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Abstract

Background: Since the early 1980s, papillary thyroid cancer (PTC) incidence rates and the prevalence of obesity, a risk factor

for PTC, have increased substantially in the United States. We estimated the proportion of PTC incidence in the United States

attributable to overweight and obesity during 1995–2015.

Methods: National Institutes of Health-AARP Diet and Health Study cohort data (n¼457331 participants, 50–71years and

cancer-free at baseline) were used to estimate multivariable-adjusted hazard ratios (HRs) for PTC across body mass index cat-

egories. Population attributable fractions (PAFs) were calculated using estimated hazard ratios and annual overweight and

obesity prevalence estimates from the National Health Interview Survey. PAF estimates were combined with Surveillance,

Epidemiology, and End Results-13 data to calculate annual percent changes in PTC incidence rates attributable (and unre-

lated) to overweight and obesity.

Results: Overweight (25.0–29.0kg/m2) and obesity (�30.0 kg/m2) were associated with 1.26-fold (95% confidence interval [CI] ¼

1.05- to 1.52-fold) and 1.30-fold (95% CI ¼ 1.05- to 1.62-fold) increased risks of PTC, respectively, and nearly threefold

(HR¼2.93, 95% CI ¼ 1.25 to 6.87) and greater than fivefold (HR¼5.42, 95% CI ¼ 2.24 to 13.1) increased risks of large (>4 cm)

PTCs compared with normal weight (18.5–24.9kg/m2). During 1995–2015, PAF estimates for overweight and obesity increased

from 11.4% to 16.2% for all PTCs and from 51.4% to 63.2% for large PTCs. Overweight or obesity accounted for 13.6% and 57.8%

of the annual percent changes in total (5.9%/y) and large (4.5%/y) PTC incidence rates, respectively, during 1995–2015.

Conclusions: Overweight and obesity may have contributed importantly to the rapid rise in PTC incidence during 1995–2015.

By 2015, we estimate that one of every six PTCs diagnosed among adults 60years or older, including nearly two-thirds of large

PTCs, were attributable to overweight and obesity.

US thyroid cancer incidence rates have increased substan-

tially since the early 1980s, driven largely by an increase in

papillary thyroid cancer (PTC), the most common histologic

type (1). Similar trends have been observed internationally

(2). Small, localized PTCs accounted for most of the increase,

largely reflecting the more widespread use of diagnostic im-

aging procedures and improvements in diagnostic tools (3).

However, there also have been statistically significant

increases in the incidence rates for larger-sized (>2 cm) and

advanced-stage PTC as well as in thyroid cancer mortality

(1). These findings suggest that environmental or lifestyle

risk factors also may have contributed to changing PTC inci-

dence trends.

For decades, the etiology of thyroid cancer remained elusive,

with few known modifiable risk factors apart from childhood

and adolescent exposure to ionizing radiation and iodine defi-

ciency (4,5). Early epidemiologic studies provided conflicting ev-

idence linking greater body mass index (BMI), an indicator of

general adiposity, with thyroid cancer risk (4–8); however, many

of these studies were limited by retrospective exposure assess-

ment, lack of data on potential confounding factors, and/or

small numbers of cases, particularly among men. Within the

last decade, several large prospective cohort studies and pooled

analyses have emerged, showing consistent positive associa-

tions for BMI and other indicators of adiposity (eg, waist circum-

ference and weight change) with both thyroid cancer incidence
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(all histologic types apart from medullary carcinoma) and, to a

greater extent, thyroid cancer mortality (9–12). Based on the

results from epidemiologic studies, the International Agency for

Research on Cancer determined that there is sufficient evidence

of a causal relationship between excess adiposity and thyroid

cancer (13). Moreover, results from clinical studies have shown

that obese PTC patients tend to present with more advanced-

stage disease and clinically aggressive tumor characteristics

(14–16), which may be attributable to a direct effect of excess ad-

iposity on thyroid cancer growth and progression (17).

Considering the tremendous increase in obesity prevalence

among US adults since the early 1980s (from 15% in 1980 to

nearly 40% in 2015–2016) (18,19), excess adiposity could have

contributed appreciably to the observed temporal increases in

US PTC incidence rates.

The overarching aim of the current study was to quantify

the impact of the rising prevalence of overweight and obesity in

the general US population on trends in PTC incidence rates

(overall and by tumor characteristics at diagnosis) during 1995–

2015. To estimate the risk of PTC associated with overweight

and obesity, we analyzed data from a large US prospective co-

hort study and, for the first time in a cohort study to our knowl-

edge, assessed this association according to tumor stage and

size at diagnosis. We combined these results with national

overweight and obesity prevalence and cancer registry data to

estimate the proportions of PTCs diagnosed each year that were

attributable to overweight and obesity.

Methods

Study Population and Case Definition

The National Institutes of Health-American Association of

Retired Persons (NIH-AARP) is a large US cohort study that was

established in 1995–1996 when 567 169 members of AARP (for-

merly known as the American Association of Retired Persons),

aged 50–71years, satisfactorily completed amailed baseline ques-

tionnaire inquiring about health and lifestyle characteristics (20).

For the analysis, we excluded proxy respondents, individuals

who reported a prior diagnosis of cancer other than non-

melanoma skin cancer; those with no follow-up information;

individuals with missing data on smoking status, height, or

weight; and cases with extreme values of BMI, yielding a total of

457331 individuals (273604 men and 183727 women). Cancer di-

agnoses were obtained through 2011 by linking individual study

participants with state and local cancer registry databases. Cases

were individuals diagnosed with first primary PTC during follow-

up (ICD-10 C73.9; ICD-O-3 8050, 8260, 8340-8344, 8350, 8450-8460).

Cases were further classified by stage at diagnosis (Surveillance,

Epidemiology and End Results Program [SEER] summary stage: lo-

calized, regional, distant) and tumor size [�1.0, 1.1–2.0, 2.1–4.0,

and >4cm, corresponding to size thresholds used by the

American Joint Committee on Cancer thyroid cancer staging sys-

tem (21)]. A secondary analysis was restricted to first primary an-

aplastic thyroid cancers (ICD-O-3 8020-8035). The study protocol

was approved by the Special Studies Institutional Review Board

of the National Cancer Institute.

Annual overweight and obesity prevalence data for adults

aged 50years or older during 1985–2005 were ascertained from

the National Health Interview Survey (NHIS), a nationally repre-

sentative survey of the health of the US civilian noninstitution-

alized population (22). BMI was calculated from self-reported

height and weight.

PTC incidence rates among those 60 years and older during

1995–2015 were estimated from data collected by 13 cancer reg-

istries as part of the SEER-13 (23). Cases were restricted to first

primary thyroid cancers that were microscopically confirmed

and classified using the histology codes and size categories de-

scribed above.

Statistical Analysis

Using data from NIH-AARP, Cox proportional hazard regression

models were used to estimate multivariable-adjusted hazard ra-

tios (HRs) and 95% confidence intervals (CIs) for the association

between BMI categories (<18.5 [underweight], 18.5–24.9 [normal

weight], 25.0–29.9 [overweight], and �30.0 kg/m2 [obese]) and

first primary PTC risk. Follow-up started at participants’ age at

baseline questionnaire completion and ended at the age at diag-

nosis of any primary cancer other than non-melanoma skin

cancer or right-censoring (loss to follow-up, or death, or end of

follow-up on December 31, 2011). Additional models estimated

associations between BMI and PTC by tumor stage and size at

diagnosis. Models were adjusted for sex, race or ethnicity (non-

Hispanic black, non-Hispanic white, Hispanic, other specified

and unknown), education (college graduate, not college gradu-

ate, unknown), weekly alcohol consumption (continuous), and

smoking status (never, former, and current). The proportionality

assumption was assessed by estimating the associations be-

tween BMI and PTC stratified by follow-up time. All P values

were two-sided with an alpha of .05. Interaction tests were con-

ducted by including a cross-product term in the model and eval-

uating the Wald-based P value.

National prevalence estimates of overweight (BMI¼ 25.0–

29.9 kg/m2) and obesity (BMI� 30.0 kg/m2) in the NHIS were cal-

culated using sample survey weights. Because height and

weight data were unavailable in 1986, 1989, and 1996, preva-

lence estimates for these years were imputed as the average of

the surrounding years.

Annual population attributable fractions (PAFs) (24,25) were

calculated from the estimated hazard ratios (relative risks) de-

rived from the NIH-AARP Diet and Health Study and prevalence

estimates from NHIS as

PAF ¼ 1�

P

n

i¼1

wiexp c
0

Zi

� �

P

n

i¼1

wiexp c
0Zi þ b

0

X
� �

:

In the above equation, wi denotes the survey weight, Zi

the adjustment variables, Xi the variable of main interest

(BMI category) for person i in the survey, and c and b the log-

relative risk parameters for Z and X, respectively, estimated

from the NIH-AARP cohort. Assuming a 10-year latency period

[based on a median time from questionnaire to PTC diagnosis in

the NIH-AARP study of 8.9 years and available evidence regard-

ing the latency period for other obesity–cancer associations

(26)], PAFs based on overweight and obesity prevalence esti-

mates for a given year were applied to PTC incidence rates

10years later. To accommodate the variability of the estimated

log-relative risk parameters, we computed the variance of PAF

both by a bootstrap resampling approach and analytically.

Results are based on the bootstrap variance estimates, which

agreed well with the analytic estimates.

Estimated PAFs were then multiplied by annual age-

standardized PTC rates for adults aged 60years or older in SEER,

partitioning out incidence rates attributable to (and unrelated
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to) overweight and obesity. Annual percent changes in PTC

rates and for overweight- and obesity-attributable and over-

weight- and obesity-unrelated PTC incidence rates were esti-

mated using Joinpoint software, which identifies calendar years

where there is a statistically significant change in the slope of

incidence rate trends over time. Average annual percent

changes (AAPCs) also were estimated for the full 1995–2015 time

period. The proportion of the AAPC driven by overweight- and

obesity-attributable PTC incidence rates was estimated as 1 �

[AAPC(overweight/obesity-unrelated) � AAPCoverall].

Results

From 1995 to 2011, 604 incident PTC cases occurred among men

and women in the NIH-AARP Diet and Health Study (Table 1).

Overweight (25.0–29.0 kg/m2) and obesity (�30.0 kg/m2) were as-

sociated with 1.26-fold (95% CI ¼ 1.05-fold to 1.52-fold) and 1.30-

fold (95% CI ¼ 1.05-fold to 1.62-fold) increased risks of PTC, re-

spectively, compared with normal weight (18.5–24.9 kg/m2)

(Table 2). Finer categorization of the top BMI categories showed

consistently increasing risks of PTC with greater BMI, with

hazard ratios for obese class I (30.0–34.9 kg/m2) of 1.21 (95% CI

¼ 0.94 to 1.55), obese class II (35.0–39.9 kg/m2) of 1.40 (95% CI ¼

0.97 to 2.03), and obese class III (40þ kg/m2) of 1.93 (95% CI ¼

1.15 to 3.22) (Supplementary Figure 1, available online). Hazard

ratios for continuous BMI were highest in the first 10 years of

follow-up (0–4.9 years: HR¼ 1.08, 95% CI ¼ 1.07 to 1.10; 5.0–

9.9 years: HR¼ 1.05, 95% CI ¼ 1.03 to 1.07; 10.0þ years:

HR¼ 0.96, 95% CI ¼ 0.95 to 0.98); the HR for continuous BMI

over the full follow-up period was 1.03 (95% CI ¼ 1.01 to 1.04).

Associations were similar for localized versus regional and

distant cases (Table 2). Overweight and obesity were associ-

ated with nearly threefold (HR¼ 2.93, 95% CI ¼ 1.25 to 6.87) and

greater than fivefold (HR¼ 5.42, 95% CI ¼ 2.24 to 13.1) increased

risks of large (>4 cm) PTCs compared with normal weight and

were not associated with risk of smaller-sized PTCs. Hazard

ratios by BMI category were similar for PTCs of less than 1 cm

and those with missing or unknown size. Overall, BMI was

more strongly associated with PTC risk in men than women

(Supplementary Table 1, available online) (Pinteraction [using

continuous BMI] ¼ .04). Among men, associations were stron-

ger for regional and distant PTC compared with localized PTC.

Statistically significant positive associations were observed

for obesity in both sexes after restricting to PTCs greater than

4 cm at diagnosis (men: HR¼ 7.62, 95% CI ¼ 2.11 to 27.5;

women: HR¼ 3.58, 95% CI ¼ 1.02 to 12.5; Pinteraction¼ .36); no

associations were observed for PTCs 4 cm or less in either men

or women. No statistically significant interaction was ob-

served between age at study entry (<60, 60þ years) and BMI

(continuous) on PTC risk (Pinteraction¼ .07). Overweight and obe-

sity were associated with increased risk of anaplastic thyroid

cancer (n¼ 28; HRs¼ 1.74, 95% CI ¼ 0.63 to 4.77 and 3.59, 95% CI

¼ 1.31 to 9.83, respectively) compared with normal weight.

The prevalence of obesity among NHIS survey respondents

aged 50 years or older increased from 11.2% to 23.8% during

1985–2005, and the prevalence of overweight increased from

29.6% to 37.0% (Figure 1). In comparison, during the same cal-

endar years, baseline (1995–1996) prevalence estimates of obe-

sity and overweight among NIH-AARP participants were

somewhat higher (21.4% and 43.0%, respectively; Table 1).

Combining the NHIS prevalence estimates with the multivari-

able (including sex)-adjusted hazard ratios from the NIH-

AARP study, we estimated that the PAF, or proportion

attributable to overweight and obesity among US adults aged

50 years or older, increased from 11.4% (95% CI ¼ 3.9% to

18.9%) to 16.2% (95% CI ¼ 6.2% to 26.0%) during 1995–2015

(Figure 2). PAFs for the largest PTCs (>4.0 cm) increased from

51.4% (95% CI ¼ 24.2% to 82.0%) to 63.2% (95% CI ¼ 38.2% to

89.7%) during 1985–2005.

Age-standardized incidence rates of PTCs among US adults

aged 60 years or older more than doubled from 1995–1997 to

2013–2015 (from 7.2 to 19.1 per 100 000 per year), with an average

annual increase of 5.9% per year (95% CI ¼ 5.0% to 6.7%) (Table 3;

Figure 2). The average annual increase in incidence was greater

for overweight- and obesity-attributable PTCs (AAPC¼ 7.1%,

Table 1. Baseline characteristics and diagnostic information for indi-
viduals diagnosed with PTC during follow-up (cases) and non-cases
in the NIH-AARP Study, 1995–2011

Baseline or diagnostic characteristic

Cases Noncases

No. (%) No. (%)

Total 604 (100) 456 507 (100)

Sex

Male 248 (41.1) 273 242 (59.9)

Female 356 (58.9) 183 265 (40.2)

Age at baseline, y

50–54 100 (16.6) 62 586 (13.7)

55–59 167 (27.6) 104 002 (22.8)

60–64 168 (27.8) 128 418 (28.1)

65–69 155 (25.7) 145 482 (31.9)

�70 14 (2.3) 16 019 (3.5)

Education

College graduate 237 (39.2) 178 887 (39.2)

Not college graduate 340 (56.3) 265 499 (58.2)

Unknown 27 (4.5) 12 121 (2.7)

Race/ethnicity

Non-Hispanic white 551 (91.2) 418 487 (91.7)

Non-Hispanic black 26 (4.3) 16 975 (3.7)

Hispanic 8 (1.3) 8504 (1.9)

Other 11 (1.8) 7423 (1.6)

Unknown 8 (1.3) 5118 (1.1)

Smoking status

Never 268 (44.4) 166 984 (36.6)

Former 287 (47.5) 233 011 (51.0)

Current 49 (8.1) 56 512 (12.4)

BMI, kg/m2

<18.5 1 (0.2) 3432 (0.8)

18.5–24.9 196 (32.5) 158 930 (34.8)

25.0–29.9 262 (43.4) 196 396 (43.0)

30.0–34.9 96 (15.9) 72 169 (15.8)

35.0–39.9 33 (5.5) 19 676 (4.3)

�40.0 16 (2.6) 5904 (1.3)

Stage

Localized 432 (71.5) —*

Regional 117 (19.4) —

Distant 36 (6.0) —

Unknown 19 (3.1) —

Tumor size, cm

�1.0 185 (30.6) —

1.1–2.0 98 (16.2) —

2.1–4.0 86 (14.2) —

>4.0 50 (8.3) —

Unknown 185 (30.6) —

*Not applicable to noncases. BMI ¼ body mass index; NIH-AARP ¼ National

Institutes of Health-American Association of Retired Persons; PTC ¼ papillary

thyroid cancer.
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95% CI ¼ 5.7% to 8.4%) than for overweight- and obesity-unre-

lated PTCs (AAPC¼ 5.1%, 95% CI ¼ 3.9% to 6.3%) during the

study period. Similar patterns were observed for large (>4 cm)

PTCs.

The rising prevalence of overweight and obesity in the

United States accounted for 13.6% and 57.8% of the increase in

the total (5.9% per year) and large (>4 cm, 4.5% per year) PTC in-

cidence rates during 1995–2015, respectively. In the absence of

overweight and obesity, we would have observed an estimated

0.77, 1.9, and 3.1 fewer PTCs per 100 000 individuals 60 years or

older in 1995, 2005, and 2015, respectively.

Combining our PAF estimates for overweight and obesity in

2015 with projected estimates of thyroid cancer diagnoses in

2019 by the American Cancer Society (27), we estimate that ap-

proximately 7500 of the 47 000 expected PTC diagnoses in the

United States in 2019 will be attributable to overweight and obe-

sity [and 2350 of the 3700 large [>4 cm] PTCs, assuming 8% of all

diagnosed PTCs are >4 cm (28)].

Discussion

Excess adiposity is an important risk factor for PTC (29), and

both the prevalence of overweight and obesity and the inci-

dence of PTC have increased substantially over the past four

decades in the United States (1,19). Our study used an innova-

tive approach that combined relative risk estimates with annual

data from national health surveys and cancer registries to esti-

mate the impact of overweight and obesity on US trends in PTC

incidence rates, overall and stratified by stage and tumor size.

Assuming a causal relationship, we estimated that one in six

PTCs and two in three large PTCs diagnosed among US adults

aged 60years or older in 2015 may have been attributable to

overweight and obesity. Furthermore, we estimated that in the

absence of overweight and obesity, the increase in PTC inci-

dence rates [particularly for the larger tumors, which require

more aggressive clinical management (30)] would have been

substantially lower.

Some have argued that the link between obesity and thyroid

cancer may be at least partly explained by greater diagnostic

scrutiny among patients with an underlying thyroid disorder

(eg, hypothyroidism) or other obesity-related chronic conditions

(31,32). For this to be the sole explanation for our findings, how-

ever, we would have expected overweight and obesity to be as-

sociated with an increased risk of small PTCs, which are more

likely to be incidentally detected and indolent compared with

larger PTCs. Instead, we found that the positive association be-

tween BMI and PTC risk was restricted to large (>4 cm) tumors.

The lack of an association for small PTCs could reflect the

greater challenges in detecting nodules of this size in obese

patients through palpation or imaging (33,34). Greater delays in

diagnosis among the obese participants (thus allowing for

greater tumor growth) and/or more incidental detection of small

PTCs among the normal-weight participants could also explain

the patterns observed. On the other hand, a recent study found

no difference in the method of initial detection of differentiated

thyroid cancer (palpation, imaging, incidental) by obesity status

(35). Without individual-level information on the pathways

through which PTCs were detected and ultimately diagnosed in

the NIH-AARP study, however, we could not fully evaluate or

Table 2. Hazard ratios* and 95% confidence intervals for PTC, overall and by stage and tumor size, according to baseline categories of BMI in the
NIH-AARP Diet and Health Study (1995–2011)

Diagnostic characteristic No. of cases

BMI, kg/m2

HR (95% CI)

<18.5 18.5–24.9 25.0–29.9 �30.0

Total 604 0.22 (0.03 to 1.57) 1.00 (Referent.) 1.26 (1.05 to 1.52) 1.30 (1.05 to 1.62)

Stage

Localized 432 0.30 (0.04 to 2.15) 1.00 (Referent.) 1.25 (1.00 to 1.56) 1.28 (1.00 to 1.66)

Regional and distant 153 —† 1.00 (Referent.) 1.32 (0.90 to 1.93) 1.39 (0.89 to 2.16)

Tumor size, cm

�1 185 — 1.00 (Referent.) 1.28 (0.92 to 1.79) 1.20 (0.81 to 1.78)

1.1–2.0 98 — 1.00 (Referent.) 0.77 (0.48 to 1.23) 1.09 (0.66 to 1.82)

2.1–4.0 86 — 1.00 (Referent.) 1.42 (0.87 to 2.32) 1.04 (0.56 to 1.92)

>4.0 50 — 1.00 (Referent.) 2.93 (1.25 to 6.87) 5.42 (2.24 to 13.1)

Missing or unknown 185 0.74 (0.10 to 5.35) 1.00 (Referent.) 1.30 (0.92 to 1.83) 1.22 (0.82 to 1.82)

*Models used attained age as the time metric and were adjusted for sex, race or ethnicity (non-Hispanic white, non-Hispanic black, Hispanic, other specified, un-

known), education (college graduate or not, unknown), number of drinks of alcohol per week (continuous), and cigarette smoking status (never, former, current). BMI ¼

body mass index; CI ¼ confidence interval; HR ¼ hazard ratio; NIH-AARP ¼ National Institutes of Health-American Association of Retired Persons; PTC ¼ papillary thy-

roid cancer.

†No cases contributed to the category.

Figure 1. Prevalence of overweight and obesity among those 50 years and older

in the United States from National Health Interview Survey, 1985–2005. Obesity

and overweight prevalence estimates for 1986, 1989, and 1996 were estimated by

averaging the surrounding prevalence estimates. A
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control for the effects of healthcare access and utilization on

our results.

Our findings, particularly the strong associations between

BMI and risks of larger-sized PTCs and anaplastic thyroid can-

cer, may also reflect a direct influence of excess adiposity on

differentiated thyroid cancer growth and progression. Larger tu-

mor size is associated with disease-specific survival and recur-

rence (36,37), and anaplastic thyroid cancers are highly lethal

undifferentiated tumors that appear to evolve as part of the

natural course of untreated differentiated thyroid cancer

(38). Although the biological mechanisms underlying the rela-

tionship between adiposity and thyroid cancer are not fully

understood, there have been tremendous advancements in

knowledge regarding the complex mechanisms by which excess

adiposity influences the induction and progression of cancer

more generally (39–41). Many mechanisms, including hyperin-

sulinemia, chronic inflammation, and alterations in circulating

adipokines (including leptin and adiponectin), appear to be

shared across multiple cancer types, whereas others are site

specific (39–41). Prolonged hyperinsulinemia promotes a favor-

able cellular environment for tumor progression, in part,

through reduced production of insulin-like growth factor (IGF)

binding protein-1 and -2 and elevated levels of free IGF-I.

Insulin also directly influences tumor development through

promotional and antiapoptotic effects. Among men and post-

menopausal women, adipose tissue is the major source of estro-

gen exposure, and both obesity and circulating estrogen levels

have been clearly linked to risks of postmenopausal breast and

endometrial cancers (41). With regard to differentiated thyroid

cancer specifically, recent epidemiologic and molecular studies

support a possible mediating role of insulin and IGF-I,

inflammatory, and leptin signaling pathways (17,42–48).

Additional research is needed to better elucidate these and

other plausible biological mechanisms underlying the obesity–

thyroid cancer association, including estrogen- and thyroid

hormone-mediated pathways.

A major limitation of our study was the reliance on self-

reported height and weight data in both the NIH-AARP study

and NHIS (49). Random and systematic errors in the reporting of

weight and/or height may have contributed to the stronger haz-

ard ratio estimates for men compared with women based on

NIH-AARP study data. Previous studies suggested that women

tend to underreport (and men overreport) their weight, and

women and, to a greater extent, men tend to overreport height

(50). Although random errors would have attenuated the hazard

ratios, systematic errors could lead to either over- or underesti-

mated hazard ratios (with estimates of PAF following in the same

direction). NHIS data may have underestimated the prevalence of

overweight and obesity prevalence in the United States, thus con-

tributing to an underestimation of the PAFs (50). Unlike other na-

tional surveillance data, however, NHIS captured height and

weight on an annual basis over the calendar period of interest,

which enabled us to calculate annual estimates of PAF. The NIH-

AARP study also offered several strengths, including the very

large size, long length of follow-up, capture of detailed cancer di-

agnosis data (including histology, stage, and size), and individual-

level information on several potential confounding factors.

Nonetheless, if possible, our findings should be replicated in

studies using measured height and weight data.

Our hazard ratio estimates directly assessed the relationship

between overweight and obesity and PTC risk among middle-

to-older-aged adults in the United States. Thus, our results may

Figure 2. Age-standardized incidence rates of papillary thyroid cancer among those 60 years and older in Surveillance, Epidemiology, and End Results-13, 1995–2015.

Rates presented overall and stratified by overweight- and obesity-attributable and overweight- and obesity-unrelated cases. Annual population attributable fractions

are also presented. Please note the 10-fold difference in scale of the y-axis.
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have limited generalizability to other populations. Similar anal-

yses should be conducted using data from younger populations,

because PTC risk may be more strongly associated with excess

adiposity in adolescence and young adulthood (9,51), possibly

reflecting greater susceptibility to the effects of metabolic and

hormonal influences during periods of development and/or

greater lifetime exposure to such effects (4).

Because PTCs are often slow-growing and there is a poten-

tially large reservoir of undiagnosed indolent disease in the pop-

ulation, PTC incidence rates are highly sensitive to changes in

clinical recommendations affecting detection and diagnosis, in-

cluding those involving guidelines for the management and diag-

nostic work-up of thyroid nodules, thyroid cancer screening,

medical surveillance and diagnostic imaging, and thyroid cancer

coding and terminology (29,31,52–54). In the current study, we did

not attempt to quantify the impact on PTC incidence trends of

changes in medical practice, which appear to affect mostly small

localized PTCs (29,31), or other environmental and lifestyle fac-

tors for PTC (4). Several clinical recommendations recently have

been introduced or changed in response to concerns about thy-

roid cancer overdiagnosis and overtreatment (30,52), which may

have contributed to the plateauing of PTC incidence rates since

2009 (1). In the future, PTC incidence rates may continue to re-

main stable or even decline because of these developments. If the

prevalence of overweight and obesity continues to climb at a

steady pace (19), the fraction of PTCs attributable to excess body

weight also will increase, particularly if the impact of overdiagno-

sis on rising incidence rates subsides.

In summary, our results suggested that overweight and obe-

sity may have contributed importantly to the rapid rise in PTC

incidence during 1995–2015. By 2015, we estimated that one of

every six PTCs diagnosed, including nearly two-thirds of large

PTCs, among adults aged 60 years and older were attributable to

overweight and obesity. Thus, a substantial number of PTCs, es-

pecially larger PTCs, could potentially be avoided by implement-

ing public health interventions targeting overweight and

obesity in the population.
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