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Abstract—Nonlinear frequency-division multiplexing (NFDM)
is a communication scheme in which users’ signals are mul-
tiplexed in the nonlinear Fourier domain. The contributions
of this paper are twofold. First, the achievable information
rates (AIRs) of NFDM based on an integrable model of the
optical fiber are summarized. For this ideal model, it is shown
that the AIR of the NFDM is greater than the AIR of the
wavelength-division multiplexing (WDM) for a given bandwidth
and signal power, in a representative system with five users and
one symbol per user. The improvement results from nonlinear
signal multiplexing. Second, the impact of some of the main
perturbations on NFDM are investigated, including the fiber
loss, polarization effects and the third-order dispersion. For
a realistic non-ideal model, it is shown that the WDM AIR
with joint dual-polarization back-propagation and third-order
dispersion compensation is approximately equal to the NFDM
AIR with two independent single-polarization demodulations and
without third-order dispersion compensation. Using a joint dual-
polarization receiver and perturbations compensation is expected
to increase the NFDM AIR.

Index Terms—Nonlinear Fourier transform, nonlinear
frequency-division multiplexing, wavelength-division
multiplexing, optical fiber communication.

I. INTRODUCTION

O
PTICAL communication systems have experienced an

extraordinary increase in data rates in the past few

decades. One of the enabling technologies is wavelength-

division multiplexing (WDM), which makes efficient use of

the available fiber bandwidth. However, driven by the in-

creased traffic demand, WDM systems are now approaching

their theoretical limits set by fiber nonlinearity.

It is well known that nonlinear interactions pose a limitation

to the achievable information rates (AIRs) in WDM opti-

cal networks [1]. Nonlinear frequency-division multiplexing

(NFDM), a signal multiplexing scheme based on the nonlinear

Fourier transform (NFT), is a promising approach to overcome

the “capacity crunch” problem in WDM optical systems [2]–

[4].

The nonlinear Fourier spectrum consists of a continuous

component and a discrete component. Information transmis-

sion using the continuous spectrum is studied in [4]–[11],

while discrete spectrum modulation is studied in [4], [12]–

[14]. Recent experimental demonstrations of data transmission
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based on the NFT include joint discrete and continuous

spectrum modulation [8]. A record data rate of 32 Gb/s was

demonstrated at OFC 2017 using the continuous spectrum of

NFT and the 32QAM modulation format. A peak-SNR gain of

1.3 dB was achieved over a comparable OFDM system [15];

for comparison, see also [16]–[22].

Previous works have mostly applied the NFT to point-

to-point links, often as a nonlinear compensation scheme.

However, the main potential of NFDM is realized in network

environments. Here, users’ signals are multiplexed in the non-

linear Fourier spectrum in disjoint intervals and, in the absence

of noise, propagate independently in the network. Crucially,

the signals of the user-of-interest (UOI) will not be distorted

by co-propagating signals. As a result, the deterministic inter-

symbol and inter-user interference are simultaneously zero for

all users of a network.

Research in NFDM initially demonstrated proof-of-

concepts, showing how this scheme works in point-to-point

channels. However, the AIRs of the NFDM signals were at

best the same as the AIRs of the WDM signals in these initial

demonstrations [4]. Advances in numerical methods made it

possible to multiplex signals in the nonlinear Fourier domain

and explore the NFT at high powers. The AIRs of NFDM and

WDM were compared for the first time recently in [23], [24]

for fiber in the defocusing regime. It was shown that NFDM

achieves data rates higher than WDM rates, subject to the same

power and bandwidth constraints, in illustrative systems.

The objective of this paper is twofold. First, we summarize

the AIRs of NFDM, compared to WDM, for a given input

power and bandwidth in an ideal integrable model in the

focusing regime. For this model, it is shown that the NFDM

AIR is greater than the WDM AIR in a representative system

with five users and one symbol per use. This part summarizes

the recent conference paper on NFDM [25]. One of the main

limitations of NFDM is that it is based on ideal integrable

models of the optical fiber, for example, with ideal distributed

Raman amplification. It is not clear how NFDM performs in

realistic systems with non-idealities and perturbations. Second,

we study the impact of the following perturbations on NFDM:

fiber loss, periodic amplification, third-order dispersion and

polarization effects. It is shown that using a path-averaged

loss model, the impact of the attenuation (with periodic

EDFA amplification) on NFDM is small. It is shown that

the WDM AIR with joint dual-polarization back-propagation

and perturbations compensation is nearly equal to the NFDM

AIR with two independent single-polarization demodulations
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and without perturbations compensation, in a representative

system with five users and one symbol per user. With joint

dual-polarization transmission and compensation of the same

perturbations in both schemes, the NFDM AIR is expected to

be higher in the considered system. We study the dependency

of the AIRs with the number of symbols. As the number of

symbols is increased, the AIRs of both WDM and NFDM

are decreased. The results of the paper clarify to what extent

NFDM applies to realistic systems.

The paper is presented as follows. In Sec. II, we review

the channel model and explain the origin of the data rate

limitations in today’s optical fiber networks. The NFDM

theory is shortly summarized in Sec. III. The achievable rates

of NFDM and WDM are computed and compared in Sec. IV,

in a multi-user system with five users and one symbol per

user. In Sec. V, NFDM is studied for non-integrable models

with non-idealities and perturbations. After comments on the

complexity of the NFT in Sec. VI, the paper is concluded in

Sec. VII.

II. FIBER-OPTIC NETWORKS

A. Channel Model

Signal propagation in single-mode single-polarization op-

tical fiber with ideal distributed Raman amplification can be

modeled by the stochastic nonlinear Schrödinger equation. The

equation in the normalized form reads

j
∂q

∂z
=

∂2q

∂t2
− 2s |q |2q + n(t, z), (1)

where j =
√
−1 and q(t, z) is the complex envelope of the

signal as a function of time t and distance z along the fiber,

n(t, z) is white Gaussian noise with power spectral density σ2
0

,

and s = 1 in the defocusing regime (normal dispersion fiber),

while s = −1 in the focusing regime (anomalous dispersion

fiber). The signal and noise are band-limited to the same

bandwidth B for all 0 ≤ z ≤ 1. The reader is referred to [2]

for further details about the model, such as the normalization

procedure.

In this paper, we consider a network environment. This is

an optical network with the following set of assumptions: (a)

there are multiple transceiver pairs, (b) there are add-drop

multiplexers (ADMs) in the network; the locations and the

number of ADMs are unknown, (c) each transceiver pair does

not have information of the incoming and outgoing signals in

the path that connects them. In a network environment, the

signal of the user-of-interest co-propagates with the signals of

the other transceiver pairs in the network and, in the case of

WDM, is subject to inter-user interference [4, Sec. II. B.3.].

A typical network environment is depicted in Fig. 1.

B. Capacity Limits of the WDM Networks

WDM systems modulate information in the Fourier basis

corresponding to different frequencies or wavelengths. The

basis elements could be modulated independently at the trans-

mitter, but they couple together in the nonlinear fiber channel.

Consequently, the optical fiber channel can be viewed as

a multi-user interference channel (IC). The capacity of the

Rx

TxTx
TxTx

TxRx

ROADM

Wavelength 1

Wavelength 2

Fig. 1. A network environment with two transceivers.

optical fiber channel is therefore not captured by a single

number. However, in practice, a useful quantity is the sum

rate. Several distinct strategies exist for communication over

an IC: (i) treating interference as noise, (ii) orthogonalization

and (iii) interference alignment. An extensive body of work

exists presenting the AIRs of WDM optical networks, which

are sometimes referred to as the “nonlinear Shannon limit”

[1], [26]–[29]. However, these rates are lower bounds on the

capacity of the user-of-interest, implicitly using strategy (i).

Other strategies for WDM channels, such as (ii) and (iii), exist

as well, which predict different AIRs.

NFDM is an approach based on strategy (ii), i.e., while

WDM treats interference as noise, NFDM is an approach to

channel orthogonalization. We will show in Sec. IV that the

AIR of strategy (i) (WDM) is strictly lower than the AIR of

strategy (ii) (NFDM) at high powers.

III. REVIEW OF NFDM

We briefly review basic NFDM theory from [23]. The

theory in this section applies to both focusing and defocusing

regimes. However, the simulations in the subsequent sections

are presented only for the focusing regime.

Let q̂(λ, z) : R × R+ 7→ D be the nonlinear Fourier

transform of q(t, z) as a function of the nonlinear frequency

λ and distance z, where, in the focusing regime, D is the

complex plane C and, in the defocusing regime, is the unit

disk T = {z ∈ C : |z | < 1}.
In the defocusing regime |q̂(λ, z)| < 1. We thus introduce

the following transformation to map functions with co-domain

D to functions with co-domain C:

U(λ, z) =
(

− s log(1 − s |q̂(λ, z)|2)
) 1

2 e j∠q̂(λ,z), (2)

where ∠q̂ is the phase of q̂. This eliminates the unit peak power

constraint in the defocusing regime. We use the transformation

(2) in both focusing and defocusing regimes. In the defocusing

regime, it is necessary so that the signal space is a vector space.

In the focusing regime it is not necessary, but it makes signal

energies in the time and nonlinear Fourier domain the same,

which is useful.
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Fig. 2. Uniformly-spaced multi-ring constellation in the U-domain

We define a generalized time τ that is related via the Fourier

transform to the nonlinear frequency λ/2π. Let u(τ, z) ↔
U(λ, z) be a Fourier transform pair, i.e.,

u(τ, z) =
√

2F−1{U(λ, z)}. (3)

The factor
√

2 is introduced so that the energy (computed

according to the formulas in [23]) of u(τ, z), U(λ, z), q̂(λ, z)
and q(t, z) are the same; see [23, Eq. 28].

A. NFDM Transmitter

Consider a multi-user system with Nu users, each having

Ns symbols, with total linear bandwidth B and total average

power P. Modulation in NFDM begins by forming

u(τ, 0) =
√

2

Nu
2

−1
∑

k=− Nu
2

Ns
2
−1

∑

ℓ=− Ns
2

skℓ φ(τ − ℓT0)e j2πkW0τ, (4)

where φ(τ) is a root-raised-cosine function with unit energy,

bandwidth W0 and the roll-off factor r , T0 = 1/W0, {sk
ℓ
}ℓ are

the symbols of user k at time instance ℓ chosen from a multi-

ring constellation Ξ; see Fig. 2.

Next U(λ, 0) is computed according to (3) and subsequently

q̂(λ, 0) is obtained as

q̂(λ, 0) =
(

s − se−s |U(λ,0) |2 ) 1
2 e j∠U(λ,0).

Finally, we have

q(t, 0) = INFT{q̂(λ, 0)}.

B. NFDM Receiver

At the receiver, forward NFT is applied to obtain q̂(λ,L) =
NFT{q(t,L)}. Then U(λ,L) and u(τ,L) are computed using

(2) and (3). The received symbols are then obtained by

matched filtering

ŝkℓ =

∫ −∞

∞
u(τ,L)φ∗(τ − ℓT0)e−j2πkW0τdτ.

C. Channel Filter

An important property of the NFT, crucial to the com-

munication problem, is that, in the absence of noise, q̂(λ, z)
propagates in distance according to an all-pass-like filter

q̂(λ, z) = e4jsλ2z q̂(λ, 0). (5)

It can be seen that signal propagation in the nonlinear

Fourier domain is governed by simple multiplication of a filter.

Importantly, the propagation of different nonlinear frequency

components is independent of one another, which is the reason

that multiplexing in the nonlinear Fourier domain is of interest.

The input-output relation (5) is similar to the way that signals

in the (linear) frequency domain propagate in the orthogonal

frequency-division multiplexing (OFDM).

IV. COMPARISON OF THE ACHIEVABLE RATES OF WDM

AND NFDM

In this section, we compare the achievable rates of NFDM

and WDM under the same bandwidth and power constraints

in the focusing regime (corresponding to the standard single-

mode fiber). The material in this section is a summary of the

conference paper [25].

A. AIRs of WDM and NFDM

First a simple multi-user simulation for one signal without

noise is presented to show the origin of the NFDM gain.

We consider a 5-user NFDM and 5-user WDM system with

the same overall linear bandwidth of 100 GHz and total

signal power P = E/T , where E and T are the energy

and time duration of the (entire) multiplexed signal q(t, 0).
Time duration and bandwidth are defined as intervals that

contain 99% of the signal energy. Root-raised-cosine pulses

with roll off factors of 25% and standard single-mode fiber

are considered. We consider one symbol per user with fiber

parameters shown in Tab. I.

Fig. 3(a) shows a WDM signal at the transmitter (Tx)

and receiver (Rx), with total power of 8 dBm (at Tx). The

WDM receiver first filters the UOI and then digital back

propagation (BP) is applied to reverse the intra-channel inter-

actions. The relative error in the frequency domain is defined

as e = ‖q̃( f , z))− q̃( f , 0)‖/‖q̃( f , 0)‖, where q̃( f , t) = F(q(t, z))
after equalization. The mismatch error for the UOI in WDM

is 95%. The resulting mismatch is the component of the non-

linear interactions that cannot be compensated for in network

environments using linear multiplexing. In contrast, NFDM

users do not interfere with one another as shown in Fig. 3(b).

The NFDM signals can be recovered almost perfectly with a

relative error e = 10−3 − 10−9. The Fourier spectra of signals

in both systems are shown in Fig. 3(c). It can be seen that the

amount of the spectral broadening in WDM and NFDM is the

same.

We now turn to the main simulations presenting AIRs.

The mutual information between the input output matrix of

symbols (using WDM or NFDM) can be lower bounded using

the chain rule for mutual information

I({skℓ }; {ŝkℓ }) > I(s0
0; ŝ0

0), (6)

where {sk
ℓ
} and {ŝk

ℓ
} are defined in Sec. III. For channels

with memory, evaluating the left-hand side of (6) is not

computationally feasible. The right-hand side, however, can

be computed, which yields a lower bound on the capacity.

The deterministic component of the channel memory (intra-

channel interactions) is equalized at the receiver in both
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Fig. 3. For the integrable model: (a) interference in WDM; (b) lack of
interference in NFDM; (c) Fourier spectra at distances with maximum input-
output bandwidths. For the lossy model with periodic amplification: (d)
interference in NFDM. Noise is set to zero in these figures.

TABLE I
FIBER AND SYSTEM PARAMETERS

nsp 1.1 spontaneous emission factor

h 6.626 × 10−34J · s Planck’s constant
ν 193.44 THz center carrier frequency

α 0.046 km−1 fiber loss

γ 1.27 (W.km)−1 nonlinearity parameter
D 17 ps/(nm-km) dispersion parameter (s = −1)
L 2000 km transmission distance
W 100 GHz total linear bandwidth
Ro 3 oversampling rate
Wu 20 GHz per-user linear bandwidth
Nu 5 number of users

N 214 number of samples per frame
r 0.25 roll-off factor of the raised-cosine

WDM and NFDM systems, while the stochastic component is

left untreated. Computing the per-sample mutual information

corresponds to ignoring the stochastic memory, which could

potentially be exploited; see Sec. IV-C.

Symbols sk
ℓ

are chosen from a uniformly-spaced multi-ring

constellation Ξ in the U domain (leading to a geometrically-

spaced constellation in the q̂ domain). The constellation Ξ

consists of at most 64 rings and 128 phase points on each

ring (13 bits per symbol). The rotational invariance of both

the channel and Ξ is used to reduce the simulation time.

Noise is introduced in a distributed manner along the fiber.

The noise bandwidth is set to be the maximum of the input-

output signal bandwidth corresponding to the highest energy

signal. The power spectral density σ2
0

of the noise arising from

distributed Raman amplification is the constant nsphpνα for

all z and in-band frequencies, with parameters in Tab. I.

The number of samples in time, linear and nonlinear spec-

trum is 214. The conditional probability density function (PDF)
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Fig. 4. WDM and NFDM AIRs in the integrable model and focusing regime.
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ℜ(ŝ0
0
)

ℑ
(ŝ
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Fig. 5. Constellation in (a) WDM and (b) NFDM in the focusing regime.

p(ŝ0
0
|s0

0
) of the central channel s0

0
7→ ŝ0

0
is calculated based

on 4500 noise realizations. The mutual information is then

maximized using the Arimoto-Blahut algorithm.

The AIRs are plotted in Fig. 4 for the focusing regime. It

can be seen that the AIR of WDM reaches its maximum of

10 bits/2D at a power of -4.5 dBm. In contrast, the AIR of

NFDM reaches a higher maximum of around 11.5 bits/2D at 1

dBm. The apparent saturation of the NFDM AIR is attributed

to neglecting the stochastic memory and numerical error in the

NFT algorithm at high powers, and the potentially non-optimal

constellation; see Sec. IV-C for the explanation.

The received constellations are compared in Fig. 5. It can be

seen that the WDM constellation suffers from significant phase

distortion. There is also a phase rotation, due to cross-phase

modulation, whose average is approximately γLP [30]. On

the other hand, the NFDM received constellation is similar to

that in an AWGN channel [31]: the noise variances (i.e., noise

‘clouds’) are comparably small and approximately equal. The

NFDM scheme is theoretically limited only by signal-noise

interactions, which are observed to be small from Fig. 5 (b).

The conditional PDFs p(| ŝ0
0
|
�
�|s0

0
|) are plotted in [23, Fig. 9

(b)] for several values of |s0
0
|. The conditional PDF in NFDM

is nearly independent of |s0
0
|, suggesting that the channel in the

nonlinear Fourier domain is approximately an AWGN channel.

The conditional PDF in WDM is much more diffused, leading

to a higher conditional entropy and a lower AIR for WDM.

The AIRs of NFDM and WDM in the defocusing regime
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Fig. 6. Transmitted (red triangle) and received (black points) symbols,
showing the SNR loss due to the stochastic memory.

are qualitatively similar to the AIRs in the focusing regime;

the reader is referred to [24, Fig. 6].

We close this subsection by emphasizing that, the result

that the NFDM-AIR is more than WDM-AIR in Fig. 4 is

obtained for Ns = 1 and for an integrable model with single

polarization. The AIRs change with Ns , as shown in [32] for

the optimal scheme (see the dependency of the capacity on n

in [32, Theorem 1]), and in Sec. V-C for NFDM and WDM

with Ns = 15. As a result, the above conclusion remains

to be verified for parameters not considered in this paper,

particularly when Ns > 15.

B. Reducing the Peak-to-Average-Power-Ratio (PAPR)

The NFT signals may have high PAPR in the time domain,

requiring a large number of samples to accurately represent.

We use a simple pre-equalization to reduce the PAPR and the

number of samples.

The idea is similar to the split digital back-propagation in

[33]. Recall that the NFT spectrum evolves according to the

all-pass-like filter (5). We multiply the NFT spectrum by e4jλ2l

at the transmitter for a suitable l, to broaden the signal in the

time domain. A similar idea is proposed by Tavakkolnia et

al. [34]. The two approaches are related and are compared

schematically in Fig. 7. In the simulations presented in this

paper, we used our proposed PAPR reduction approach shown

in Fig. 7 (b), with very small l.

z = −l1 z = 0 z = L− l1 z = L

pre-com

fibre with DPC

fibre without DPC

z = 0 z = l1 z = L z = L+ l1

pre-com

fibre without DPC

fibre with DPC

(a) (b)

Fig. 7. Pre-equalization methods used (a) in [34] and (b) in Sec. IV.

C. Stochastic Memory

Consider the single-input multi-output channel s0
0
7→ {ŝ0

ℓ
}ℓ ,

where {ŝ0
ℓ
}ℓ denotes output symbols for the user-of-interest

after equalization. Using the chain rule for mutual information,

we find

I
(

s0
0; {ŝ0

ℓ }ℓ
)

= I
(

s0
0; ŝ0

0

)

+ I
(

s0
0; {ŝ0

ℓ }ℓ,0

�
�ŝ0

0

)

︸               ︷︷               ︸

stochastic memory

. (7)

The stochastic memory refers to a component of the memory

(intra-channel interactions) that is a function of noise; namely,

it vanishes when noise is set to zero. This is the second term

in (7) and is determined by signal-noise interactions. The

stochastic memory is signal-dependent, growing with the input

power, and cannot be equalized by digital signal processing at

the receiver.

The stochastic memory causes the symbol energy to flow

from s0
0

to ŝ0
ℓ
, ℓ , 0. As |s0

0
| is increased, the stochastic

memory grows because the energy in {ŝ0
ℓ
}ℓ,0 is increased,

leading to a smaller | ŝ0
0
|; see the outer ring in Fig. 5 (b) and

Fig. 6 (a). This amounts to a reduced SNR at the receiver for

the channel s0
0
7→ ŝ0

0
. Since only the first term in (7) is used

for computing the AIR in this paper, a loss of SNR translates

to a loss of AIR. Therefore, the stochastic memory, if not

accounted for, incurs a penalty on the NFDM AIR at high

powers.

The stochastic memory is investigated in a simulation with

5 users and (total linear) bandwidth of 60 GHz. We compare

the extent of the stochastic memory in the fiber channel in the

focusing regime with that in an AWGN channel whose SNR

equals the SNR of the fiber channel. It is shown in Fig. 6 that

the received symbols | ŝ0
0
| in NFDM cluster in a cloud with

a mean smaller than the transmit symbol |s0
0
|. This effect is

the SNR (or energy) loss due to the stochastic memory. The

signal-noise interaction in the focusing regime appears to be

stronger than that in the defocusing regime.

The stochastic memory can be addressed by considering

the single-input multiple-output channel s0
0
7→ {ŝ0

ℓ
}ℓ , instead

of the single-input single-output channel s0
0
7→ ŝ0

0
. Computing

the second term in (7) will improve the NFDM AIR at high

powers. It is expected that the AIR of the NFDM in Fig. 4 will

not roll off at the maximum power P = 2.7 dBm if maximum

likelihood sequence detection is used at the Rx.

Note that the AIRs of different DoFs are not the same.

Different users suffer from the stochastic memory to different

extents. For example, the central user in WDM suffers more

from nonlinear impairments.

V. IMPACT OF PERTURBATIONS AND NON-IDEALITIES

Research on NFDM has so far presented proof-of-concepts,

demonstrating NFDM in ideal or simplified models. There

remain many non-idealities and practical constraints, some

of which are studied in this section. Specifically, we study

the impacts of the loss, periodic amplification, third-order

dispersion, and polarization-mode dispersion.

A. Loss with Periodic Amplification

It is often assumed that the fiber loss can be perfectly

compensated using distributed Raman amplification. However,

many optical systems are based on lumped amplification using

erbium-doped fiber amplifiers (EDFAs). Furthermore, loss is

not completely canceled by Raman amplification. There is

typically some amplitude variation along the link. Consider an
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optical fiber link with periodic lumped amplification. Signal

propagation in one span can be described by

j
∂Q

∂z
= − j

α

2
Q +

β2

2

∂2Q

∂t2
+ sγ |Q |2Q, (8)

where α is the attenuation constant and γ is the nonlinearity

coefficient; see Tab. I. Lumped amplification is performed at

the end of each span of length Lsp = L/Nsp , where Nsp is the

number of spans. After this, amplified spontaneous emission

(ASE) noise is added to the signal, which is usually modeled

as a white complex circular symmetric Gaussian stochastic

process, with the well-known power spectral density (PSD)

for EDFAs; see [35, Sec. 3. 1.3].

Introducing a change of variable

A(t, z) = e
α

2
zQ(t, z),

equation (8) is transformed to

j
∂A

∂z
=

β2

2

∂2 A

∂t2
+ sγ(z)|A|2 A, (9)

where γ(z) = γe−αz . Approximating γ(z) with its average γ̄

in the interval 0 ≤ z ≤ Lsp we obtain

j
∂A

∂z
≈ β2

2

∂2 A

∂t2
+ sγ̄ |A|2 A, (10)

where

γ̄ =
γ

αLsp

(1 − e−αLsp ).

Using parameters in Tab. I and II, we have γ̄ = 0.3364

W−1.km−1. Clearly, (10) can be normalized to (1) according

to the change of variable in [2, above Eq. 3] with the scale

factor P = 2/(γ̄L) = 37.16 × 10−4 W.

As a result, the non-integrable lossy model with periodic

lumped amplification (8) is approximated by the integrable

lossless path-averaged model (10). This approach, dating back

to soliton communication, is successfully applied in [36] to

address the loss problem in NFDM.

The error between the exact model (8) and the path-averaged

model (10) grows linearly with distance and power [36].

It is not clear how an NFDM system designed using the

averaged model (10) works in realistic EDFA-based systems

represented by the original model (8). For example, although

there is no interference in the ideal model in Fig. 3 (b), loss

introduces interference as illustrated in Fig. 3 (d). To examine

the AIRs, we simulate an optical link including loss and

periodic amplification using the parameters found in Tab. II.

The WDM and NFDM received constellations with 4000 noise

realizations are displayed in Fig. 8. It is observed that NFDM

is subject to a more phase distortion compared with NFDM in

the ideal integrable model (compare Fig. 8(a) with Fig. 5 (b)).

Nevertheless, the sizes of the noise clouds in NFDM are still

smaller than those in WDM. This improvement then translates

to a higher AIR for NFDM.

The AIRs of NFDM and WDM in the focusing regime with

loss and periodic amplification are shown in Fig. 9. Although

the AIR of NFDM also rolls off at high powers (potentially

because the path-averaged model breaks down at high power),

it reaches a higher maximum than the maximum WDM AIR.
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Fig. 8. Received constellations of (a) NFDM and (b) WDM systems in the
focusing regime for the non-integrable model.

TABLE II
PARAMETERS OF THE PERIODIC AMPLIFICATION MODEL

Lsp 80 km span length
Nsp 20 number of spans
NF 4.5 dB noise figure of EDFAs
L 1600 km total length

We conclude that NFDM offers a marginal peak-AIR gain

of 0.41 bits/2D compared with WDM when considering an

optical link with loss and lumped amplification.

B. Polarization Effects and Higher-order Dispersion

Two signals modulated in two polarizations of light may

travel at different speeds along the fiber because of the

randomly varying fiber birefringence. This leads to a temporal

pulse broadening that is known as polarization-mode disper-

sion (PMD). There is also third-order dispersion, which can

cause temporal broadening if the signal bandwidth is large.

These two effects have not been accounted for so far.

The propagation of two signals ux and uy in the two

polarizations of light can be described by the Manakov-PMD

equation [37], [38, Eq.(12)]

∂ ®U
∂ℓ
+

α

2
®U + jβ2

2

∂2 ®U
∂τ2
+

β3

6

∂3 ®U
∂τ3

− j
8

9
γ ®U




 ®U






2

= −σ1∆β1

∂ ®U
∂τ

. (11)

Here, vector ®U = [ux, uy]T contains signals in the x and y

polarizations as a function of distance ℓ and time τ (in a certain

frame co-propagating with signal [38]) and σ1 is a Pauli matrix

[37, Eq. (16), with α′(z) = 0], given by

σ1 =

[

1 0

0 −1

]

.

Finally, β2 and β3 are the second- and third-order dispersion

coefficients (that are the same for the x and y polarizations)

and ∆β1 =
1
2

(

β1x − β1y

)

is the differential group delay (DGD)

parameter, where β1x and β1y are the first-order dispersion

coefficients, respectively, for the x and y polarizations. In

practice, ∆β1 varies randomly with distance (see below) and

is responsible for the PMD.

The Manakov-PMD equation (11) is obtained from the

coupled nonlinear Schrödinger equation, under a change of

coordinate system [37]. To account for this in our simulations,
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Fig. 9. AIRs of WDM and NFDM in non-integrable models. The curves
denoted by LOSS correspond to the lossy model with periodic amplification
(no PMD). The points denoted by ALL include all perturbations (loss, PMD
and third-order dispersion).

TABLE III
POLARIZATION AND DISPERSION PARAMETERS

β3 0.06 ps3 · m−1 third-order dispersion coefficient

Dp 0.1 ps/
√

km PMD parameter
ℓc 1 km section length ℓc

we divide the fiber into a large number of small sections, each

with length ℓc . Each small section is simulated according to

(11). At the end of every section, we multiply ®U by a complex

random unitary matrix

R = e jζ

[

e jψ cos θ e jφ sin θ

−e−jφ sin θ e−jψ cos θ

]

,

where ζ, ψ, φ are drawn independently and uniformly from

[0, 2π), and θ = sin−1(√a), where a is drawn uniformly from

[0, 1].
The average amount of pulse broadening due to DGD is

approximately Dp

√
L, where L is the (total) fiber length and

Dp is the PMD parameter [38], [39]. It is customary to draw

the random variable ∆β1 at the end of each section from a real

Gaussian distribution with mean µp = Dp

√
ℓc and variance

σp = 0.2µp [40]. ∆β1 changes independently from section to

section.

The impacts of the PMD and higher-order dispersion on

WDM are well studied. It is shown in [40] that the perfor-

mance improvement in applying BP to WDM saturates due to

PMD as the number of back-propagating channels is increased.

On the other hand, the impact of these effects on NFDM

has not been investigated yet. To clarify this, we carry out

a simulation, with parameters in Tab. III.

We assume that the receiver has the channel state informa-

tion. Under this assumption, all random rotations and random

DGDs during propagation are compensated at the receiver in

both schemes. Note that while the effects of β2 and γ are

equalized in the nonlinear Fourier domain via the channel

filter (5), the third-order dispersion and nonlinear interactions

between the two polarizations act as distortions in NFDM.
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Fig. 10. Received constellations of NFDM and WDM in the focusing regime
with PMD and third-order dispersion, in dual polarization transmission.

In WDM, the UOI is filtered in the frequency domain in

both ux and uy and the resulting vector is back-propagated

according to (11). This includes the inter-polarization non-

linearity mitigation (jointly across x and y) and the third-

order dispersion compensation. Fig. 10 shows the received

constellations for WDM and NFDM with two polarizations.

The corresponding AIRs are shown in Fig. 9. There is a perfor-

mance degradation in both multiplexing schemes compared to

the single polarization case. The AIR of the WDM and NFDM

are nearly equal when all perturbations are included. However,

full dual-polarization BP was applied at the Rx for WDM,

which includes equalizing the in-band inter-polarization non-

linear effects, the third-order dispersion and the per-span loss.

These perturbations were not compensated in NFDM, because

the channel filter exp(4 jsλ2z) in (5) includes only the second-

order dispersion and nonlinearity. Compensating the above

perturbations in the time domain is expected to improve

NFDM.

We conclude that the AIR of the independent single-

polarization NFDM transmission and detection (not using joint

NFT) subject to third-order dispersion and loss is nearly

equal to the WDM AIR with joint dual-polarization back-

propagation and compensation of the third-order dispersion

and loss, in a system with Nu = 5 and Ns = 1. We anticipate

that the NFDM AIR will be higher than the WDM AIR in

comparable systems with joint dual-polarization transmission

and detection and compensation of the same perturbations. In

fact, it has been shown recently that if joint (de)-modulation is

performed across two polarizations in NFDM using the NFT

of the two-dimensional signals, the NFDM outperforms WDM

in terms of Q-factor [41].

The algorithm used in this paper is a simple discrete layer-

peeling method. More accurate algorithms exist that allow

operation at higher powers and reduce the contribution of

the numerical error to the AIR, which is appreciable at high

powers. These better algorithms, such as that in [42], likely

improve NFDM and its AIR presented in this paper.

C. Spectral Efficiency

In the simulations thus far, we considered one symbol per

user and calculated the data rates in bits/DoF. In this section,

we compute the spectral efficiency (SE) in bits/s/Hz.

Numerical computation of the SE is difficult because the

number of symbols Ns should be sufficiently large so that the
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Fig. 11. NFDM signals (a) with and (b) without pre-compensation.

ratio rg of the guard-time to the blocklength is small. With

Ns = 1, the average power and the SE are low in both WDM

and NFDM. Consequently, in the literature the SE is usually

computed by considering the main lobe of the pulse shape

(eg., a root raised-cosine function) as the symbol duration. The

impact of the pulse broadening in time due to dispersion on

the SE is typically ignored because it is assumed that rg → 0

if Ns → ∞. The WDM SEs in the literature are per-sample

mutual information as in Fig. 4, without taking into account

guard-times.

The data rates shown in Fig. 4 were obtained for the same

time duration and bandwidth in WDM and NFDM. As a result,

the gain in SE in bits/s/Hz (ratio of the SE of the NFDM and

WDM) is same as the gain in AIR in bits/DoF. Nevertheless,

its is still instructive to see the absolute numbers for the

approximate SE as well. To do so we consider a system with

Nu = 5 users, Ns = 15 and parameters in Tab. II. The pre-

compensation technique in [34] is used to reduce the guard

time; see Fig. 11 (a)–(b).

Fig. 12 shows the received symbols in the NFDM and WDM

system. It can be seen that the size of clouds is bigger for

Ns = 15 compared to Ns = 1. This effect is attributed to

the growth of the signal-noise interaction with the number of

DoFs, which is fundamental and holds for both WDM and

NFDM [32, Theorem 1]. The SEs of the NFDM and WDM

system are shown in Fig. 13. The split-BP is applied in WDM

simulations so that the signals in the two systems have roughly

the same temporal broadening. The WDM SE is a little greater

than NFDM SE. We attribute this to the fact that the NFT

algorithm, as well as potentially the path-averaged loss model,

become less accurate as Ns is increased.

For clarity, we also compare time duration T , bandwidth

W and guard-time Tg requirement of NFDM and WDM in

Fig. 14. It can be seen that, for a fixed T , W and P at the

input, T and W at the output, and thus Tg, are approximately

the same in both schemes. The maximum input output time

duration and bandwidth is about the same for all values of

powers, around 11 ns and 96 GHz.

A SE of 2 bits/s/Hz was reported in [43], however the

distance and bandwidth are half of their values in this pa-

per. Doubling the distance will double the guard-time, and

also introduce more noise. Although theoretically linear and

nonlinear multiplexing should require approximately the same

guard-time, in practice rg is lower for WDM because trans-

mission is possible for larger Ns . This is however due to the
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Fig. 12. Received symbols in NFDM and WDM with Ns = 15.
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Fig. 13. The SE of NFDM and WDM with Ns = 15 and guard-time. For
dual-polarization transmissions in both systems, the SE and power is measured
per polarization.

lower complexity advantage of WDM, and not a fundamental

performance difference.

The SE may be maximized by generating compact signals

using the periodic NFT [22] or the standard NFT with a

modified modulation [44].

Remark 1. We caution that the SE in the short blocklength

regime depends on the signal set. For a fixed average power

and time duration T , different signal sets can have very

different SEs. We have not maximized SEs at each power in

Fig. 13. Thus, it is difficult to draw definite conclusions on

SEs based on Fig. 13, because the SE appeared quite sensitive

in our simulations.

VI. COMMENTS ON COMPLEXITY

The computational complexity of the NFT with continuous

spectrum in terms of the number of samples N in time is

O[N log2 N] [45]. Lima et al. investigated the required number
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Fig. 14. Comparison of the time duration at the (a) input and (b) output.
Here Nu = 5 and Ns = 15. The time duration at input is Tin ≈ 2.1 ns,
while Tout ≈ 22.3 ns, which can be reduced to 11 ns as shown in Fig. 11.
The temporal expansion ratio for Ns = 15 is 10.

of samples in the nonlinear frequency per processing frame

(resolution spectrum) in terms of the average power in the

defocusing regime [42]. The processing frame is defined as

the pulse duration at the Rx, which is typically longer than

pulse duration at the Tx. It is argued that a prohibitively fine

spectral resolution is needed at high powers for NFDM to be

viable in practice. The algorithm used in [42] is the discrete

layer-peeling (DLP) method used in this paper, but together

with applying the GLM integral equations in each small step

in time. It is known that such refinements of the DLP reduce

the numerical error, albeit with increased complexity.

To reduce complexity, it is desirable to minimize pulse

broadening and the inter-frame guard times. We apply the pre-

equalization proposed by Tavakkolnia et al. (with ℓ1 = L/2).

This causes the signal to contract in the time domain as it

evolves in 0 ≤ z ≤ L/2, and subsequently broaden as it

evolves in L/2 ≤ z ≤ L. Consequently, the signal durations

at the Tx and Rx are similar.

Tab. IV compares the number of samples N in the nonlinear

frequency domain and Ns in NFDM and WDM for one

user with an oversampling rate of 3; see (4). The NFT and

INFT are implemented by the basic forward and inverse DLP

algorithms in the focusing regime, whose details can be found

in [32]. The complexity of the BP algorithm using the split-

step Fourier method is evidently O[MN log N], where M is the

number of segments in distance. In our simulation M = 1600,

corresponding to a step size of 1 km. The complexity of

the two algorithms is compared in terms of the total number

of floating-point operations (FLOPs), which may depend on

details of the implementations. The error Es is the symbol

error defined as ‖{sk
ℓ
} − {ŝk

ℓ
}‖/‖{sk

ℓ
}‖, where {sk

ℓ
} and {ŝk

ℓ
}

are defined in Sec. III.

The NFT algorithms typically work up to a certain power

before numerical error becomes significant. Tab. V shows the

maximum power that can be reached using the basic forward

and inverse DLP with pre-equalization.

It can be concluded that the complexity of the NFT with

the DLP algorithm is substantially higher than the complexity

of the FFT, and rapidly grows with Ns . This seems to be

consistent with the findings of [42] too. The reader is referred

to [42], in which the complexity and the maximum power are

studied in much more detail.

TABLE IV
COMPLEXITY OF NFDM AND WDM

P[dBm] Ns N Es FLOP

NFDM 0.33 27 217 1.13% 2.23 × 1011

WDM 0.33 27 28 0.24% 6.93 × 106

NFDM -0.9 26 214 1.16% 3.49 × 109

WDM -0.5 26 27 0.24% 3.46 × 106

TABLE V
MAXIMUM POWER REACHED BY THE BASIC DLP

P[dBm] Ns N Es

0.33 27 217 1.13%

-0.9 26 214 1%

Note that NFDM currently requires successive NFT and

INFT operations at ADMs digitally in the electrical domain

(thus requiring optical-to-electrical conversion). In WDM,

these operations can be done easily using optical signal pro-

cessing (without expensive optical-to-electrical conversion).

As a result, NFDM is currently impractical. Implementing

NFDM using optical signal processing is an interesting and

important research direction.

VII. CONCLUSIONS

We compared the AIRs of the WDM and NFDM. It is

shown that: (i) the NFDM AIR is greater than the WDM

AIR in an ideal integrable model with five users and one

symbol per user; (ii) the AIR of the independent single-

polarization NFDM transmission and detection (not using

joint NFT) subject to third-order dispersion and per-span loss

is approximately equal to the WDM AIR with joint dual-

polarization back-propagation together with the compensation

of the third-order dispersion and per-span loss, in a system

with five users and one symbol per user. We anticipate that

the NFDM AIR will be higher than the WDM AIR in this

particular system if joint dual-polarization transmission and

detection, and compensation of the same perturbations, in

applied in NFDM.
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