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Understanding inter-site mutual mode interaction in coupled physical systems is essential to com-
prehend large compound systems as this local interaction determines the successive multiple inter-
site energy transfer efficiency. We demonstrate that only the non-Hermitian coupling can correctly
account for the light transfer between two coupled optical cavities. We also reveal that the non-
Hermitian coupling effect becomes much crucial as the system dimension gets smaller. Our results
provide an important insight to deal with general coupled-devices in the quantum regime.

Unit pairwise coupled systems have been an essential
subject in almost all research fields of physics, as they
serve the most foundational element to constitute the
larger-scale complex of physical systems in nature. Up
to date, numerous coupled systems in various intrinsic
physical states have been implemented, such as hybrid
quantum information systems [1–3], optical communica-
tion systems [4–6], and topological photonics systems [7–
10]. Here, the important property we have to understand
for the successful realization of these systems is the inter-
site mutual mode couplings.

As the cutting edge of modern technology reaches even
up to realizing optoelectronic circuits, a growing inter-
est has been focused on coupled optical microcavities
(COCs). So far, a large number of theoretical and ex-
perimental results have demonstrated their outstanding
potential as an efficient on-chip operational component.
Because COCs have a powerful capability in manipulat-
ing resonant modes and dispersions, they can be used for
devices such as optical delay lines [11–13], filters [14–
17], and switches [18–20]. Recently, they are consid-
ered as promising candidates in more high-tech future
applications, e.g., optical memory [21–24], highly sen-
sitive sensors [25–27], and single-mode lasers [28–30].
Add more, it is also emphasized that they can perform
the broad-ranged mode couplings from the near field
evanescent regime to the ultra-long distance coupling [31,
32]. Currently, COCs have attracted newly stimulated
interests associated with non-Hermitian physics, such
as the non-Hermitian degeneracy, so-called exceptional
points(EPs) [33–35], the parity-time symmetry [36–42],
and the photonic molecular states [43–51] because of their
intrinsic openness property [52, 53].

Generally, COCs include waveguide structures that
have the role of external input-output ports of light.
There are two independent coupling processes in these
systems: (i) waveguide⇔ cavity and (ii) cavity⇔ cavity.
Here, we have to point out that most literature focused
only on the case (i) [54–57] so far. Even for the stud-
ies considering case (ii), a lossless coupling between cavi-
ties are typically assumed [58–61]. Strictly speaking, this

”artificial” assumption is insufficient for describing real
physical incidences. The inter-cavity mode coupling be-
longing to the case (ii) requires more careful treatment to
account for it than the case (i). It is because the mutual
feedback of light transfer between the cavities induces
more complicated interactions. Furthermore, as the cou-
pling occurs via the free space between the cavities, it
should involve external coupling effects, as well [62].

In this Letter, we will show that inter-cavity light
transfer in the strong-coupling regime [34] only can be
explained correctly by a lossy coupling between modes.
As this coupling results in a fully-non-Hermitian Hamil-
tonian for resonant modes [62], we refer to this lossy
coupling as non-Hermitian coupling and a lossless cou-

FIG. 1. (a) is the system configuration of coupled microcavi-
ties, where r1 and r2 are radii of each cavities, and d0 is the
inter-cavity distance. (b) and (c) are the Riemann surfaces
for the real and imaginary parts of resonant wavenumbers in
parameter space (R,D), obtained by BEM. The branch-cut
(the interaction center) is marked by red solid (gray dashed)
curve. Insets in (b) are the spatial distribution of two coupled
modes at the interaction center.
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pling as Hermitian coupling. To explicitly demonstrate
the impact of this non-Hermitian coupling in inter-
cavity light transfer, we model two interacting whisper-
ing gallery modes (WGMs), each confined in different
microdisks. Through time-dependent numerical experi-
ments using the finite difference time domain (FDTD)
method, real experimental situations of inter-cavity light
transfer are simulated. The results are analyzed by ex-
act numerical results of the boundary element method
(BEM) [63], as well as the temporal coupled-mode the-
ory (TCMT) [64, 65]. Our results reveal the fact that
the non-Hermitian coupling has a critical impact on the
inter-cavity light transfer efficiency, particularly when the
cavity sizes approach the quantum regime.

Figure 1(a) illustrates our COCs, where two dielectric
microdisks having radii r1 and r2 are positioned at the
distance d0. We set the refractive index n = 2.0 inside
the disks and n = 1.0 for outside. We focus on transverse
magnetic (TM) polarized WGMs. The insets in Fig. 1
show two coupled modes that consist of two basis modes,
WGM1 and WGM2 confined in each isolated OC1 and
OC2. Here, WGM1 and WGM2 are defined by (l,m) =
(1, 7) and (1, 8), where l and m represent radial and angu-
lar mode numbers, respectively. Throughout this Letter,
r2 remains constant, while two parameters R ≡ r1/r2 and
D ≡ d0/r2 are used for constructing Riemann-surface:
solution sets, {k} ∈ C (wavenumbers), of the Helmholtz
equation, −∇2ψ(r) = n2(r)k2ψ(r), in parameter space.
Figures 1(b) and (c) examine Riemann-surface of cou-
pled modes around Re(kr2) = 5.5 in R ∈ [0.88, 0.91] and
D ∈ [0.37, 0.6], studied in [66].

We begin with FDTD calculations for a energy density
of steady-state (i.e., t → ∞) electromagnetic fields in
each of OC1 and OC2. In this numerical experiment,
COC is excited by a TM polarized input source, e−iωt,
located only in OC2, where i =

√
−1, ω = ckin ∈ R, and

c is the speed of light, respectively. The input source
radiates bi-directionally along the cavity boundary (see
the arrows in the inset of Fig. 2) in order to excite the
even-parity modes (see insets in Fig. 1) with respect to
the horizontal axis. Figure 2 shows R-dependent energy
density amplitude (EDA) defined [64] by

|aj(kinr2)| ≡
[

1

2Aj

∫
OCj

(n2(r)|Ej(r)|2 + |Bj(r)|2) dr

] 1
2

,

for a fixed D = 0.37, where Aj is a disk area of OCj and
Ej (Bj) the electric (magnetic) field inside OCj . The
integral domain is restricted to the inside the disk OCj .

The energy density amplitude, |a1|, in OC1 can be in-
terpreted as light transfer efficiency from OC2, as only
the latter embeds the light source in it. In Fig. 2, it
is found that the most strong light transfer takes place
around a “interaction center” [≡ a point where a gap be-
tween Re(k+r2) and Re(k−r2) becomes the smallest, see
Fig. 1]. At this point, the two interacting modes form the

FIG. 2. (a) is the FDTD results of EDA spectra of |a1| and
(b) of |a2| at D = 0.37. Dashed curves are Re(k±r2) obtained
by BEM. In (a), solid curves at R = 0.88 and 0.892 are se-
lected examples of EDA, and the upper/lower triangles mark
the bonding/anti-bonding modes. The inset in (b) shows the
radiating pumping source (arrow) used in FDTD simulation.

well-known doublet of the bonding and the anti-bonding
photonic-molecular states [43](see, Fig. 1), and they re-
spectively correspond to the lower (O) and upper (M)
triangles in Fig. 2(a). In the figure, we can identify that
the light transfer associated with the anti-bonding mode
is much stronger than the bonding mode.

To clarify the origin of this phenomena, the EDA spec-
tra are analyzed by two-mode TCMT model of weakly
coupled COC. In our model, a continuous-wave light
source

√
gsS0e

−iωt oscillates with a frequency ω ∈ R at
the cavity OC2:

da1

dt
= −iω1a1 − g1a1 − iγ12a2

da2

dt
= −iω2a2 − g2a2 − iγ21a1 +

√
gsS0e

−iωt ,

(1)

where ωj ≡ cRe(kj) is the resonant frequency and gj ≡
c|Im(kj)| the decay rate of WGMj , and {aj , S0, γij} ∈ C
are the mode amplitude, the source amplitude, and the
coupling coefficient, respectively. There are two assump-
tions in our model: the perfect source-to-cavity coupling,
i.e., gs = 1, and the frequency-independent coupling co-
efficients which is valid when |ωj | � |gj | [64]. Given the
time-harmonic ansatz of solutions, aj = a0

je
−iωt, we can

obtain the steady-state amplitude a0
j ∈ C, as follows:

a0
1(ω) =

−iγ12
√
gsS0

γ12γ21 − (ω − ω1 + ig1)(ω − ω2 + ig2)

a0
2(ω) =

−i√gsS0(ω − ω1 + ig1)

γ12γ21 − (ω − ω1 + ig1)(ω − ω2 + ig2)
.

(2)

Essentially, these a0
1 and a0

2 correspond to the FDTD
results in Fig. 2(a) and (b), respectively. Here, we em-
phasize that the coupling coefficients γij in Eq. (2) are
crucial for reproducing FDTD experiments. Most im-
portantly, it turns out that the typical assumption of a
lossless coupling, γ12 = γ∗21 ∈ C or γ12 = γ21 ∈ R [64] is
valid only in the classical limit (Re(kr2) � 1) and may
fail as we approach the quantum regime (Re(kr2) ∼ 1).
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FIG. 3. Couplings of WGM1 and WGM2. Real (a) and imag-
inary (b) part of µ12r2 (red-circle) and µ21r2 (black-square)
obtained by Eq. (5), as a function of R at D = 0.37. In
(c), Im(K±r2) obtained by BEM (gray-solid) are compared
to those by Eq. (3) with the Hermitian (open-circle) and
non-Hermitian (red-dashed) couplings. Inset in (c) shows
Re(K±r2). Here, K±r2 are the re-expressed relative eigen-
values for mean eigenvalues. The vertical solid lines in (c)
and the inset mark the interaction center, and dashed line in
(c) mark the branch-cut.

For the explicit demonstration of this finding, we set
the effective Hamiltonian which has complex wavenum-
ber eigenvalues, k± ∈ C, of the coupled modes, as follows:

Heffc
± =

(
k1 µ12

µ21 k2

)(
c±1
c±2

)
= k±

(
c±1
c±2

)
, (3)

where kj ≡ (ωj − igj)/c are complex wavenumbers of
WGMj with amplitudes Ej(r), and µij ≡ γij/c. The
eigenvectors (c±1 , c

±
2 )T are coefficients of the two basis

modes and construct new eigenstates of coupled modes;
E±(r) = [c±1 E1(r) + c±2 E2(r)]. For the known k±, we
can fix µij after obtaining those coefficients numerically.
Exploiting the general bi-orthogonality of modes in non-
conservative systems,

∫
n2
i (r)Ei(r) · Ej(r) dr = δij [67],

the coefficients are computed as follows:

c±i =

∫
OCi

n2
i (r)Ei(r) · E±(r) dr . (4)

Hence, we can deduce a system of linear equations:(
k1 − k± µ12

µ21 k2 − k±

)(
c±1
c±2

)
= 0 , (5)

for the unknowns kj and µij . Note that, here, we set kj as
free variables and k± fixed, see details in [68]. Eventually,
the desired couplings, µij , can be obtained as a function
of system parameters R and D. Figures 3(a) and (b),
respectively, show real and imaginary parts of µij , as a
function of R for a fixed D = 0.37. Obviously, it is found
that µ12 6= µ∗21 in this regime of kr2 ∼ 5.

FIG. 4. (a) and (b) are the TCMT results of EDA spectra
of |a1| with true non-Hermitian and artificial Hermitian cou-
plings, respectively, at D = 0.37. The insets show those of
|a2|. Dashed curves are Re(k±r2) obtained by BEM.

Inserting the obtained µij into Eq. (2) through the
relation µij ≡ γij/c, we calculate R-dependent |a1| at
D = 0.37 in Fig. 4(a) (|a2| in its inset). These fig-
ures excellently reproduce the FDTD results given in
Fig. 2, particularly, the enhanced light transfer around
the anti-bonding mode. We can prove that this enhance-
ment originates from the non-Hermitian couplings µij by
counter-exemplification of the artificial lossless coupling
case; µ12 = µ∗21 = (µ12 +µ21)/2. As is shown in Fig. 4(b)
(and its inset), the Hermitian coupling gives rise to a
point-symmetric-like feature rather than the enhanced
energy density around the anti-bonding mode.

The effect of the non-Hermitian coupling described
above can be understood as a consequence of a decay rate
unbalancing around the interaction center. Figures 3(c)
and its inset show the imaginary and real parts of K±
(≡ relative eigenvalues for the mean eigenvalue) which
are obtained by a direct numerical method (BEM) and
by solving Eq. (3) with the artificial Hermitian coupling,
as well as the true non-Hermitian one. In the figures,
while the real parts (inset) of them are all almost identi-
cal, the imaginary parts show significant differences: the
non-Hermitian coupling correctly reproduces the numer-
ical results around the interaction center (shaded area),
while the Hermitian one fails it. More precisely, the
non-Hermitian couplings reproduce the same shift of the
branch-cut of the imaginary eigenvalues (∆R) from the
interaction center (solid orange line). The Hermitian cou-
pling “never” induce this shift. Due to this shift, the
bonding and anti-bonding modes at the interaction cen-
ter happen to have distinctive decay rates [see two big
solid dots in Fig. 3(c)]; longer-lived anti-bonding and
shorter-lived bonding modes. Because this longer-lived
anti-bonding mode has a higher steady-state energy den-
sity in the cavity, it can provide much efficient light trans-
fer route than the bonding mode.

Explanation for this decay rate unbalancing is rather
straightforward. Suppose initial states with Re(k1) =
Re(k2) and µ12 = µ∗21, then the difference between two
eigenvalues of Eq. (3) becomes

∆k ≡ k+ − k− =
√

4|µ12|2 − Im(δk12)2 , (6)
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FIG. 5. (a) The parameter trajectory for the branch-cut
(filled symbols) and the interaction center (open circles) for
five cases of WGM coupling pairs defined by angular mode
numbers: [(i),(m1,m2) = (4, 5)], [(ii),(7, 8)], [(iii),(11, 12)],
[(iv),(12, 13)], [(v),(13, 14)]. (b) shows |Im(〈µ12µ21〉)|r22 for
the pairs (i), (ii), and (v) obtained at D = 0.37. (c) is a
comparison between the mean values of basis modes’ Im(kr2)
and µij for the same pairs at D = 0.37.

where Im(δk12) ≡ Im(k1 − k2). Though Im(δk12) is in-
dependent on D, the coupling |µ12| grows from zero to
finite value as D decreases from infinity. Accordingly, ∆k
changes from a pure imaginary value to a real number,
i.e., weak to strong coupling regime, via EP, at which
4|µ12|2 = Im(δk12)2. In this Hermitian coupling case in
the strong coupling regime, the interaction center and
the point where Im(k+) = Im(k−), i.e., branch-cut, are
identical in R variation for all D. That is, the life-times
of the bonding and anti-bonding modes at the interaction
center are the same, so that the point-symmetric-like fea-
ture of EDA in Fig. 4(b) is induced. In contrast to the
Hermitian coupling case, however, if the coupling is lossy,
i.e., µ12 6= µ∗21, ∆k in Eq. (6) becomes

∆k =
√

4[(uu′ − vv′) + i(uv′ + u′v)]− Im(δk12)2 , (7)

for which µ12 ≡ u+iv, µ21 ≡ u′+iv′, and {u(′), v(′)} ∈ R.
We emphasize that non-zero Im(µ12µ21) = uv′+u′v shifts
the branch-cut from the interaction center, and split the
life-times of the doublet modes: longer-lived anti-bonding
and shorter-lived bonding mode at the interaction cen-
ter. Thus, the excitation of the anti-bonding mode is
significantly enhanced compared to the bonding mode.
The shift direction of a branch-cut can be either to the
right or left from the interaction center, so the enhanced
mode can be either the bonding or anti-bonding mode,
accordingly. In short, the enhancement of light transfer
is independent of wavefunction morphologies of modes.

The branch-cut shift induced by the non-Hermitian
coupling is found to be much prominent in the quantum
regime and diminished as we get into the classical regime.
In Fig. 5(a), we obtain the parameter trajectories of the
branch-cut and the interaction center in (R,D)-space for
five different coupling pairs (i)-(v). In the figure, the de-

fined mean wavenumbers ≡ Re(〈k1 + k2〉)r2/2 gradually
increase from ∼ 3 to ∼ 8 for the pair from (i) to (v),
where 〈·〉 denotes averaging over R. Clearly, the branch-
cut shift from the interaction center for smaller Re(kr2)
values, e.g., ∼ 3 for (i), is much substantial, while it is
negligible for larger one, e.g., ∼ 7 or 8 for (iv) and (v).

In fact, the transition from the non-Hermitian to
the Hermitian coupling regime arises very abruptly; it
happens far earlier before the classical regime, such as
Re(kr2) ∼ 8 in our examples. This abrupt transition is
readily understood by rapid convergence of Im(µ12µ21)
to zero as Re(kr2) grows [see, Eq. (7)]. In Fig. 5(b),
we can see that |Im(〈µ12µ21〉)| is almost zero for (v),
whereas it is several orders of magnitude larger than
(v) for (i). As the non-Hermitian coupling includes the
“external coupling” via environments, this drastic effect
of non-Hermitian coupling profoundly associates with
the openness [∝Im(kr2)] of the involved modes. Since
Im(µ12µ21) = uv′ + u′v is a cross product of real and
imaginary parts of µij [see, Eq. (7)], the order of mag-
nitude of Im(µ12µ21) is determined by |µij |. Now, as
|µij | is proportional to |Im(kr2)| in Fig. 5(c), we can de-
duce that the larger decay of basis mode makes stronger
inter-site coupling. Therefore, we can conclude here that
the openness of basis modes directly promotes both the
coupling strength itself and the non-Hermitian coupling
effect. That is, the less the mode is confined in the cavity,
the higher the impact of the non-Hermitian coupling.

So far, we have observed that the non-Hermitian cou-
pling has a crucial effect in general inter-cavity mode cou-
plings when the basis modes are confined in non-identical
disks with different angular momenta m. Here, we re-
mark one special case [66]: inter-cavity couplings between
the same m modes, m1 = m2, and R ≈ 1. In Fig. 6, we
examine the case of m = 7 and D = 0.37. Due to the
symmetric property for R variation about R = 1, this

FIG. 6. Couplings for the pair (m1,m2) = (7, 7) around
R ≈ 1. Real (a) and imaginary (b) part of µ12r2 (red-circle)
and µ21r2 (black-square) obtained by Eq. (5), as a function of
R at D = 0.37. In (c) and (d), Im(K±r2) and Re(K±r2) ob-
tained by BEM (gray-solid) are compared to those by Eq. (3)
with the Hermitian (open-circle) and non-Hermitian (red-
dashed) couplings. Here, K±r2 are the re-expressed relative
eigenvalues for mean eigenvalues. The vertical solid lines in
(c) and (d) mark the interaction center.
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COC has balanced values of µij [see, Figs. 6(a) and (b)]
and a definite interaction center, i.e., it is not dependent
on D at all [see, Figs. 6(c) and (d)]. Moreover, there is
no branch-cut in Riemann-surface; degeneracies in both
Re(Kr2) and Im(Kr2) are always lifted at R ≈ 1 pro-
vided that D is finite [66]. In Figs. 6(c) and (d), we
can find that while the non-Hermitian coupling repro-
duces this feature accurately, the Hermitian one is valid
in Re(Kr2) only. The reason for this is exactly the same
as before: as Im(µ12µ21) = 0 by definition of the Hermi-
tian coupling, the split in Im(Kr2) never can be realized,
while the non-Hermitian coupling is able to do so. There-
fore, again, the broken point-symmetry in EDA spectrum
will be induced (not shown) by the non-Hermitian cou-
pling consistently in this system as well.

To summarize, we have shown that the light transfer in
coupled systems can be explained successfully only when
the non-Hermitian coupling is considered. We also have
found that the non-Hermitian coupling effect dramati-
cally increases as the system size approaches the quantum
regime. It has been demonstrated that imaginary parts
of a coupling coefficient product, which is responsible for
the branch-cut shift, are negligible when the system size
is large, yet, they increase rapidly as the system size de-
creases. This size-dependence effect of non-Hermitian
coupling has been proven to associate with the “open-
ing” of modes. Very recently, several theoretical mod-
els have utilized the non-Hermitian coupling to achieve
fruitful physical properties, such as hierarchical higher-
order exceptional points [69], unidirectional light propa-
gation [70], and topological phase transition in resonator
array [71]. These ideas are, however, only realizable when
we understand genuine features of mode couplings in the
nano- and micro-scale technologies, such as silicon pho-
tonics and optoelectronic circuits [72, 73]. We believe our
results can contribute to developing such devices in the
future.
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