently

reported in the acute HIV infection period [5]. Our patients were

enrolled in early acute HIV infection when significant gut

microbial translocation may have not yet occurred. Supporting

evidence were the lower levels of inflammatory biomarkers in our

patients compared to those reported in chronically HIV-infected

Thais [29], and the lack of significant reductions, except for D-

dimer, following treatment despite a profound decline in plasma

viremia [30].

Results have been mixed with respect to the benefit of initiating

treatment during AHI [10], possibly owing to varying definitions

of AHI and timing of ART initiation. In our study, patients

initiated treatment in the earliest stage of infection, most at Fiebig

stages I–III. Further, we used an aggressive approach with five

antiretrovirals, affecting both HIV entry and integration. The

integrase inhibitor accelerates HIV viremic decay [31], and the

Figure 5. HIV reservoir size by total HIV DNA quantification in peripheral blood mononuclear cells and CD4+ T cells of acute-HIV
infected subjects. Footnote: At baseline, the HIV reservoir size, determined by the frequencies of HIV-infected cells expressed as HIV DNA copies
per million peripheral blood mononuclear cells (PBMCs) (Figure 5A) or calculated per million CD4+ T cells (based on CD4 frequency among PBMCs
measured by flow cytometry) (Figure 5B), increased with progression of Fiebig stage. The amount of total HIV DNA in PBMCs (Figure 5C) and in
CD4+ T cells (Figure 5D) at baseline predicted the HIV reservoir size after 24 weeks of antiretroviral treatment. The median total HIV DNA in PBMCs
of subjects treated during acute HIV infection in this study was lower than that of subjects treated during chronic HIV infection. In addition, some
acutely treated subjects achieved HIV DNA in PBMCs as low as that in elite controllers (Figure 5E). For all figures, each data point represents an
individual subject. For figures 5A to 5D, the horizontal bars represent the median values. For figure 5E, megaHAART (highly active antiretroviral
therapy) represents subjects in this study who initiated 5-drug antiretroviral regimen during acute HIV infection (n = 15). Data from two control
groups are included here as HAART chronic and ECs (elite controllers). HAART chronic represents subjects who initiated standard antiretroviral
therapy during the chronic HIV infection stage and had received treatment for a mean duration of 56 months (n = 14). Elite controllers represent
subjects whom HIV RNA are undetectable in the absence of antiretroviral therapy (n = 13).
doi:10.1371/journal.pone.0033948.g005
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CCR5 inhibitor could be beneficial in AHI since transmitted/

founder HIV virurses are almost exclusively CCR5-tropic [32]. A

randomized comparison of megaHAART versus standard

HAART to discern the benefit of using these additional drugs is

now being implemented in our study, and is the subject of ongoing

investigation by others [33].

AHI subjects are 20–30 times more likely than their chronically-

infected counterparts to transmit infection [8,32], and early

treatment could avert new infections [10]. Our study provided

evidence that identifying AHI subjects by NAT and sequential

EIA, and enrolling them in a study is feasible but technically and

logistically challenging and costly[7,34]. Strengthening the aware-

ness of symptomatic AHI is a less challenging way to identify acute

and recent HIV infection making early treatment far more

possible.

Our study has limitations such as the relatively small number of

subjects with AHI despite screening a large number of VCT clients

and the lack of comparator groups, namely, a group in which

treatment was not instituted and a group that received standard

HAART. This limits our interpretation of the effect of mega-

HAART on HIV reservoir size and immune restoration.

Additionally the gut biopsy was done at the sigmoid site only.

Yukl et al reported differences in cells harboring HIV DNA across

gut sites; the amount of HIV DNA appeared to increase from

duodenum to terminal ileum, right colon and rectum. In that

study, sigmoid colon was not studied but the rectum was described

as a major site for the persistence of cells harboring HIV DNA

[35]. Yukl et al normalized viral loads to 106 CD4+ T cells, and

our data do not directly address the differences in assays. Although

we cannot exclude that other sites of the GI tract might contribute

to HIV persistence, the serial increase in HIV DNA from

duodenum to rectum would suggest that sigmoid might be more

akin to the latter, and we believe that the measurement of viral

DNA in longitudinal sigmoid biopsy provides novel information by

indicating that early ART greatly reduces the reservoir size in this

compartment. Furthermore, we did not include information on

integrated DNA as the values were extremely low and difficult to

interpret for the small number of patients. The assay for 2LTR

(long terminal repeat) circles is currently being optimized for

CRF01_AE. Transient increases in 2LTR circles could occur as a

result of raltegravir intensification [36]. Therefore, the total HIV

DNA reported in our study may reflect non-integrated HIV DNA.

In addition, we did not measure cell-associated HIV RNA

(unspliced and multiply-spliced). Decreases in unspliced HIV

RNA of ileal CD4+ T cells were reported in some patients who

received raltegravir intensification [37]. Taken with these

observations, the reduction of total DNA in sigmoid MMC at 24

weeks could be a lower bound estimate for integrated DNA.

Figure 6. Decline in plasma cytokines following 24 weeks of antiretroviral treatment. Interferon (IFN)-a (Figure 6A); interleukin (IL)-17
(Figure 6B); interferon gamma-induced protein (IP)-10 (Figure 6C). All cytokine levels were significantly reduced following treatment.
doi:10.1371/journal.pone.0033948.g006
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Studying the immunologic and virologic changes during AHI

could provide important insight that will inform the design of

immunogens for preventive vaccines [5]. There may be a window

of opportunity during early AHI to intervene and limit CD4

destruction and HIV reservoir formation with the ultimate goal of

achieving drug-free remission of HIV. In addition to ART during

early Fiebig stages, strategies such as therapeutic HIV vaccines or

drugs that target the long-lived cellular reservoir may be necessary

to achieve this goal [2,38] – and persons aggressively treated in

these early Fiebig stage infections may be ideal candidates for these

interventions. In order to test for HIV functional cure, treatment

interruption will be necessary. The risk for serious non-AIDS

events due to treatment interruption seen in the SMART study is a

concern [39]; however, this may be mitigated in early-treated AHI

subjects who have preserved immunity and limited HIV reservoir

[22], provided it is done in the setting of a closely monitored

clinical trial.
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