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Impact of ocean warming on 
sustainable fisheries management 
informs the Ecosystem Approach to 
Fisheries
N. Serpetti1, A. R. Baudron2, M. T. Burrows1, B. L. Payne1, P. Helaouët3, P. G. Fernandes2 & 

 J. J. Heymans1

An integrated ecosystem model including fishing and the impact of rising temperatures, relative 
to species’ thermal ranges, was used to assess the cumulative effect of future climate change and 
sustainable levels of fishing pressure on selected target species. Historically, important stocks of 
cod and whiting showed declining trends caused by high fisheries exploitation and strong top-down 
control by their main predators (grey seals and saithe). In a no-change climate scenario these stocks 
recovered under sustainable management scenarios due to the cumulative effect of reduced fishing 
and predation mortalities cascading through the food-web. However, rising temperature jeopardised 
boreal stenothermal species: causing severe declines in grey seals, cod, herring and haddock, while 
eurythermal species were not affected. The positive effect of a higher optimum temperature for 
whiting, in parallel with declines of its predators such as seals and cod, resulted in a strong increase 
for this stock under rising temperature scenarios, indicating a possible change in the contribution of 
stocks to the overall catch by the end of the century. These results highlight the importance of including 
environmental change in the ecosystem approach to achieve sustainable fisheries management.

Overexploitation of natural resources is one of the greatest anthropogenic pressures impacting the structure and 
functioning of marine ecosystems over short time scales1,2. Changes in �sh communities showing shi�s in the 
trophic-web and declines in mean trophic level have been observed in Europe3–6. �e ecosystem approach to 
�sheries (EAF) aims to achieve sustainable �sheries by combining broad ecological sustainability of stocks with 
the socio-economic viability of the �shing industry at local and regional scales7. �is approach is design to ensure 
a sustainable state of marine food webs (i.e. no overexploitation), allowing continued �shing to support human 
well-being. While current �sheries management relies mostly on single species assessment models, recent studies 
have underlined the importance of implementing EAF to explore �shing management scenarios7–9. However, 
EAF requires ecosystem models to be parameterised over a historical time period to enable forecasts of future 
�sh biomass.

Fishing-induced ecosystem changes o�en coincide with rising temperatures driven by climate change, requir-
ing climate-change e�ects to also be considered in model forecasts. An integrated methodology including the 
temperature tolerances of species is therefore needed to assess the impact of climate change on �sheries10, on 
ecosystem diversity11, and the social-ecological responses to potential ecosystem changes12.

Both climate variability and climate change affect marine ecosystems: ‘climate variability’ is a natural 
short-term �uctuation over a long-term average13 such as ocean-atmosphere coupling phenomena and decadal 
oscillations. Climate variability has o�en been identi�ed as a major driver of ecosystem dynamics14, and quanti-
�ed using indicators such as the Paci�c Decadal Oscillation (PDO)15, El Niño-Southern Oscillation (ENSO)16,17, 
Atlantic Multidecadal Oscillation (AMO)18–21 and North Atlantic Oscillation (NAO)22. Climate change, on the 
other hand, refers to the long-term anthropogenic-mediated modi�cations of the Earth’s climate13 caused by 
global increases in gas emissions and its subsequent consequences (e.g. rising temperatures). Global-scale climate 
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models showed a rapid increase of ocean temperature in the last forty years with a global average increase of 
0.11 °C per decade23. Climate change has been recognised as one of the greatest threats to biodiversity of this 
century11, a�ecting the integrity of ecosystem resources24–28.

Although oceans exhibit a slower warming trend than land, the distributions of pelagic, demersal and benthic 
marine species have shown higher rates of poleward migrations than terrestrial species due to fewer physical bar-
riers in the oceans29. However, even in the marine environment, physical barriers (e.g. current, gyre, trenches), 
lack of suitable habitat (e.g. topography, depth, oxygen) and antagonistic trophic interactions (e.g. competition 
and predation) can represent barriers to temperature-driven poleward dispersal30. �ese barriers to dispersal 
make some species more vulnerable to climate change than others24,31. Poleward distribution shi�s are increas-
ing the relative presence and abundance of warm-water species in mid- to high-latitude regions (such as the 
Bering Sea, Barents Sea, Nordic Sea, North Sea, and Tasman Sea) and thus a�ecting community functioning and 
diversity32,33.

Predicting the impact of climate change is challenging given the speci�c responses of marine organisms 
at regional scales, and the cascading e�ects of these responses (synergistic or antagonistic) on the entire eco-
system34–36. Anthropogenic pressures, such as �shing, pollution, eutrophication and habitat modi�cation, are 
increasing ecosystem vulnerability by decreasing resilience, adding even more complexity to the process of 
assessing the impact of climate change at a local scale36. Species populations and distributions are also regulated 
by competition, predation and environmental and human pressures. Ecosystem modelling approaches address 
these complexities directly and can help to understand and predict ecosystem shi�s. Despite being more realistic, 
however, predictions from complex models that include ecological interactions usually have a high degree of 
uncertainty37.

Reducing uncertainty in predictions of climate-induced changes in ecosystems is therefore needed to under-
stand their societal consequences. A better understanding of the nature and scale of the response of marine 
species to climate change will improve predictions of the ecological and economic impacts on human systems, 
and contribute towards management mitigation strategies29,38. In cold water ecosystems, for example, local native 
species might be negatively a�ected by higher temperatures, but the increase in the abundance of warm water 
species may allow exploitation of new stocks39.

In this study, we used an Ecopath with Ecosim (EwE) ecosystem model of the West Coast of Scotland (WCS)40 
to assess the combined impacts of �shing and rising temperature on species consumption. �e model (which 
included 41 functional groups40) was parameterised with species thermal tolerances and used to simulate the 
impact of �shing by comparing status-quo and maximum sustainable yield (MSY) scenarios, and to assess the 
impact of climate change on important commercial stocks. �e impact of climate change was tested using future 
rising temperature under IPCC Representative Concentration Pathways (RCPs) scenarios, while keeping �shing 
pressure constant at rates deemed consistent with single species MSY. Results were presented for target species 
identi�ed as either depleted stocks (Atlantic cod, whiting and herring), increasing stocks (saithe and hake), and 
other important contributors in terms of landings (haddock, mackerel, horse mackerel and Norway lobster), as 
well as certain top-predators (grey seals) that exert top-down control on the ecosystem41,42.

Results
The model. �e initial model (Supplementary Tables S1–S6), without temperature as an ecosystem driver, 
showed a relatively high sum of squares (SS) between predicted and observed data for the baseline (1620) and also 
when including �shing (1219) (Table 1).

The model was fitted to observed time-series identifying the best fitted model by the lowest Akaike 
Information Criterion (AIC) (Table 1). Adding �shing, the strength of trophic interactions expressed as vulnera-
bilities (Vs), and the impact of a primary productivity anomaly (PP_anomaly) applied to ecosystem primary pro-
ducers, increased the �t of the model reducing the SS by 62% and reducing the AIC from 256 to -1079 (Table 1). 
�e Akaike weight for this interaction also indicated a 0.61 probability that this is the best �tted model when not 
including temperature (Table 1).

Optimum temperatures and thermal tolerances of each functional group were then added into the model as 
response functions to water temperature (Fig. 1a). �e species temperature tolerances ranked by optimum values 
(Fig. 1b) show the preference of lower optimum temperatures and tolerances for north Atlantic boreal species 
such as herring (blue, Fig. 1a), and Atlantic cod, haddock, grey and harbour seals, saithe and kelp, and higher 
optimum temperatures and tolerances for more widely distributed eurythermal species such as horse mackerel, 
Norway lobster (red, Fig. 1a), blue whiting, sprat and mackerel. �e tolerances around optimum temperatures 
for eurythermal species were heterogeneous across species o�en showing lower tolerances for benthic-demersal 
groups (epifauna, angler�sh, �at�sh, other benthopelagic species, poor cod, and Norway lobster) (Fig. 1b).

�e addition of temperature response functions by functional group (Fig. 1a) (Supplementary Table S8) com-
bined with depth integrated water temperature (DIT, black points in Fig. 2) reduced the AIC for the baseline (i.e. 
no �shing) to 158 from 256 and for the model with �shing interactions to -266 from -151 (Table 1). �e addition 
of temperature as an ecosystem driver with the related functional group temperature niches also allowed the 
simulation of future DIT temperature scenarios (Fig. 2).

�e best-�t model with temperature showed an improvement in �t as predicted by the SS of 60% reducing 
the AIC from 158 to -1076 (Table 1). It included �shing, 33 vulnerabilities (Vs, Supplementary Table S7) and a 
PP_anomaly function with 5 spline points (Fig. 3a). In comparison with the baseline model, the inclusion of the 
trophic interactions only (e.g. 33 vulnerabilities) improved the SS of the model �t by 32% (Table 1). Only includ-
ing the anomaly (with 5 spline points) had the lowest e�ect (2%), reducing the AIC to 139 from 158 (Table 1). �e 
Akaike weights indicated a range of models with an AIC of approximately -1076 which could be the best �tted 
model (Table 1).
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Within the 33 estimated vulnerabilities, four top-predators showed sensitive top-down control on their prey 
(i.e. vij > 2): grey seals, cetaceans, mature cod and saithe, whist pelagic �sh (i.e. benthopelagic �sh and other 
pelagic �sh groups) as well as large and small zooplankton, and benthic groups such crabs, other benthic crusta-
ceans, and scallops were all bottom-up controlled with 1 < vij < 2 (Supplementary Table S7).

�e PP_anomaly function estimated by the model hindcast from 1985-2013 is signi�cantly correlated with 
the smoothed AMO climate function (Fig. 3b, Table 2). Both smoothed and unsmoothed AMO were signi�-
cantly correlated with Sea Surface Temperature (SST) (Fig. 3c, Table 2). No correlation was found between the 
PP_anomaly and the NAOI or the SST (Table 2).

Name
Parameters 
estimated SS

contribution 
to SS �tting AIC

Akaike 
weight

without temperature

Baseline 0 1620 — 256 0

Fishing 0 1219 25% −151 0

Fishing + 24 Vs + 3 
PP_anomaly

27 614 62% −1079 0.61

with temperature

Baseline 0 1515 — 158 0

Baseline + 33 Vs 33 1033 32% −323 0

Baseline + 5 PP_
anomaly

5 1484 2% 139 0

Fishing 0 1126 26% −266 0

Fishing + 33 Vs 33 793 48% −702 0

Fishing + 5 PP_
anomaly

5 1038 32% −372 0

Fishing + 24 Vs + 3 
PP_anomaly

27 632 58% −1040 0

Fishing + 33 Vs + 5 
PP_anomaly

38 607 60% −1076 0.25

Fishing + 36 v + 3pp 39 606 60% −1075 0.15

Fishing + 36 v + 4pp 40 603 60% −1073 0.06

Table 1. Comparison across selected stepwise �tting interactions and the model baseline, showing the number 
of total parameters estimated (Vulnerabilities (Vs) + number of anomaly spline points (PP_anomaly)), the 
model sum of squares (SS), the SS percentage of contribution to the �tting, the Akaike Information Criterion 
(AIC) and the AIC weights. In bold the best �tted models.

Figure 1. (a) Species thermal response functions (for Norway lobster, a eurythermal species (red, optimum 
temperature = 13.8 °C) and for herring, a boreal species (blue, optimum temperature = 4.6 °C)). �e intercept 
between water temperature (e.g. 10.5 °C) and the species response functions determined the consumption 
rate scaling factor (i.e. 0.54 and 0.7 for Norway lobster and herring respectively). (b) Cumulative temperature 
tolerance graphs ranked by optimum temperature (bold black line) also showing maximum (upper limit of dark 
orange bar) and minimum (upper limit of white bar) temperatures and the 90th (upper limit of light orange bar) 
and 10th (upper limit of blue bar) percentiles for each functional group.
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Model validation and uncertainties of the predictions. Model validation analysis showed an overall 
progressive improvement described by decreasing root mean square deviations (RMSD) between predicted and 
observed biomass values when using more data in the model �tting process. Within the target functional groups, 
biomass predictions of large demersals, mackerel and saithe showed large deviations from observed data across 
all the validation subsets (A, B and C in Table 3 and Supplementary Fig. S1). Large deviations from observed 
catches were also predicted for mackerel, although no clear pattern of prediction deviations was found within the 
validation datasets (Table 3 and Supplementary Fig. S1).

In the Monte Carlo analysis, using both 10% �xed variability of the model inputs and the input data pedigree 
(Supplementary Table S4) showed higher uncertainties in the predictions of cod, haddock and whiting species as 
seen in the 95% and 5% percentiles (Supplementary Fig. S2).

Predicting cumulative effects of rising temperature and fishing pressure on target species bio-
masses and catches. �e hindcast model output (Fig. 4, solid black line 1985-2013) �tted the observed data 
trends (Fig. 4, black data points and Sum of Squares (SS) contributions) for most of the target species, such as grey 
seals, cod, haddock, whiting, saithe, large demersals, herring, and Norway lobster. From 2000 onwards the model 
produced a poor �t for the biomass and catch trends of large demersals. A poor �t was also evident for mackerel 
and horse mackerel biomasses, although a better �t was found for catches of these species. Contrasting results 
were obtained for saithe, with good estimates of the increasing trend of biomass, but very scattered catch predic-
tions for this species. �e model performed well in estimating trends of catches for all other target species. �e 
95% percentile of the Monte Carlo simulations with 10% variability of the model inputs (shaded areas in Fig. 4, 
and Supplementary Fig. S2) exhibited high variability for cod, due to water temperatures being at the edge of their 
temperature tolerance (Fig. 1a,b), hence their temporal consumption rates varied substantially with feeding time 
and vulnerability parameters (Eq. 1 in Methods).

Future changes of biomass and catches were assessed under constant and rising temperature scenarios (Fig. 2). 
Under the “status quo” future scenario (Fig. 4) grey seal biomass was predicted to follow the increasing histori-
cal trend, reaching equilibrium by 2050. However, under the “MSY” scenario their biomass decreased to values 
similar to the 1990s. �is decrease is due to top-down competition with �shing �eets targeting the prey species 
of grey seals (saithe, cod, haddock, whiting and large demersal). With �shing mortality set at FMSY (Table 4 in 
method section), the predicted increase in biomass of prey species, such as cod, haddock and whiting, did not 
compensate for the decrease in biomass of saithe and large demersals. �e reduction in grey seals is thus driven 
by the reduction of their prey. In the “MSY + RCP2.6” scenario, grey seal biomass slightly decreased compared 
to the “MSY” scenario, but remained constant to the end of the century. Grey seal biomass decreased in all the 
other rising temperature scenarios. A total collapse of this species was predicted by 2090 for the worst case IPCC 
scenario (MSY + RCP8.5).

In the “MSY” scenario, the biomass of cod, haddock, whiting and herring increased due to (i) FMSY being lower 
than Fstatus quo (Table 4 in methods section), (ii) lower predation rates from grey seals and saithe on juveniles, or 
(iii) a combination of both. �e climate scenarios showed di�erent responses to rising temperature across species. 
Cod and herring, with low optimum temperatures (Fig. 1), were sensitive to rising temperature and strongly 
declined by 2060 under all the climate projections. Cod also showed large oscillations due to temperatures being 
close to the upper end of their tolerance (Fig. 1a,b), causing large variations in their ability to feed over time (Eq. 1 
in Methods). Under the “MSY + RCP2.6” scenario, cod biomass increased by the end of the century associated 
with the lower temperatures of this climate scenario (Fig. 4 and Fig. 2). Haddock biomass was more resilient 

Figure 2. Depth integrated temperature (DIT) data used in Ecosim simulations. Historical DIT data (black 
points) were used to parameterise the model whilst status quo (constant water temperature measured in 
2013 – black solid line) and modi�ed climate changing multi-model ensemble means (RCP2.6–solid purple 
line; RCP4.5–solid blue line; RCP6.5–solid green line; RCP8.5–solid red line) were used for predicting future 
scenarios.
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to warming; maintaining constant biomass under the “MSY + RCP2.6” scenario, but a large decline in other 
RCP projections. Saithe’s optimum temperature is higher than that of cod and haddock, but lower than whiting. 
Saithe is also more eurythermal than all the other gadoids (Fig. 1b) and declines only under the “MSY + RCP8.5” 
scenario. Whiting biomass only remained stable under “MSY + RCP2.6” scenario, but showed a strong increase 
under the other RCP projections. �ese increasing trends were driven by the cumulative e�ects of higher opti-
mum temperature for this species compared to the other gadoids (Fig. 1b) and low predation pressure due to the 
predicted declines of their main predators (grey seals and cod) (Fig. 4).

Figure 3. (a) Temporal trends of predicted (black line) and observed (points) phytoplankton biomass vs the 
primary production anomaly (PP_anomaly, dashed line) showing the potential e�ect of the PP_anomaly on 
improving the phytoplankton �tting; (b) Loess function showing correlation of PP_anomaly and smoothed 
AMO; (c) correlation between AMO and depth integrated temperature (DIT).

R2, p-value SST
AMO_
smoothed

AMO_
unsmoothed NAOI PP_anomaly

SST 1 0.65 0.67 0.36 0.50

AMO_smoothed *** 1 082 −0.22 0.72

AMO_unsmoothed *** *** 1

NAOI ** – ** 1 0.25

PP_anomaly ** *** ** – 1

Table 2. Spearman correlation values and statistical signi�cance within SST, AMO, NAOI and PP_anomaly. 
Symbols indicate the levels of signi�cance: ***p < 0.001, **p < 0.01, *p < 0.05 and –no signi�cance.
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Eurythermal species and those in the cooler half of their thermal range (Fig. 1a), such as large demersals 
(consisting of 85% hake), mackerel, horse mackerel and Norway lobster, did not show any changes under rising 
temperature projections (Fig. 4). �e e�ects of �shing are more evident for catch predictions, with large variations 
under the “MSY” scenario projected for saithe, large demersals, mackerel and horse mackerel, due to a sudden 
increase in FMSY from the status quo (Fig. 4).

Mackerel, horse mackerel and saithe were the dominant species in terms of biomasses and catches (Fig. 4). 
Under the highest rising temperature scenario (MSY + RCP8.5), overall decreases of 15% and 20% for cumulative 
biomasses and catches respectively were predicted for these three species by 2100 (from 15.8 to 13.5 tonnes *km−2 
for cumulative biomasses and from 3.04 to 2.42 tonnes *km−2 for cumulative catches). Of the �shed species, cod, 
herring, haddock and whiting showed major changes in response to rising temperatures (Fig. 4). �e cumulative 
biomasses and catches for these species showed an overall decreasing under all the IPCC scenarios compared to 
the “MSY” scenario (Fig. 5). Under the highest temperature scenario (MSY + RCP8.5) the large increase of whit-
ing stock predicted by 2100 starts to compensate for the losses of other target species (Fig. 5), although it does not 
quite make up for the reduction in herring and haddock.

Discussion
Using an ecosystem modelling framework that accounts for environmental and human pressures alongside spe-
cies ecology and biology, we built an intricate web of interactions with the aim of predicting future ecosystem 
changes to ensure sustainable exploitation in a changing environment. We used the WCS EwE model developed 
in 200543 and recently re�ned40,44 to assess the cumulative synergistic or antagonistic e�ects of rising temperatures 
and �shing on the marine ecosystem.

Model validation (Table 3 and Supplementary Fig. S1) showed reduced �t on predicting biomasses of large 
demersals, saithe and mackerel due to large observed increases of both saithe and large demersals since 1985 
(Fig. 4), and the migratory ecology of mackerel which is only in the study area for a quarter of the year45. An 
improvement in out-of-sample predictability was found for overall biomass predictions as the number of obser-
vations in the model calibration increased. �is pattern was not observed for catches, however, probably due to 
the complex ecosystem dynamics that o�en show non-linear and non-stationary dynamics and require longer 
time series to be detected46.

Monte Carlo simulations assessing the prediction uncertainties with changes in the input data showed larger 
variabilities for cod, haddock and whiting compared to saithe, large demersals, Norway lobster and pelagic spe-
cies such as mackerel, horse mackerel and herring. �ese variabilities for cod, haddock and whiting are caused 
by the top-down and bottom-up interactions between the adult and juvenile stages of these multi-stanza groups 
(Supplementary Table S6).

�e primary production anomaly (PP_anomaly) predicted by our model showed similar trends ‘with and 
without’ temperature as a driver in the model, and were comparable with previous anomalies estimated by 
Alexander et al.40 for this ecosystem. �e hindcast biomasses and catches for target species between the best 
models ‘with and without’ temperature also showed similar trends. �e signi�cant correlation found between 
the AMO and the PP_anomaly (Fig. 3b), con�rmed that the anomaly represent a potential ecosystem driver21,47. 
Previous studies found opposite correlations between climate variability indices and primary productivity, indi-
cating the complexity of their e�ects on di�erent ecosystems15,19. Our results however reinforced the importance 
of the AMO as a potential climate driver in the North Atlantic ecosystem, supporting the positive temporal and 
spatial correlations between AMO and primary productivity21.

�e AMO has a distinct spatial distribution with a strong signal in the North Atlantic48,49, underlining the 
necessity of integrating the AMO signal into the de-trended IPCC temperature rates extracted from the study 
area (Supplementary Fig. S4) for predicting the rising depth-integrated temperature (DIT) scenarios (Fig. 2 and 
method section). �e AMO is now approaching the start of its ‘cooling’ phase (Fig. 6)50, potentially slowing down 

Functional group

Biomass Catches

A (RMSD) B (RMSD) C (RMSD) A (RMSD) B (RMSD) C (RMSD)

Grey seals 0.0040 0.0070

Cod 0.0423 0.0151 0.0161 0.0286 0.0113 0.0114

Haddock 0.1516 0.1778 0.0776 0.0615 0.0168 0.0331

Whiting 0.2556 0.0564 0.0657 0.0412 0.0027 0.0024

Saithe 2.3383 2.7239 3.9048 0.0514 0.3162 0.5335

Large demersals 3.8231 2.0891 0.4547 0.1402 0.1188 0.1209

Mackerel 1.5819 1.2381 1.1768 0.4489 0.2841 0.2378

Horse mackerel 1.2457 1.0594 1.3777 0.3380 0.2806 0.4318

Herring 0.6954 0.5579 0.4296 0.1394 0.1700 0.0389

Norway lobster 0.2149 0.3054 0.3570 0.0494 0.0475 0.0474

Total model 
functional groups

1.9194 1.6402 1.2316 0.1461 0.3921 0.1690

Table 3. Root mean square deviations (RMSD) across three validation subsets (A, B and C) for biomasses and 
catches for the target and all functional group. Subset A: 22 years for model �tting, 7 years validation set; subset 
B: 24 years for model �tting, 5 years validation set; subset C: 26 years for model �tting, 3 years validation set).
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the rates of temperature rise for the next 30 years, and underlining the importance of implementing this index on 
future temperature predictions to mitigate the predicted declines of boreal stenothermal species.

�e recent increase in the biomass of grey seals and saithe (observed data, Fig. 4) was well predicted by our 
model. �ese are key-species in regulating the equilibrium of the ecosystem by exerting top-down control on 
their prey (vij > 2, Supplementary Table S7). �ese results echo recent studies which underlined the importance 
of grey seals in the WCS. Grey seals have been increasing in abundance since the 1960s mainly because of the 
increasing availability of their prey51 combined with few natural predators. According to our results they can play 

Figure 4. 1985-2013: �tted observed (black data points) and hindcasted model output (solid black line) with 
95% and 5% percentiles of the Monte Carlo simulations (shaded area). Monte Carlo simulations for future 
prediction are plotted only under the “MSY + RCP4.5” scenario sake of clarity. 2014–2100: future model 
predictions for “status quo” (solid black line), “MSY” (dashed black line) and for “IPCC-RCP” scenarios 
(MSY + RCP2.6–solid purple line, MSY + RCP4.5–solid blue line, MSY + RCP6.5–solid green line, and 
MSY + RCP8.5–solid red line) for species biomasses (le� panels) and catches (right panels).
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an important role in preventing the recovery of the overexploited cod stock, which also support previous �nd-
ings41,42. �e di�erence in grey seal biomass projections between the “status quo” and “MSY” scenarios indicated 
that good ecosystem level �sheries management could have an important impact on regulating the population of 
top-predators and reduce their top-down control on the ecosystem.

Low historical �shing and predation mortalities for saithe and large demersals caused large increases in bio-
mass for both these species, whilst high predation and �shing rates caused large declines of cod and whiting 
(Fig. 4). Saithe increased fourfold between 1985 and 2013 due to low �shing and predator pressure. Conversely, 
the biomass of the large demersal group constituted 80-85% of hake, which showed a dramatic increase since the 
early 2000s in both the North Sea and the West of Scotland52. However, our parameterisation of large demersals 
also include the life history parameters, diet distribution, etc. of other species included in this functional group 
(Supplementary Table S8). �is might explain the poor performance of our model in predicting trends in biomass 
and catches of large demersals, and underlines the necessity to consider hake individually for future applications 
of this model, especially given the large increase in this species biomass in recent years52. Under the “MSY” sce-
nario, grey seals declined due to competition with �shing �eets that target their prey (mainly saithe and large 
demersals) whilst the drop in numbers of saithe and large demersals were caused by a higher �shing mortality 
(FMSY > Fstatus_quo): the cumulative e�ect of the reduction in top-predators determined the improvements of the 
yields of the cod and whiting declining stocks. �is prediction could not be identi�ed and predicted by single 
species assessments, emphasising the importance of multi-species considerations in an ecosystem approach to 
�shery management.

“IPCC-RCP” scenarios were superimposed on the “MSY” scenario to better assess the impact of rising tem-
perature on cod and whiting that otherwise showed collapsing biomasses and catches40,44 under the “status quo”. 
Implementing an EAF has been used to investigate �shing policy options providing maximum sustainable yields 
and to minimise the impact on marine ecosystems53. In line with these analyses, our results revealed that sus-
tainable �sheries management can improve the yields of target species in the West Coast of Scotland ecosystem 
(Fig. 4). However, some MSY estimates, used here as best available proxies, were determined by ICES, over larger 
areas and multiple stocks (Table 4) and in the case of saithe, large demersals and horse mackerel the sudden 
changes between Fstatus quo and FMSY caused large changes in predicted catches (Fig. 4). �ese large variations are 
unrealistic as annual changes in �shing mortality are moderated to be within ±15%54,55. Moreover, we used a 
constant �shing mortality to 2100, assuming that this level of �shing will be sustainable into the future. However, 
FMSY values will change as mortality and growth changes in response to temperature-driven changes in commu-
nity structure. �ese aspects are obvious limitations of our study. Fishing mortality is revised yearly, based on 
single species stock assessments related to observed data. Fisheries projections therefore rarely extend beyond 
20–30 years, while the impact of rising sea temperature is o�en assessed on long timescales56. �e purpose of 
our study was not to predict what the ecosystem will look like in the future, but to assess the potential impact 
of rising temperatures for important commercial stocks in an ecosystem harvested at current estimates of FMSY. 
Future work should determine an appropriate target �shing mortality which accounts for the combined e�ects of 
�shing temperature by using a more realistic �shing mortality implemented annually through a harvest control 
rule designed to achieve MSY.

�e sensitivity of marine species to temperature changes is de�ned by thermal tolerance windows that link 
their habitat temperature within the seasonal variability36,57. Within the boreal species investigated here, we iden-
ti�ed three groups of stenothermal species. One group, constituted by species with extreme low optimum temper-
atures (e.g. cod and herring, Fig. 1b) was highly sensitive to relatively small changes in temperature and declines 
were predicted under all the IPCC scenarios. Only under the “MSY + RCP2.6” scenario, cod biomass increased 
by 2100 (Fig. 4) associated with the predicted lower temperatures of this climate scenario (Fig. 2) ampli�ed by the 
AMO “cooling” phase expected by the end of the century (Fig. 6).

�e second group consists of boreal species that have low optimum temperatures (e.g. grey seal and haddock, 
Fig. 1b), showing a steady equilibrium under the best case scenario (RCP2.6), but declining under the three 
accelerated temperature scenarios (RCP4.0, RCP6.0 and RCP8.5, Fig. 4). A di�erent consideration is required 
for saithe, which represents the third group: this boreal species had a colder optimum temperature, but a wider 

Species Fstatus_quo FMSY Reference

Cod (Gadus morhua) 0.6 0.19 ICES94

Haddock (Melanogrammus aegle�nus) 0.17 0.37 ICES94

Whiting (Merlangius merlangus) 0.055 0.18 ICES95

Saithe (Pollachius virens) 0.07 0.32 ICES94

Mackerel (Scomber scombrus) 0.13 0.22 ICES96 (western shelf)

Horse mackerel (Trachurus trachurus) 0.3 0.13 ICES96 (western shelf)

Herring (Clupea harengus) 0.21 0.16 ICES97

Hake (Merluccius merluccius) (85% of large demersal) 0.04 0.27 ICES94 (northern stock)

Angler�sh (Lophius piscatorius & L. budegassa) 0.14 0.19 ICES94 (Bay of Biscay)

Blue Whiting (Micromesistius poutassou) 0.11 0.3 ICS94

Norway lobster (Nephrops norvegicus) 0.08 0.116 ICES94 (underwater TV surveys, average within FU 11, 12 and 13)

Table 4. Target species �shing mortality at the “status quo” (Fstatus_quo) and at the maximum sustainable yields 
(FMSY).

http://S8
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thermal tolerance (Fig. 1b). �is higher tolerance limit compared to other boreal species allowed saithe to be 
more resistant to rising temperatures (Fig. 4). A reduction in biomass for this species was predicted only under 
the warmest climate scenario (RCP8.5) (Fig. 4). �e spatial distribution of saithe currently extends south to the 
English Channel and the Bay of Biscay (http://www.aquamaps.org/)58, albeit in smaller abundances. Future appli-
cations of this model could be developed to assess a potential deeper spatial distribution for this species.

In contrast to the other boreal gadoids, whiting is a Lusitanian species with southerly geographical distri-
bution from the Iberian Peninsula to as far north as the northern North Sea59. Our results showed an increase 
in whiting biomass under all RCP scenarios, resulting from the e�ects of higher optimum temperature for this 
species combined with contemporary declines of its predators such as seals and cod. �is result indicated that 
higher �shing mortalities could be advised for this species if the stock were to recover from the declining his-
torical trends. However, an increase in biomass could lead to decreasing growth and/or recruitment rates due to 
competition, and a reduction in predation pressure could result in a lower natural mortality, which might produce 
lower estimates of FMSY.

Mackerel, horse mackerel and Norway lobster constituted a group of eurythermal species (Fig. 1b). �ese 
species have extensive distributions in temperate latitudes (http://www.aquamaps.org/)58, where seasonality in 
temperature is strong36,57. We therefore expect them to be less in�uenced by the warming climate.

Figure 5. Cumulative biomasses (le� panels) and catches (right panels) of whiting (orange), cod (green), 
haddock (light blue) and herring (purple) under MSY and IPCC-RCP scenarios.

http://www.aquamaps.org/
http://www.aquamaps.org/
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Of the target species in this study, mackerel, horse mackerel and saithe were the dominant species in terms 
of biomass and catch and were not signi�cantly a�ected by temperature changes. Under rising temperature sce-
narios, overall cumulative decreases of biomass and catches of up to 15% and 20% respectively were predicted. 
However, under the highest scenario, our results suggested that in the long term the large increases predicted for 
whiting could compensate for the losses predicted in biomass and catches of other species (Fig. 5). Excluding 
mackerel and horse mackerel, which showed seasonal migration patterns in the study area45,60, the observed 
large increases of saithe and hake in recent years52 with an increase of whiting predicted by rising temperature, 
suggested the possibility of a signi�cant change in the �sh community due to both changes in �shing practices 
and climate change.

�e ecosystem model employed here included ecological populations and their interactions within de�ned 
spatial distributions. Predicted declines of stocks in this study do not indicate their collapse across the Northeast 
Atlantic, but rather that they are likely to migrate north or to deeper and cooler waters outside of the model-
ling study area (WCS, continental shelf of ICES Division VIa). Whilst bathymetric shi�s were more di�cult 
to assess61, the predicted poleward shi� of marine organisms in the European shelf regions have already been 
observed62. �e North Sea, an ecosystem comparable to the WCS in terms of latitude and species composition, 
had an increase in sea surface temperature > 1 °C over the last 40 years, which caused one of the fastest11 latitudi-
nal distributional shi�s globally for zooplankton63,64, �sh65 and invertebrates66, while the combined pressures of a 
warming climate and �shing produced a strong impact on the distribution and abundance of �at�sh67 and cod68.

Increasing ocean temperatures may put species beyond their tolerance thresholds, causing spatial distribu-
tion shi�s and producing increases in eurythermal species and the decline of boreal stenothermal species36,69. 
Geographic barriers can also constrain range shifts causing a loss of endemic species70. In more extreme 
cases alien species can colonise new niches adding trophic competition with native species and changing the 
predator-prey dynamics69,71,72. Compositional changes, at the regional scale, could trigger strong potential cascad-
ing e�ects through the tropic web73, strengthening and/or weakening trophic relationships to an unprecedented 
level61. Such changes in ecosystem structure will need to be incorporated into the EwE model to address the 
possible impact that the complete extirpation or introduction of invasive species might have on the ecosystem 
function and resilience.

�e new capability of EwE for using species temperature functions to de�ne species thermal niches74 has 
enabled temperature to be included in the model as an ecosystem driver to assess the impact of warming climate 
on the food consumption (based on the foraging arena theory75). �e reliability of these predictions is dependent 
on the quality of the data used to de�ne the species thermal niches74. Nevertheless, it is important to emphasise 
that this study did not consider potential phenotypic plasticity nor ontogenetic variations of species thermal 
range, with early stages (e.g., egg and larvae) generally being more sensitive to temperature change76. Moreover, 
shi�s of thermal habitat could also lead to species changes of life cycles and new physiological adaptations as 
already observed for terrestrial ectotherms77, aspects which were not taken into consideration in our study. 
Similarly, the e�ect that temperature will have on the general metabolism (production and respiration) of species, 
growth rate, which might increase or decrease size-at-age and have an impact on the total biomass and potential 
size-structured predator-prey dynamics, were not explicitly included in this model. An increase in temperature 
might increase the turnover rate (P/B ratio) of some species, and might have an e�ect on the recruitment of popu-
lations, which at present is also not included in this model. �ese impacts might have unforeseen consequences to 
the outcome of these simulations and for ecosystem interactions in general, which warrants more study in future. 
In addition, the use of Monte Carlo simulations a�er �tting the model, could a�ect the outcome of the study. 
If the Monte Carlo simulations were run �rst and di�erent Ecopath input estimates obtained before the �tting 
procedure, the estimation of top down and bottom up control of predator-prey dynamics might have changed 
and this might change the outcome of the future projections. �is is also a fruitful area of study for future work.

�ese caveats notwithstanding, our results showed that the inclusion of temperature tolerances allows for 
the exploration of di�erent management approaches in a warming ecosystem to identify those strategies that 
best meet a range of objectives. �is is an important step to the implementation of an ecosystem approach to 

Figure 6. Historical unsmoothed (�ne-dashed line) and smoothed (solid line) AMO data. Future projections 
(coarse-dashed line) were created mirroring AMO smoothed data from 2012 to 2100 to allow the re-
occurrences of the lower peaks as for the historical data at intervals of approximately 60 years.
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sustainable �sheries management in a warming ecosystem and could improve our short-term management of 
declining stocks such as cod, whiting and herring. Our results also show that ocean warming could jeopardise the 
recovery of boreal stenothermal �sh species (cod, herring and haddock), causing a reduction of these stocks in the 
northern temperate ecosystems. While the model presented here cannot, in its present state, be used for tactical 
short-term decisions due to too many uncertainties relating to the numerous processes it encompasses, it may be 
useful in EAF to inform managers on likely future long-term trends in biomass and catches under various ‘what 
if ’ scenarios. Similar models could be used to explore various alternative �shing management strategies under a 
set of climate scenarios to assess the likely outcomes for target species, their prey and predators, but also future 
ecosystem health, state and structure. �e model-driven scenario evaluation approach would (i) inform managers 
on the best strategy to pursue, depending on the goal, whilst accounting for future climate change and food web 
e�ects, (ii) identify potential risks (e.g. prey species depletion) and bene�ts (commercial species increasing), and 
(iii) identify and plan for future knock-on e�ects such as the socio-economic consequences of having to adapt 
to a changing ecosystem and the resulting change in commercial species composition, and their impacts on the 
�shing community. Encapsulating food web functioning in the development of integrated models of ecosystems 
under environmental change will help us to ensure future sustainable exploitation of our marine resources as part 
of the transition from single-species management to the holistic ecosystem approach to �sheries (EAF).

Methods
Ecopath with Ecosim ecosystem modelling. �e model was built in Ecopath with Ecosim (EwE) ver-
sion 6.5 (July 2016). �is framework consists of Ecopath, a mass balance model that creates a baseline snapshot of 
the ecosystem in a given year (1985 in this case), and Ecosim that models the temporal dynamics (1985-2013 in 
this case). Ecosim models use foraging arena theory75 where each predator/prey interaction is de�ned by vulnera-
bility parameters that a�ect the predator consumption rate (Equation 1) to describe the top-down and bottom-up 
controls of the predator/prey interactions. Vulnerability parameters can range between 1 and in�nity, with 2 as 
the default. Vulnerabilities greater than 2 describes top-down control of the predator-prey relationship, where 
the predator biomass drives the prey mortalities, whilst vulnerabilities between 1-2 de�ne bottom-up control, 
where the biomass of the predator has little e�ect on the predation mortality of that prey. For each predator-prey 
interaction consumption rates, Qij, are calculated as:

=
∗ ∗ ∗ ∗ ∗ ∗

+ ∗ ∗ + ∗ ∗ ∗
∗Qij

a v B P T T M D

v v T M a M P T D
f Env t

/

/
( , )
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ij ij i j i j ij j

ij ij i ij ij ij i j j
function

where aij is the e�ective search rate for predator j feeding on a prey i, vij is vulnerability expressing the rate with 
which prey i move between being vulnerable and not-vulnerable, Bi is prey biomass, Pj is predator biomass (or 
abundance for split groups), Ti represents prey relative feeding time, Tj is predator relative feeding time, Mij are the 
mediation forcing e�ects, and Dj represents handling time as a limit to consumption rate75,78. [f(Env_function, t)]  
is the environmental response function that restricts the size of the foraging arena75 to account for external envi-
ronmental drivers changing over time, such as temperature and salinity.

Updating and fitting the new West coast of Scotland model. �e model boundaries cover the con-
tinental shelf of the west coast of Scotland (WCS), an area of approximately 110,000 km2 within the International 
Council for the Exploration of the Sea (ICES) division VIa. �e WCS model was updated in both Ecopath and 
Ecosim (details in Supplementary Methods Tables S1–S6). In this study, we used the new capability of EwE 6.5 
(www.ecopath.org) to convert species optimum, minimum and maximum temperatures to species-speci�c 
normal probability distributions centred on the species optimum temperature and positive/negative standard 
deviations de�ned by the species tolerances (Fig. 1a,b and Supplementary Table S8). �e di�erence between 
sea temperature and the species thermal optimum distribution was used to scale the consumption rates of each 
predator: by a factor of 1 at the optimum and declining as the di�erence from the optimum increases according 
to Gaussian functions at a rate re�ecting the species thermal tolerance range (expressed by the standard deviation 
of the function) (Fig. 1a).

Fishbase79, SeaLifeBase80 and AquaMaps58 websites provided the species optimum, minimum and maximum 
temperatures: optimum temperatures were estimated by averaging the 10th and 90th preferable temperature per-
centiles. For consistency we gathered species optimum temperatures and tolerances data from the same sources 
except for cod81 and kelp82 for which local data were used81. For functional groups de�ned by multiple species, the 
temperature parameters were calculated as geometric means weighted by species biomass or catch composition. 
Optimum temperatures for juvenile gadoids were raised by 1 °C assuming a shallower distribution in warmer 
waters to facilitate the growth rates83. No local temperature tolerance data were found for phytoplankton, small 
and large zooplankton; the average of depth-integrated temperature was used for these groups with wide toler-
ances ranges (Supplementary Table S8).

�e model was �tted using an automated stepwise �tting procedure84. �is procedure searched for di�erent 
vulnerability parameters and/or numbers of spline points on a primary production anomaly, then calculated the 
weighted sum of squares (SS) di�erences between predicted and observed data (Supplementary Table S6) for each 
iteration. It used the SS and the number of parameters estimated to calculate the Akaike Information Criterion 
(AIC)85, and the corrected AICc86. �ese AIC values were used to assess the model baseline (no ecosystem drivers 
such as �shing, no primary productivity forcing function and no trophic vulnerabilities applied) and to identify 
the vulnerability parameters and spline points that produced the lowest AIC. AIC values are also used to calculate 
Akaike weights which represent the probability that a given model is the best �tted model87.

http://S1
http://S6
http://www.ecopath.org
http://S8
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Vulnerability parameters were assumed to be “by predator”, i.e. all iterations assumed the same top-down or 
bottom-up control of the predator on all of its prey84. �e PP_anomaly function could represent an environmen-
tal driver that can a�ect primary productivity and is therefore o�en related to climate variability indices15,47,88,89. 
�e �tting procedure was performed with and without temperature and output compared with previous versions 
of the model �tting40,84. �e �tting procedure identi�ed the best parameter values that improve the statistical �t of 
the model. However, as the observed data has its own inherent errors, it is important to analyse a range of model 
�ts with the low AIC values and relevant Akaike weights to identify the best ecologically sensible parameters that 
best describe the predicted historical trends of the target species84,90.

Spearman correlation tests were used to assess collinearity between the predicted primary production anom-
aly function and environmental temperature (SST) as well as other climate indices such as the smoothed and 
unsmoothed Atlantic Multi-decadal Oscillation (AMO), and North Atlantic Oscillation Index (NAOI).

Model uncertainties and validation. Monte-Carlo simulations were performed to investigate the quality 
of the input data assessing the sensitivity of the best-�tted Ecosim output to uncertainty in the Ecopath basic 
inputs (B, P/B, Q/B and EE)78,90, by assuming a change of 10% in each of these inputs, as well as by using the input 
pedigree91 to describe the uncertainty surrounding the input data for B, Q/B and EE (supplementary Table S4)90. 
In the pedigree-based Monte Carlo simulations the con�dence interval of the production/biomass ratio (P/B) 
was kept at 10% as a cumulative e�ect of lower con�dence intervals for both biomass and P/B determined a large 
ampli�cation in uncertainty for the Monte Carlo simulations. 200 Monte-Carlo simulation trials for each target 
functional group in this study were carried out to determine the 5% and 95% con�dence interval of the best �tted 
model (Supplementary Fig. S2).

�e model’s capability to predict future observations (model validation) was performed creating three vali-
dation datasets (A: 22 years for model �tting, 7-year validation set; B: 24 years for model �tting, 5 year validation 
set; C: 26 years for model �tting, 3 year validation set). �e performances of these 3 models were assessed by com-
paring the root mean square deviations (RMSD) between predicted and observed values across three validation 
subsets (Table 3). Over- and underestimation for the target species predictions were visually assessed by plotting 
predicted vs observed data for both biomasses and catches (Supplementary Fig. S1).

Historical time series of temperature. Spatial Sea Surface Temperatures (SST) from the Hadley Centre 
HadISST dataset (http://www.meto�ce.gov.uk/hadobs/hadisst/) between 1960–2013 were obtained and annual 
averages calculated. �ese results were cross validated using the Millport sea temperature time series previously 
used to describe the WCS ecosystem44. Depth integrated temperature (DIT, black points in Fig. 2) was calculated 
by scaling the Hadley Centre time series to the di�erence between surface and near-bottom water obtained from 
Berx and Hughes92 (http://ocean.ices.dk/Project/OCNWES/Default.aspx extracted 15 June 2016). �e di�er-
ences between surface and near-bottom temperatures were homogeneous in space over the UK continental shelf 
(Supplementary Fig. S3) and therefore an average scaling factor was calculated for the whole continental shelf of 
ICES VIa (0.61 °C).

Simulation scenarios. Exploring the e�ect of future scenarios requires the Ecosim model to reproduce 
or hindcast the historical observations. �us, the “status quo” scenario represented the future projections using 
the model drivers such as �shing mortalities (Fstatus_quo) and water temperature set to that of the last year of the 
historical observed data (2013). �e e�ect of sustainable �shing for the target species was then assessed compar-
ing biomasses and catches of the “status quo” scenario with that of a “maximum sustainable yields” (MSY) sce-
nario which used single-species �shing mortalities at the maximum sustainable yields (FMSY) determined by ICES 
(Table 4). When not available for VIa, FMSY values of neighbouring stocks were taken as best available estimates.

Subsequently we tested the impact of rising temperature under IPCC-RCP scenarios while keeping �shing 
pressure constant at rates consistent with MSY. Future SST projections were extracted from the Royal Netherlands 
Meteorological Institute Climate Explorer portal (http://climexp.knmi.nl) within the study area rectangle from 
the climate changing multi-model global ensemble means for 2.6, 4.5, 6.5 and 8.5 greenhouse gas concentra-
tion scenarios (RCP2.6, RCP4.5, RCP6.5 and RCP8.5 scenarios). �irty-two model outputs, sourced from the 
Coupled Model Intercomparison Project phase 5 (CMIP5), were extracted for the study area with temperatures 
�uctuating around the mean by 6–7 °C (Supplementary Fig. S4). �e mean projected rates of increase for all of 
the RCP scenarios (bold colour lines for 2006–2100 in Supplementary Fig. S4) were then applied as anomalies to 
the observed DIT to predict future temperature. As a calculated mean across thirty-two global model outputs, the 
SST rates extracted under the RCP scenarios (Supplementary Fig. S4) were de-trended from the impact of climate 
variability and showed a smaller variability than DIT (black points in Fig. 2). A 3-year moving average of the 
historical standard deviation (STDEV) was applied to the anomalies to replicate the variability of the historical 
DIT trend.

�e Atlantic Multidecadal Oscillation (AMO) is calculated as an anomaly of the SST and shows a stronger 
e�ect in the North Atlantic region18,20,21,48. �e smoothed/unsmoothed AMO signal (Fig. 6; http://www.esrl.noaa.
gov/psd/data/timeseries/AMO/) de�ned from de-trended patterns of SST variability in the North Atlantic, shows 
clear positive and negative phases with a frequency of 60–70 years93. In 2012 the AMO reached the end of its pos-
itive ‘warming’ phase and approached the start of the “cooling phase” (Fig. 6). �us, to predict the future AMO 
trend, the smoothed observed pattern was mirrored from 2007 to 2100 to allow the re-occurrences of historical 
phases at intervals of approximately 60–65 years (between the lowest values of the historical negative phases, 
Fig. 6). Finally, the AMO projections were added to the temperature projections (DIT + STDEV + AMO) to sim-
ulate the e�ect of this climate index on the future water temperature projections (2014-2100 in Fig. 2).

http://S4
http://S2
http://S1
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