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Abstract 

Stepped wedge and cluster randomised crossover trials are examples of cluster randomised 

designs conducted over multiple time periods that are being used with increasing frequency 

in health research. Recent systematic reviews of both of these designs indicate that the 

within-cluster correlation is typically taken account of in the analysis of data using a random 

intercept mixed model, implying a constant correlation between any two individuals in the 

same cluster no matter how far apart in time they are measured: within-period and 

between-period intra-cluster correlations are assumed to be identical. Recently proposed 

extensions allow the within- and between-period intra-cluster correlations to differ, 

although these methods require that all between-period intra-cluster correlations are 

identical, which may not be appropriate in all situations.  

Motivated by a proposed intensive care cluster randomised trial, we propose an alternative 

correlation structure for repeated cross-sectional multiple period cluster randomised trials 

in which the between-period intra-cluster correlation is allowed to decay depending on the 

distance between measurements. We present results for the variance of treatment effect 

estimators for varying amounts of decay, investigating the consequences of the variation in 

decay on sample size planning for stepped wedge, cluster crossover and multiple-period 

parallel-arm cluster randomised trials. We also investigate the impact of assuming constant 

between-period intra-cluster correlations instead of decaying between-period intra-cluster 

correlations. 

Our results indicate that in certain design configurations, including the one corresponding to 

the proposed trial, a correlation decay can have an important impact on variances of 

treatment effect estimators, and hence on sample size and power. An R Shiny app allows 

readers to interactively explore the impact of correlation decay. 

Keywords: exponential decay; intra-cluster correlation; cluster randomised trial; sample 

size; stepped wedge 

Abbreviations: BPICC: between-period intra-cluster correlation; CRT: cluster randomised 

trial; CRXO: cluster randomised cross over; ICU: intensive care unit; SW: stepped wedge; 

WPICC: within-period intra-cluster correlation
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1. Introduction 

Instead of randomly assigning subjects to treatment groups as in an individually-randomised 

trial, cluster randomised trials (CRTs) randomly assign clusters of subjects to treatment 

groups, where clusters may be schools, hospitals, geographical regions, or families, for 

example (1).  Given the clustered nature of the data, CRTs will generally require a larger 

total number of subjects to achieve the same power than required in a comparable 

individually randomised trial, but may have advantages in situations where individual 

randomisation is difficult (2). In this paper we consider multiple-period CRTs, where 

measurements are made on a cluster at multiple pre-defined time points throughout the 

trial. 

There are many types of multiple-period cluster-randomised designs, of which parallel-arm 

CRTs are the simplest. In parallel CRTs, clusters are randomly allocated to interventions 

(which we here label treatment or control) at trial commencement. Additionally, parallel 

CRTs may include one or more pre-intervention measures in each cluster: we refer to such 

designs as parallel with baseline CRTs. More complex, but with potential gains in power, are 

designs where clusters may switch between interventions over the course of the trial. 

Cluster randomised cross-over designs (CRXOs) randomise clusters to receive a sequence of 

interventions, rather than to receive a particular intervention. In CRXOs, clusters may switch 

back and forth between interventions one or more times over the course of the trial (3). 

Stepped wedge (SW) designs are a variant of CRXOs incorporating crossover in one direction 

only: in the standard SW design, in the first time period all clusters are in the control 

intervention, and by the last period all clusters are in the  treatment intervention (4, 5). All 

clusters switch from control to treatment at some point over the course of the trial, and will 

never revert to the control once switched to the treatment. In SWs, it is the time at which 

the switch from control to treatment occurs that is randomly allocated. More general 

cluster randomised multi-period designs have been discussed in (6). 

SWs have potential gains in power over similar parallel designs in certain circumstances, but 

are never as powerful as similar CRXOs when intra-cluster correlations are non-zero (4, 7). 

SWs are particularly useful in situations in which discontinuation of the intervention is 

difficult or some carry-over of treatment effect in one direction only (from treatment to 

control) is expected, in which case the CRXO design may not be applicable. The SW design is 
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also useful to assess the impact of a program destined to be rolled out across all clusters, or 

when the intervention is seen as desirable, in which case clusters may be more inclined to 

participate with the promise of eventually receiving the intervention during the course of 

the trial.  

It is now almost universally accepted that cluster randomised trials must acknowledge the 

effect of clustering at both the design and analysis stage. For single-period parallel CRTs, this 

acknowledgement is achieved through specification of the intra-cluster correlation, which 

represents the correlation between two observations in the same cluster. However, in a 

multiple-period cluster randomised trial, instead of a single intra-cluster correlation, the 

situation is more complicated: it may be appropriate for correlations between observations 

from the same cluster to be specified differently if they are in the same or different periods. 

We use the term “within-period intra-cluster correlation” (abbreviated as WPICC) to 

describe the correlation between two observations in the same cluster and in the same 

period; and the term “between-period intra-cluster correlation” (abbreviated as BPICC), to 

describe the correlation between two observations in the same cluster, but in different time 

periods. We note that other authors have used different terminology: (8), for example, use 

the term “intra-cluster correlation” for WPICC, and “inter-period correlation” for BPICC. For 

example, in CRXOs with two periods, the usual assumption is that the WPICC and BPICC are 

different, e.g. (8, 9). For CRTs with more than two periods, there may in fact be several 

BPICCs, corresponding to the correlation between observations taken in each pair of 

periods. However, the most-widely used model for the design of SW designs trials, the 

Hussey and Hughes random intercept mixed model for repeated cross-sectional data, 

implies the equality of within-period and between-period intra-cluster correlations (10, 11).  

The implausibility of the assumption that intracluster correlations do not depend on the 

time between observations has been discussed (e.g. (12-14)), and models proposed in (13) 

and (4) include separate within-period and between-period intra-cluster correlations, albeit 

with the assumption of invariance of BPICCs across time. In some situations, it may be more 

plausible to assume that the correlation between observations from the same cluster 

decays the further apart in time those observations were made. In this paper we consider a 

more general within-cluster correlation structure, in which the BPICC is allowed to vary 
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depending on the distance between measurement periods, implying that the BPICC is not 

constant within clusters.   

The specific example we will consider is a proposed CRT in Australian intensive care units 

(ICUs): data from the Australian and New Zealand Intensive Care Society Adult Patient 

Database, (15) indicates that an exponential decay within-cluster correlation structure, 

analogous to an autoregressive structure of order 1, which allows the correlations between 

observations to decay over time, provides a reasonable approximation to the data. Hence, 

in the planning of this trial the sensitivity of the required sample size to the usual 

assumption of a constant correlation within clusters (i.e. the Hussey and Hughes model) 

requires investigation. We explore the impact of an exponential decaying within-cluster 

correlation structure on the variance of treatment effects for repeated cross-sectional 

multiple-period parallel, CRXO and SW CRTs, and hence the impact on required sample sizes 

to detect given treatment effects.  Each subject is present in one time period only, which 

obviates the need for consideration of participant-level random effects from regression 

models. Alternative designs, in which subjects may contribute measurements in more than 

one period, are considered in the Discussion. 

In Section 2 we present general formulae for sample size calculations for multiple-period 

cross-sectional CRTs, first re-stating the main variance expression of Hussey and Hughes 

(10), and then extending it to more general within-cluster correlation structures. We apply 

these formulae to explore the consequences of the exponential decay within-cluster 

correlation structure on the variance of the estimated treatment effect in Section 3. In 

Section 4 we explore the consequences of the assumption of a constant BPICC structure 

(e.g. assuming the model of Hussey and Hughes (10), or that of  (13) and (4)) instead of an 

exponential decay BPICC structure on the variance of the estimated treatment effect. 

Results, extensions, and limitations are discussed in Section 5. Although our results and 

discussion are framed in terms of parameter estimates corresponding to the proposed ICU 

trial, we provide an R Shiny web app, (16), at https://monash-

biostat.shinyapps.io/NonUniformCorrelation to allow readers to explore the consequences 

of an exponential-decay within-cluster correlation structure for a range of design choices 

and parameter values. Users can also up-load their own design matrices. R code for local 
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implementation of the app is available in the online supplementary material, and at 

https://github.com/jkasza/NonUniformCorrelation.  

 

2. Sample size calculations for multiple-period CRTs 

2.1 Uniform correlation structure 

If  𝑌𝑖𝑡𝑘 denotes the outcome for subject 𝑘 = 1,… ,𝑚 in cluster 𝑖 = 1,… , 𝐾, during period 𝑡 = 1,…𝑇, the usual Hussey and Hughes model, proposed by (10), is given by  𝑌𝑖𝑡𝑘 = 𝜇 + 𝛽𝑡 + 𝑋𝑖𝑡𝜃 + 𝛼𝑖 + 𝑒𝑖𝑡𝑘, 𝛼𝑖 ∼ 𝑁(0, 𝜏2), 𝑒𝑖𝑡𝑘 ∼ 𝑁(0, 𝜎𝑒2).     (1) 
We assume that the number of subjects per cluster-period, 𝑚, is constant In this model 𝜇 is 

the overall mean outcome, 𝛽𝑡 is the fixed effect corresponding to period 𝑡, with 𝛽1 = 0 for 

identifiability;  𝑋𝑖𝑡 is the intervention variable, equal to 0 (1) if cluster 𝑖 is in the control 

condition (treatment)  at period 𝑡,  𝜃 is the intervention effect of interest, 𝛼𝑖 is the random 

effect of cluster 𝑖, and 𝑒𝑖𝑡𝑘 is the subject-level residual. As reported in recent systematic 

reviews, this model is the usual model assumed for cross-sectional stepped-wedge design 

sample size calculations (17-19). 

A key assumption of this model is that the correlation between observations from the same 

cluster is time-shift invariant: the correlation between any pair of observations in the same 

cluster remains constant no matter how far apart in time those two observations are  𝑐𝑜𝑟𝑟(𝑌𝑖𝑡𝑘, 𝑌𝑖𝑡𝑙) = 𝑐𝑜𝑟𝑟(𝑌𝑖𝑡𝑘, 𝑌𝑖𝑠𝑙) =  𝜏2𝜏2+𝜎𝑒2; an assumption which may not be plausible (12, 

13).  

2.2 Non-uniform correlation structure 

Here we extend the model in Equation (1) to allow a more general correlation structure 

between individuals within the same cluster. We assume the model  𝑌𝑖𝑡𝑘 = 𝜇 + 𝛽𝑡 + 𝑋𝑖𝑡𝜃 + 𝐶𝑃𝑖𝑡 + 𝑒𝑖𝑡𝑘,    𝑪𝑷𝒊 ∼ 𝑁𝑇(0, 𝜎𝐶𝑃2 𝑹), 𝑒𝑖𝑡𝑘 ∼ 𝑁(0, 𝜎𝑒2),     (2) 
where terms in common with Equation (1) have the same interpretation as in that model, 𝐶𝑃𝑖𝑡 is the cluster-period random effect for cluster 𝑖 in period 𝑡 with 𝑪𝑷𝒊 = (𝐶𝑃𝑖1, … , 𝐶𝑃𝑖𝑇)′; 
we assume that the 𝐶𝑃𝑖𝑡 have common variance 𝜎𝐶𝑃2  and 𝜎𝐶𝑃2 𝑹 is the covariance matrix of 

https://github.com/jkasza/NonUniformCorrelation
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𝑪𝑷𝒊. We assume that subjects within a cluster observed in the same period have an 

exchangeable covariance structure 𝑐𝑜𝑣(𝑌𝑖𝑡𝑘, 𝑌𝑖𝑡𝑙) = 𝑣𝑎𝑟(𝐶𝑃𝑖𝑡) = 𝜎𝐶𝑃2 , and that the 

covariance between any pair of subjects from the same cluster but different periods is given 

by 𝑐𝑜𝑣(𝑌𝑖𝑡𝑘, 𝑌𝑖𝑠𝑙) = 𝑐𝑜𝑣(𝐶𝑃𝑖𝑡, 𝐶𝑃𝑖𝑠).   We parameterise 𝑹 using 𝑅𝑡𝑠 = 𝑟𝑡𝑠, where 𝜎𝐶𝑃2 𝑟𝑡𝑠 =𝑐𝑜𝑣(𝐶𝑃𝑖𝑡 , 𝐶𝑃𝑖𝑠). The within-period intra-cluster correlation is 𝑐𝑜𝑟𝑟(𝑌𝑖𝑡𝑘, 𝑌𝑖𝑡𝑙) = 𝜎𝐶𝑃2𝜎𝐶𝑃2 + 𝜎𝑒2 ≔𝜌0,  and the between-period intra-cluster correlation structure is given by 𝑐𝑜𝑟𝑟(𝑌𝑖𝑡𝑘, 𝑌𝑖𝑠𝑙) =𝜎𝐶𝑃2𝜎𝐶𝑃2 + 𝜎𝑒2 𝑟𝑡𝑠 = 𝜌0𝑟𝑡𝑠 for 𝑡 ≠ 𝑠.  

A useful and quite general between-period intra-cluster correlation structure is the Toeplitz 

structure, 𝑟𝑡𝑠 = 𝑟|𝑡−𝑠|, with the restriction being that the choice of 𝑟𝑡𝑠 must ensure a 

positive definite 𝑹. An exponential decay structure (analogous to an autoregressive order 1 

correlation matrix) is returned if 𝑟𝑡𝑠 = 𝑟|𝑡−𝑠|. A more general version of the autoregressive 

structure is obtained taking 

𝑹 = 𝑹(𝑟0, 𝑟) =  ( 1 𝑟0𝑟 𝑟0𝑟2 … 𝑟0𝑟𝑇−1𝑟0𝑟 1 𝑟0𝑟 … 𝑟0𝑟𝑇−2⋮ ⋮ ⋮ ⋮ ⋮𝑟0𝑟𝑇−1 𝑟0𝑟𝑇−2 𝑟0𝑟𝑇−3 … 1 ) 

The Hussey and Hughes model is returned when 𝑹 = 𝑹(1,1). A model with constant 

between-period intra-cluster correlations, 𝑐𝑜𝑟𝑟(𝑌𝑖𝑡𝑘, 𝑌𝑖𝑡𝑙) ≠ 𝑐𝑜𝑟𝑟(𝑌𝑖𝑡𝑘, 𝑌𝑖𝑠𝑙) but 𝑐𝑜𝑟𝑟(𝑌𝑖𝑡𝑘, 𝑌𝑖𝑠𝑙) = 𝜎𝐶𝑃2𝜎𝐶𝑃2 + 𝜎𝑒2 𝑟0, 𝑡 ≠ 𝑠, 𝑟0 a constant, analogous to that of Hooper et al (13) (and 

that of Girling and Hemming in (4)), is returned if 𝑹 = 𝑹(𝑟0, 1): we refer to this model as the 

Hooper/Girling model. This is equivalent to imposing an exchangeable correlation structure 

on {𝐶𝑃𝑖𝑡}. We note that the model we refer to as the Hooper/Girling model has the same 

within-cluster correlation structure as the model in Section 3.2 of (20), and is a special case 

of the model presented in (21). We will consider the autoregressive correlation matrix with 𝑹 = 𝑹(1, 𝑟), the Hussey and Hughes, and the Hooper/Girling models in our comparative 

studies in Sections 3 and 4.  

2.3 Variance of the treatment effect estimator 
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Let �̅�𝑖𝑡 = ∑ 𝑌𝑖𝑡𝑘𝑚𝑚𝑘=1  denote the mean outcome in cluster 𝑖 in period 𝑡. If �̅�𝒊 = (�̅�𝑖1, … , �̅�𝑖𝑇)′ is 

the vector of the period means for cluster 𝑖, then the variance-covariance matrix of �̅�𝒊 in 

Equation (2) can be written as  

𝐶𝑜𝑣(�̅�𝒊) = 𝑽 =  (𝜎𝐶𝑃2 + 𝜎𝑒2𝑚)(𝜔𝑹 + (1 − 𝜔)𝑰𝑇) 
where 𝜔 = 𝜎𝐶𝑃2 /(𝜎𝐶𝑃2 + 𝜎𝑒2𝑚) and 𝑰𝑇 is the 𝑇 × 𝑇 identity matrix. If 𝑿𝒊 = (𝑋𝑖1, … , 𝑋𝑖𝑇)′ is the 

column vector of length 𝑇 of treatment indicators for cluster 𝑖, then we show in Appendix A 

that 

𝑣𝑎𝑟(𝜃) =  
( 
  ∑𝑿𝒊′𝑽−1𝑿𝒊𝐾
𝑖=1 − 1𝐾 (∑ 𝑋𝑖1𝐾𝑖=1 , … ,∑ 𝑋𝑖𝑇𝐾𝑖=1  ) 𝑽−1( 

 ∑ 𝑋𝑖1𝐾𝑖=1⋮∑ 𝑋𝑖𝑇𝐾𝑖=1 ) 
 
) 
  
−1
, 

where the vector (∑ 𝑋𝑖1𝐾𝑖=1 , … , ∑ 𝑋𝑖𝑇𝐾𝑖=1  ) is the number of treated clusters in periods 1 to 𝑇. 

Here we assume that 𝐶𝑜𝑣(�̅�𝒊) is constant across clusters. In models where the variance 

matrices differ across clusters this expression will not hold: for example, this would be the 

case when clusters are of different sizes. 

When decay is exponential, with 𝑹 = 𝑹(1, 𝑟), 𝑟 ≠ 1, or the more complex 𝑹(𝑟0, 𝑟), 𝑟 ≠ 1, 

simple closed form expressions for the variance of the treatment effect are difficult to 

obtain, requiring the inversion of tridiagonal matrices with non-standard forms, hence in 

our comparative studies we numerically invert the variance matrix 𝑉 using the standard 

matrix inversion command “solve” in R. For the Hussey and Hughes (𝑹 = 𝑹(1, 1)) and 

Hooper/Girling models (𝑹 = 𝑹(𝑟0, 1)), closed-form expressions for 𝑣𝑎𝑟(𝜃) are available, 

e.g. (6). 

 

3. Consequences of a more general within-cluster covariance matrix structure 

3.1 A proposed intensive care trial 

As part of the planning for a potential four period CRXO trial of the effect of overnight 

placement of earplugs in intensive care patients on hospital length of stay,  data from four 
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six-month periods over 2012 and 2013 from 33 ICUs contributing to the Australian and New 

Zealand Intensive Care Society’s Adult Patient Database (15) was used to investigate the 

empirical correlation structure over these 4 periods.  Ethical review was not required. There 

were on average 700 patients per ICU per 6 month period. We fit linear mixed models to the 

logarithm of length of stay with exponential decay and Toeplitz correlation structures for 

the cluster-period random effects, using the hpmixed and mixed procedures in SAS, 

respectively, which allow for the inclusion of correlation structures in the random 

statement. We found that an exponential decay correlation structure provided a reasonable 

approximation to the data, with 𝜎𝐶𝑃2 = 0.039, 𝜎𝑒2 = 1.09 (implying that 𝜌0 = 0.035), and  �̂� = 0.95, implying a 5% decay per period in the correlation between observations from the 

same intensive care unit.   

3.2 Design of the comparative study 

We first consider the impact of assuming an exponential decay within-cluster correlation 

structure on the variance, power, and design effects of various types of standard multi-

period CRTs, where the design effect is the ratio of the variance of the treatment effect for 

the CRT relative to the variance for an individually-randomised trial of the same size. To 

provide an example of specific designs, we compare the choices of the four-period trial 

designs shown in Figure 1 and the eight-period designs in Appendix Figure 1, calculating the 

variance of the estimator of the treatment effect and associated quantities by  fixing the 

total variance at unity (i.e. 𝜎𝐶𝑃2 +  𝜎𝑒2 = 1 so that the within-period intra-cluster correlation 𝜌0 = 𝜎𝐶𝑃2 ), and assuming the within-cluster covariance matrix 𝑅 = 𝑹(1, 𝑟): i.e. 𝑹 has (𝑡, 𝑠) 
element 𝑟𝑡𝑠 = 𝑟|𝑡−𝑠|.  Since the total variance has been fixed at 1, results are obtained by 

varying the WPICC 𝜎𝐶𝑃2 = 𝜌0, and the parameter associated with the BPICC, 𝑟. For easier 

interpretation, we define decay as 𝑑 = 1 − 𝑟: 𝑑 = 0 thus implies no decay in correlation 

over time, while 𝑑 = 1 implies a total decay in correlation over time with independence 

between observations from the same cluster in different periods. Larger values of the decay, 

d, are not realistic and hence our attention focusses on values less than 0.5. 

In presenting the results of this comparative study we focus on the scenario corresponding 

to the proposed intensive care trial, assuming 500 patients per ICU (allowing for a reduction 

from 700 per period in the considered dataset due to loss to follow up, patient refusal, etc.) 
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for each of four (or eight) periods with 𝜌0 = 0.035. We also present results for designs with 

50 subjects per cluster per period.   

The four-period stepped wedge design consists of 3 randomised sequences, while the four-

period parallel, parallel with baseline and CRXO designs consist of 4 sequences each. 

Similarly, the eight-period stepped wedge design consists of 7 sequences, while the eight-

period parallel, parallel with baseline and CRXO designs consist of 8 sequences each. While 

designs in practice may assign more than one cluster to each treatment sequence, in our 

comparative study we assume that there is one cluster per sequence: thus, to allow 

comparability of the variance of the treatment effect across these designs with differing 

numbers of clusters (3 for the four-period SW versus 4 for all other four-period designs), we 

scale the variance associated with the SW design by 
𝐾𝐾+1 = #clusters#clusters+ 1  to ensure 

comparability.  

We calculate each of the following: the variance of the treatment effect; the design effects; 

and the power of each of the designs to detect specific user-specified effect sizes. Scaling 

the variance ensures that these subsequent quantities are comparable between the designs 

with differing numbers of clusters. Interested readers can interactively explore the impact of 

alternative design configurations through our R Shiny web app. Although we do not include 

the results in the main paper, the R Shiny app also allows each of these quantities to be 

calculated for the Hooper/Girling model with 𝑹(𝑟0 = 1 − 𝛼, 1) for some user-specified 

value of 𝛼 ∈ [0,1], analogous to the decay parameter 𝑑 associated with the exponential 

decay model. 

3.3 Results of the comparative study and consequences for the proposed ICU trial 

Figure 2 presents the variance for four-period designs (top row) and for eight-period designs 

(bottom row), for design parameters that align with those of the ICU trial (𝜌0 = 0.035 and 

50 subjects in each cluster period (left column) and 500 subjects in each cluster-period (right 

column), for values of the decay up to 0.5). When the decay = 0 (returning the standard 

Hussey and Hughes model) the BPICC is maximised (and equal to the WPICC), and the 

amount of information available from within-cluster comparisons is maximised. In this case, 

it is known that the CRXO design is optimal, e.g. (4), which is reflected in Figure 2. As the 

decay term increases, the BPICC reduces, and Figure 2 indicates that the variance associated 
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with the CRXO, parallel with baseline and SW designs increase, while the variance 

associated with the parallel CRT design reduces. As an aside, we note that for small values of 

the decay, there is often a large reduction in the variance of the treatment effect when a 

baseline measurement is added to the parallel design.  

Comparing the variance plots for four and eight periods indicates that the relationship 

between the variance and the decay parameter is consistent across the different designs as 

the number of periods increases. For the parallel design, as the decay increases, and 

dependence between observations in different periods decreases, the variance also 

decreases, while an increasing relationship between the decay and the variance is observed 

for the CRXO design. For the SW and parallel with baseline designs, although the variance 

initially increases with increasing decay, for each design the variance peaks at a particular 

value of the decay before decreasing again (for the SW design this value of the decay is 

outside of the displayed range).  

Figure 3 displays the ‘design effect’ associated with each of the designs, for each of the 

considered design configurations: the design effect re-scales the variances of Figure 2 to be 

relative to that of an individually-randomised trial of the same size. Figure 4 displays the 

power to detect an effect size of 0.2 associated with each design, and this is as expected 

given the variances in the left column.   

For small values of the intra-cluster correlation (𝜌0 less than about 0.01), for particular 

design configurations (e.g. 50 subjects per cluster-period with 4 periods for particular values 

of the decay, see Appendix Figure 2) the parallel CRT estimates the treatment effect more 

precisely than the SW-CRT does: this is known to occur in the exchangeable setting (4).  

 

4. Consequences of specifying a simpler between-period intra-cluster correlation structure 

4.1 Motivation 

The proposed ICU trial is unusual in that an extensive dataset is available at the planning 

stages of the trial for the estimation of WPICCs and BPICCs. In situations where data for the 

estimation of within-cluster correlation structure at the planning stages of a trial is limited, 

assessing the fit of an exponential decay structure to the data may be impossible and 
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researchers may prefer to assume a simpler within-cluster correlation structure. In this 

section we compare the variance of the treatment effect estimator under the exponential 

decay within-cluster structure with 𝑹 = 𝑹(1, 𝑟) (i.e. 𝑐𝑜𝑟𝑟(𝑌𝑖𝑡𝑘, 𝑌𝑖𝑠𝑙) = 𝜌0𝑟|𝑡−𝑠|) to that 

obtained assuming the Hussey and Hughes model, with 𝑹 = 𝑹(1,1) (i.e. 𝑐𝑜𝑟𝑟(𝑌𝑖𝑡𝑘, 𝑌𝑖𝑡𝑙) =𝑐𝑜𝑟𝑟(𝑌𝑖𝑡𝑘, 𝑌𝑖𝑠𝑙) = 𝜌0), and to that obtained assuming the Hooper/Girling model with 𝑹 =𝑹(1 − 𝛼, 1) (i.e. 𝑐𝑜𝑟𝑟(𝑌𝑖𝑡𝑘, 𝑌𝑖𝑡𝑙) = 𝜌0 and 𝑐𝑜𝑟𝑟(𝑌𝑖𝑡𝑘, 𝑌𝑖𝑠𝑙) = 𝜌0(1 − 𝛼), ∀𝑡 ≠ 𝑠 for some 

constant 𝛼 ∈ [0,1]). Recalling that 𝑑 = 1 − 𝑟, the three models are equivalent when 𝑑 =𝛼 = 0. We refer to the variance of the treatment effect estimator obtained using the 

Hussey and Hughes model as 𝑣𝑎𝑟𝐻𝐻(𝜃), that obtained given an exponential decay model 

with decay 𝑑 as 𝑣𝑎𝑟𝑑𝐸(𝜃), and that obtained given a Hooper/Girling model with parameter 𝛼 as 𝑣𝑎𝑟𝛼𝐻𝐺(𝜃).  
We follow the design of the comparative study outlined in Section 3.2, calculating 𝑣𝑎𝑟𝑑𝐸(𝜃) 
for a range of decay parameter values 𝑑, and in the first instance dividing this quantity by 𝑣𝑎𝑟𝐻𝐻(𝜃). To compare the exponential decay model to the Hooper/Girling model, for each 

value of 𝑑 ∈ [0, 0.5] and each 𝛼 ∈ [0, 0.5] we calculate 𝑣𝑎𝑟𝑑𝐸(𝜃)/𝑣𝑎𝑟𝛼𝐻𝐺(𝜃). We display the 

results of the exponential and Hooper/Girling comparisons as a contour plot: 𝑑 on the x-

axis, 𝛼 on the y-axis, with the magnitude of the relative variance displayed using shades of 

grey. 

4.2 Comparison to the Hussey and Hughes model 

Figure 5 displays the relative variance of the treatment effect associated with the 

exponential decay model to that of the Hussey and Hughes model, for each of the four 

considered design types, for four-period designs (top row); eight-period designs (bottom 

row); designs with 50 subjects per cluster-period (left column); and designs with 500 

subjects per cluster-period (right column). Figure 5 indicates that the variance of the 

treatment effect will be underestimated by the Hussey and Hughes model when there is an 

exponential decay structure for the SW and CRXO designs, while the variance is 

overestimated for the parallel design. For the parallel with baseline design, for most design 

configurations the Hussey and Hughes model will underestimate the variance, although 

there do exist design configurations in which the Hussey and Hughes model will 
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overestimate the variance: this occurs for values of the decay parameter that are larger than 

usually seen in practice. 

Figure 5 indicates that for most design configurations, the impact of assuming the Hussey 

and Hughes model on the treatment effect variance is exacerbated as the number of 

periods increases and as the number of subjects per cluster-period increases. An exception 

occurs with the parallel with baseline design, which for certain values of the decay has a 

lower relative variance for a larger number of periods and subjects per cluster-period.  

The upper right panel of Figure 5 shows that for the proposed intensive care trial, with 5% 

decay, 𝜌0 = 0.035 and 500 patients per cluster per period, for a 4-period SW trial, the 

variance of the exponential decay model is around 1.8 times higher than that of the 

exchangeable model. For the eight-period SW trial, 𝑣𝑎𝑟𝑑𝐸(𝜃) ≈ 2.8 × 𝑣𝑎𝑟𝐻𝐻(𝜃). Hence, 

were an exchangeable model assumed in the planning stages of this trial, the sample size 

required to detect the effect size of interest would be drastically underestimated. Similar 

results hold for CRXO and parallel-with-baseline designs, while for the parallel design the 

assumption of a constant correlation results in an increased variance relative to the 

exponential decay model.  

4.3 Comparison to the Hooper/Girling model 

Figure 6 displays the results of comparing 𝑣𝑎𝑟𝑑𝐸(𝜃), 𝑑 ∈ [0,0.5] to 𝑣𝑎𝑟𝛼𝐻𝐺(𝜃), 𝛼 ∈ [0,0.5], 
for designs with four periods (top row) and eight periods (bottom row). Contours are used 

to display ranges of values of 𝑣𝑎𝑟𝑑𝐸(𝜃)/𝑣𝑎𝑟𝛼𝐻𝐺(𝜃): values greater than one indicate that  𝑣𝑎𝑟𝑑𝐸(𝜃)is greater than 𝑣𝑎𝑟𝛼𝐻𝐺(𝜃). On each plot 𝑑 = 𝛼 is marked with a line.  

By examining the edge between the 0.75-1 and 1-2 regions of the contour plots, marked 

with a bold line on all plots, values of the Hooper-Girling 𝛼 parameter that result in the 

same variance as an exponential decay model with a given decay parameter 𝑑 = 1 − 𝑟 can 

be obtained. The top-left plot of Figure 6 indicates that for the SW model on 4 periods, for 

values of 𝑑 less than about 0.3, 𝑣𝑎𝑟𝑑𝐸(𝜃) ≈ 𝑣𝑎𝑟𝛼𝐻𝐺(𝜃) for 𝑑 = 𝛼. For this scenario and 

these values of the decay, assumption of either model with 𝑑 = 𝛼 will result in similar 

required sample sizes. However, this is a special case: the bottom left hand plot in Figure 6 
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indicates that for the Hooper/Girling model to return the same variance as the exponential 

decay model for a SW design on 8 periods, 𝛼 > 𝑑: e.g. when 𝑑 = 0.05, 𝛼 ≈ 0.088. 

Figure 6 indicates that in general, the relationship between 𝑑 and 𝛼 required to return 

similar values for the treatment effect variances given these two models may be complex: 

depending on the design and number of periods, simply assuming that 𝑑 = 𝛼 could lead to 

an over- or under-estimation of the treatment effect variance, with a corresponding over- or 

under-estimation of required sample size. Some general relationships hold: for the CRXO 

and parallel designs, for 𝛼 = 𝑑, 𝑣𝑎𝑟𝑑𝐸(𝜃) ≤ 𝑣𝑎𝑟𝛼𝐻𝐺(𝜃). However, Figure 6 indicates that for 

the CRXO design, 𝑣𝑎𝑟𝑑𝐸(𝜃) = 𝑣𝑎𝑟𝛼𝐻𝐺(𝜃) implies that 𝛼 ≤ 𝑑, while for the parallel 

design, 𝑣𝑎𝑟𝑑𝐸(𝜃) = 𝑣𝑎𝑟𝛼𝐻𝐺(𝜃) implies that 𝛼 ≥ 𝑑. 

In Appendix Figure 3 we display extended versions of the plots of Figure 6, with 500 subjects 

per cluster-period, extending the range of 𝑑 and 𝛼 to [0,1]; Appendix Figure 4 displays 

analogous plots for designs with 50 subjects per cluster-period. Appendix Figure 3 indicates 

that for the parallel and CRXO designs, for all values of 𝑑 there exists a value of 𝛼 such that 𝑣𝑎𝑟𝑑𝐸(𝜃) = 𝑣𝑎𝑟𝛼𝐻𝐺(𝜃). That this holds for other parameter choices in these designs can be 

seen by interrogating the R Shiny app. However, for the SW and parallel with baseline 

designs, there exist values of 𝑑 such that no value of 𝛼 exists such that 𝑣𝑎𝑟𝑑𝐸(𝜃) =𝑣𝑎𝑟𝛼𝐻𝐺(𝜃). For example, for the SW design on 4 periods with 500 subjects per cluster in 

each period, for 𝑑 ∈ (0.78, 0.96), there does not exist an 𝛼 such that 𝑣𝑎𝑟𝑑𝐸(𝜃) =𝑣𝑎𝑟𝛼𝐻𝐺(𝜃). For the SW design on 8 periods with 500 subjects per cluster per period, there 

exists no corresponding 𝛼 for 𝑑 ∈ (0.43, 0.89). For the stepped wedge and parallel with 

baseline designs, there is not a 1-1 correspondence between the Hooper/Girling model and 

the exponential decay model.  

Figure 6 indicates that there can be large differences between 𝑣𝑎𝑟𝑑𝐸(𝜃) and 𝑣𝑎𝑟𝛼𝐻𝐺(𝜃): 
should the within-cluster correlation structure be misspecified, it is possible to grossly over- 

or under-estimate the variance of the treatment effect, although Appendix Figure 4 

indicates that the over-estimation will not be as extreme for a smaller number of subjects 

per cluster-period. Hence, at the design stage of any trial, researchers should investigate the 

sensitivity of the required sample size and/or power of their study to misspecification of the 

within-cluster correlation structure.  
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5. Discussion 

Although the usual assumption in planning multiple-period CRTs is that the correlation 

between observations does not depend on the time between these observations, i.e. the 

assumption of the correlation structure of Hussey and Hughes (10), this assumption may be 

invalid. In many situations it would be more reasonable to assume that the correlation 

between observations on subjects from the same cluster will decrease the further apart in 

time these observations are obtained. This is well appreciated for individual subject 

longitudinal data, e.g. (22). We have shown that for designs with a treatment switch, even a 

decay in between-period intra-cluster correlation as small as 5% per period may appreciably 

inflate the required sample size relative to that required under an assumption of equality of 

within-period and between-period intra-cluster correlations, and discussed these results in 

the context of a proposed cluster randomised trial in the intensive care setting. For this 

proposed SW trial, the impact of a decay in the between-period intra-cluster correlation of 

5% per period results in a sample size almost double that required when no decay (i.e. the 

Hussey and Hughes model) is assumed. The implication is that cluster randomised trials that 

incorporate treatment switching but do not account for this decay, and instead assume that 

an equal amount of information is available from each within-cluster between-period 

comparison, may be dangerously underpowered to detect stated effect sizes, as has been 

observed in (13).  

For parallel cluster multi-period trials, as the decay increases (i.e. as between-period intra-

cluster correlation decreases), precision increases: thus, parallel designs that assume no 

decay in the between-period intracluster correlation may be overpowered to detect the 

stated effect size and thus may suffer from a lack of efficiency. For the SW and CRXO 

designs, precision is greatest when there is no decay in the inter-period correlations (𝑟 = 1 

or the decay = 0). The greater the correlation between observations from the same cluster 

at different time points, the greater the gains of the within-cluster comparisons that the SW 

and CRXO designs entail. This has been described in the context of cluster-randomised cross 

over designs in (3). As the decay increases, the correlation between observations from the 

same cluster but in different periods decreases. For designs such as the SW and CRXO, 

which capitalise on comparisons within clusters, this leads to an increase in the variance of 

the treatment effect, while for the parallel design, which does not incorporate any within-
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cluster comparisons, independence between observations within the same cluster in 

different periods (which occurs when the decay = 1) is optimal. 

To date, sample size calculations for stepped wedge designs taking into account that within 

and between correlations differ have assumed that between-period intra-cluster 

correlations are constant, as in the Hooper/Girling model we considered in Section 4, 

described in (13), for example. In some situations such an assumption will likely be more 

appropriate than the assumption of an exponential decay structure the cluster has 

completely re-organised itself in the interval between consecutive cross-sections. As an 

example, suppose clusters are schools in which the same year group is assessed over a 

number of years. This year-group is a completely different group of children each year, so 

the correlation between pairs of observations from different years may remain constant 

rather than decaying as the number of years between groups increases. However, we 

encourage researchers to assess the sensitivity of their power and sample size to any 

assumption regarding the within-cluster correlation structure. Although it may be 

convenient for investigators to assume the Hooper/Girling model at the trial design stage, 

perhaps adopting a conservative value for the between-period intra-cluster correlations, we 

have demonstrated that, although there exist choices of constant between-period intra-

cluster correlations (the Hooper/Girling 𝛼 parameter) corresponding to many values of 

exponential decay parameters, such choices are not always available for the stepped wedge 

and parallel with baseline designs. Moreover, approximating an exponential-decay 

correlation structure with a Hooper/Girling model with 𝑑 = 𝛼 (i.e. assuming that the lag 1 

decay persists for all larger lags) may over- or under-estimate the variance of the treatment 

effect, possibly dramatically so. For SW designs, whether the variance is over- or under-

estimated by a given constant between-period intra-cluster correlation approximation 

depends on the number of periods, the number of subjects per cluster-period, and the 

within-period intra cluster correlation, 𝜌0. 

In order to calculate the required sample size for a given trial assuming an exponential-

decay between-period intra-cluster correlation structure, an estimate of the decay 

parameter is required: such an estimate may be difficult to obtain. More generally, the 

estimate of the parameter 𝜌0 (the within-period intracluster correlation) may be based on 

data from multiple periods, and thus may itself incorporate a decay in between-period intra-
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cluster correlation over time: precisely what the impact of such model misspecification is on 

the estimated decay parameters and on 𝜌0 remains unclear. We expect that conducting a 

sample size calculation on the basis of a value of 𝜌0 estimated from a misspecified Hussey 

and Hughes model, which estimates 𝜌0 over all time periods combined rather than within a 

single period, then using a Hussey and Hughes model to calculate sample size, will lead to an 

under-estimation of the true variance of the treatment effect. However, if values of the 

BPICC and WPICC are obtained from a missppecified Hooper/Girling model, it seems that 

the estimate of the WPICC will incorporate some additional decay over time, and the impact 

of assuming a Hooper/Girling model on estimated sample size may be lessened. Further 

research is required to quantify the impact of model misspecification at the trial design 

stage. As has been pointed out in (13) for the case of a constant between-period intra-

cluster correlation, authors of reports of multi-period CRTs should be encouraged to report 

estimates of within-period and between-period intra-cluster correlations to help guide the 

choice of such parameters. Although there have been many studies that present within-

period intra-cluster correlations for each period of a study separately, for example (23,24), 

we would recommend that authors also report between-period intra-cluster correlations, as 

recommended in (25), for example.  

In order for a power calculation to be relevant, it is necessary that the analysis strategy 

applied at the completion of any trial match that used in the sample size calculation, at least 

approximately.  To that end, the Hussey and Hughes model and the Hooper/Girling model 

have an advantage over the exponential decay model. Many statisticians will be familiar 

with techniques for fitting these models, however, the exponential decay model we have 

considered here is not as widely used. For the proposed ICU trial, we applied the hpmixed 

procedure in SAS, incorporating the exponential decay structure on the cluster-level random 

effects by including the following statement: random period / sub = cluster 

type = AR(1).  Readers may be interested to note that we applied the hpmixed 

procedure due to large cluster sizes requiring extensive computational time with the mixed 

procedure.  Parameters for datasets with smaller cluster sizes may be estimated using the 

conventional mixed procedure. 

In this paper we have discussed exponential decay structures in the context of repeated 

cross-sectional multiple-period CRTs: that is, we have supposed that subjects are each 
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included in a single cluster-period. Multiple measurements for each subject, as occur in so-

called closed or open cohort designs, (5), could be accommodated through the inclusion of a 

subject-level random effect, as in (13). The model proposed in (13) implies that the 

correlation between two measurements on the same individual does not depend on the 

time between the measurements: a similar extension to the one we have here proposed for 

the cluster level random effects would be possible at the subject level. However, there are 

likely to be difficulties in the estimation of the parameters of such a model with exponential 

decay at both cluster and individual levels. Further extensions, such as allowing variances to 

increase over time, for correlations to change within a period, or for correlations to depend 

on some function of time, are possible, but given the potential difficulties in specifying these 

at the design stage, we have not explored these here. 

In this paper we have focussed on models for normally distributed outcomes: although we 

expect the conclusions drawn regarding the implications of an exponential decay intra-

cluster correlation structure on power to be similar for binary outcomes, particularly in the 

case of large clusters, further work is required. Both subject-specific and population-

averaged models could be investigated: for population-averaged models this could involve 

extending the working correlation matrix structures for the pre- post-test CRTs examined in 

(26) to the multiple-period scenario. 

The models we have assumed here include a categorical term for period, with a constant 

effect of period across clusters, that the effect of periods is constant across clusters, and a 

constant effect of treatment across clusters and periods. Other authors have considered 

more complex models e.g. (20, 27, 28). For studies conducted over a large number of 

periods, it may be advantageous to model time using continuous terms; however, specifying 

the correct functional form for time will likely be difficult at the design stage of a study. 

In conclusion, in this paper we have illustrated settings where exponentially decaying 

correlation can have a substantial impact on the variance of treatment effect estimators 

associated with multiple period cluster randomised trials, and hence on sample size and 

power calculations.  This is particularly important for stepped wedge trials which incorrectly 

assume constant between-period intra-cluster correlations. We have described, and have 

made available in an RShiny app (https://monash-

biostat.shinyapps.io/NonUniformCorrelation/), a facility for carrying out comparative 
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studies of the nature described in this paper: for their particular multiple-period cluster 

randomised trial, users can investigate the impact of an exponential decay structure on the 

required sample size and power of their study, either by setting the values of design 

parameters or up-loading their own design matrix. 
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Figure legends 

Figure 1. Design matrices corresponding to the 4-period designs considered in the 

comparative study. 

Figure 2: Variance of the treatment effect estimator for multiple-period cluster designs for 

50 subjects per cluster-period (left column), and 500 subjects per cluster-period (right 

column). Variances are shown for the four-period stepped wedge, parallel cluster, parallel 

cluster with baseline, and cluster cross over designs given in Figure 1 (top row), and for 

eight-period designs in Appendix Figure 1 (bottom row), for varying values of the 

exponential decay correlation structure decay parameter. For all designs, the within-period 

intra-cluster correlation 𝜌0 = 0.035. For the parallel, parallel with baseline and cross-over 

designs, results are scaled to allow comparison with the stepped wedge results. Note that 

the vertical scales for the 4-period and 8-period designs differ. 

Figure 3. Design effects for the treatment effect estimator for multiple-period cluster 

designs for 50 subjects per cluster-period (left column), and 500 subjects per cluster-period 

(right column). Design effects are shown for the four-period stepped wedge, parallel cluster, 

parallel cluster with baseline, and cluster cross over designs given in Figure 1 (top row), and 

for eight-period designs in Appendix Figure 1 (bottom row), for varying values of the 

exponential decay correlation structure decay parameter. For all designs, the within-period 

intra-cluster correlation 𝜌0 = 0.035. For the parallel, parallel with baseline and cross-over 

designs, results are scaled to allow comparison with the stepped wedge results. Note that 

the vertical scales for all plots differ. 

Figure 4. Power of the multiple-period cluster designs for 50 subjects per cluster-period (left 

column), and 500 subjects per cluster-period (right column) to detect an effect size of 0.2. 

The thin line at the top of each plot denotes power = 1. Power is shown for the four-period 

stepped wedge, parallel cluster, parallel cluster with baseline, and cluster cross over designs 

given in Figure 1 (top row), and for eight-period designs in Appendix Figure 1 (bottom row), 

for varying values of the exponential decay correlation structure decay parameter. For all 

designs, the within-period intra-cluster correlation 𝜌0 = 0.035. For the parallel, parallel with 

baseline and cross-over designs, results are scaled to allow comparison with the stepped 

wedge results. Note that the vertical scales for all plots differ. 
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Figure 5. Variance of the treatment effect estimator obtained given an exponential decay 

model (with varying values of decay) relative to the variance of the treatment obtained for 

the Hussey and Hughes model. The y-axis of each plot is on the log (base 10) scale. The top 

row gives results for the four-period designs given in Figure 1; the bottom row for eight-

period designs in Appendix Figure 1. The left column displays results for 50 subjects per 

cluster per period, and the right column for 500 subjects per cluster per period. For all 

designs, the within-period intra-cluster correlation 𝜌0 = 0.035. For the parallel, parallel with 

baseline and cross-over designs, results are scaled to allow comparison with the stepped 

wedge results. 

Figure 6. Contour plots of the variance of the treatment effect estimator obtained given an 

exponential decay model relative to that given the Hooper/Girling model, for varying values 

of the exponential decay model decay parameter and the Hooper/Girling 𝛼 parameter. The 

top row displays results for the four-period designs in Figure 1, and the bottom row displays 

results for the eight-period designs in Appendix Figure 1. For all designs, the within-period 

intra-cluster correlation 𝜌0 = 0.035, with 500 subjects per cluster per period. The line of 

equality between the two parameters is marked with a thin line, and equality of the 

variances is marked with thick lines on each plot. 
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