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Impact of Power Grid Strength and PLL Parameters

on Stability of Grid-Connected DFIG Wind Farm
Ju Liu, Wei Yao, Senior Member, IEEE, Jinyu Wen, Member, IEEE, Jiakun Fang, Member, IEEE, Lin

Jiang, Member, IEEE, Haibo He, Fellow, IEEE, and Shijie Cheng, Life Fellow, IEEE

Abstract—This paper investigates the impact of power grid
strength and phase-locked loop (PLL) parameters on small
signal stability of grid-connected doubly-fed induction generator
(DFIG)-based wind farm. Modal analysis of the grid-connected
DFIG wind turbine under different operating conditions and
various power grid strengths are investigated at first. Modal anal-
ysis results reveal that the DFIG connected to a weak grid may
easily lose stability under the heavy-duty operating conditions
due to PLL oscillation. The object of this paper is to identify
the PLL oscillation mechanism as well as influence factors and
propose a damping solution for this oscillation mode. A simplified
linear system model of the grid-connected DFIG wind turbine
is proposed for analyzing the PLL oscillation. Through the
complex torque coefficients method and using this model, the
oscillation mechanism and influence factors including the power
grid strength and the PLL parameters are identified. To suppress
this PLL oscillation, a mixed H2/H∞ robust damping controller is
proposed and designed for the DFIG. Electromagnetic transient
simulation results of both single-DFIG system and multiply-
DFIG system verify the correctness of the analysis results and
effectiveness of the proposed damping controller.

Index Terms—Doubly-fed induction generator (DFIG), small
signal stability, phase-locked loop (PLL), power grid strength,
damping controller.

NOMENCLATURE

β Pitch angle

λ Tip speed ratio

ωB Base speed at the rated frequency

ωr Speeds of wind generator

ωt Speeds of wind turbine

ρ Air density

θs Torsion angle of shaft

Bs Damping coefficient

c,g GSC and grid components
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Cp(β ,λ ) Wind turbine power coefficient

dq Direct- and quadrature-axis components in rotating dq

reference frame

E
′

d ,E
′

q Equivalent internal dq-axis voltages

Hg Inertia constant of wind generator

Ht Inertia constant of wind turbine

i Current

isd , isq Stator dq-axis currents

K Gain coefficient

Ks Stiffness coefficient

Lm,Lrr,Lss Stator, rotor, and mutual inductances

p Signals measured in PLL reference frame

P, I Proportional and integral components

p, i Power and current control loop components

P,Q Active and reactive power

Pm Mechanical power of wind turbine

R Rotor radius

Rs,Xs,X
′

s Stator resistance, reactance and transient reactance

s,r Stator and rotor components

Stip Short-circuit ratio at the PCC bus

Sw f Rated power of wind farm

T
′

0 Stator transient open circuit time constant

Te Electromagnetic torque

Tm Mechanical torque

U Voltage

Urd ,Urq Rotor dq-axis voltages

Usd ,Usq Stator dq-axis voltages

vw Wind speed

Zw f Equivalent impedance of the wind power transmission

system

* Values of reference

I. INTRODUCTION

THE increasing integration of wind power into the power

system will weaken the power grid strength, and the

short-circuit ratio (SCR) at the point of common coupling

(PCC) of wind farm integration will become lower [1]–[3].

Hence, the wind farm is more sensitive to disturbances, which

would deteriorate the stability of the wind power system [4]–

[7]. Especially in the regions where wind energy is far away

from the main power grid, like Northwest China, bulk wind

energy is traveled thousands of kilometers to load centers via

long transmission lines [8]. In recent years, several power

oscillation accidents have occurred, which led to wind turbines

tripping and caused the instability of power systems [9], [10].

Unlike the low frequency oscillation with frequency ranging

from 0.2Hz to 2.5Hz, the frequency of the wind power system
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oscillation ranges from several to dozens of Hz [11], which

is within the frequency range of sub-synchronous oscillation.

Thus, references [11]–[13] formed a set of methods based on

frequency scan and the complex-damping-coefficient analysis

to reveal the mechanism of these oscillations. Moreover,

different control strategies are proposed to suppress such os-

cillations. However, the aforementioned investigations mainly

focus on the power oscillations occurring in the system that

wind power is delivered through series compensated or high

voltage direct current (HVDC) transmission lines [14]. They

are not applicable to the conditions, in which wind power

is exported via alternating current transmission lines without

series compensation.

On the other hand, when wind power is delivered by a

long-distance AC transmission line, the electrical connection

between the wind farm and external power grid is weak. The

power grid strength, which is used to describe the strength of

the electrical connection between the wind farm and external

power grid and parameterized by SCR at the PCC bus of

the wind farm, may be very low. In some cases, the SCR

at the PCC bus of the wind farm is even lower than 3,

which satisfies the weak grid condition defined by the IEEE

Transmission and Distribution Committee as SCR<3 [15].

Therefore, there would be stability problems of the PLL-based

voltage source converter (VSC) [16]–[19] connected to a weak

grid. It has been found that the PLL plays an important role

in the stability of grid-connected VSC, for example, the VSC-

HVDC converter connected to a weak power grid [16]–[18]

and Type 4 wind turbine (PMSG) connected to a weak grid

[20], [21]. However, very few references take the PLL block

as a main issue into consideration when the stability of the

grid-connected DFIG wind farm is analyzed [22]. The power

oscillation problem has threatened the stability of the wind

integrated power system as the penetration level increases.

And for the grid-connected DFIG based wind turbines, the

power oscillations could be observed at the transmission line

of wind integrated power system. Consequently, it is necessary

to establish a detailed model of grid-connected DFIG wind

turbines including the PLL block to analyze the oscillatory

interactions between the wind farm and the grid. What is

more, the influence of the power grid strength and the PLL

parameters on the stability of grid-connected DFIG based wind

farm also need to be investigated in detail.

In [23], [24], it is suggested that the impact of the PLL must

be considered when the DFIG based wind farm integrates into

a weak grid. During the process of the low voltage ride through

of the wind farm, the coupling between the wind farm and the

external AC power grid is weak because the voltage at the

PCC bus is relatively low. When the dynamic characteristic of

the PLL is considered, the loss of synchronism [25] and DC

voltage oscillation [26], [27] will occur in some situations.

Also, when the wind farm is connected into a weak grid

under normal condition, it is reported in [28] that, when the

PLL mode is poorly damped and its frequency falls into the

frequency range of electromechanical oscillations, it would

greatly participate in electromechanical modes. However, the

cause of the controller-interfaced oscillation involving the PLL

is not explained. By using the eigenvalue analysis, it can be

found that the dynamic of the PLL oscillation mode will occur

under serious condition if the line parameter is large enough

[29], [30]. However, the oscillation mechanism of the PLL

mode and how to improve the damping ratio of the PLL mode

still need to be further investigated.

To fill this gap, this paper conducts modal analysis to show

that the PLL oscillation mode is the main reason leading

to instability of the grid-connected DFIG wind turbine. The

object of this paper is to identify the PLL oscillation mech-

anism as well as influence factors and propose a damping

solution for this oscillation mode. The impacts of the PLL

parameters and the power grid strengths on the PLL oscillation

mode are analyzed by using complex torque method and the

proposed simplified linear model. In addition, a mixed H2/H∞

robust damping controller is proposed to suppress the PLL

oscillation phenomenon. Electromagnetic transient simulations

are conducted to verify the correctness of the analysis results

and effectiveness of the proposed damping controller.

In conclusion, the main contributions of this paper are:

• Modal analysis results reveal that the DFIG connected to

a weak grid may easily lose stability under the heavy-duty

operating conditions due to PLL oscillation.

• A simplified linear system model of the grid-connected

DFIG wind turbine is proposed. Through the complex

torque coefficients method and using this model, the

oscillation mechanism and influence factors including the

power grid strength and the PLL parameters are identified.

• To suppress this PLL oscillation, a mixed H2/H∞ robust

damping controller is proposed and designed for the

DFIG. Simulation validation is also conducted.

The rest of this paper is organized as follows. Section II

gives the model of the grid-connected DFIG wind farm. In

Section III, the modal analysis of the grid-connected DFIG

wind farm are analyzed. The simplified model of the grid-

connected DFIG wind farm is proposed and instability mech-

anism is investigated in Section IV. In Section V, a mixed

H2/H∞ robust damping controller is proposed to suppress the

PLL oscillation. Case studies are undertaken in Section VI.

Conclusions are drawn in Section VII.

II. MODEL OF GRID-CONNECTED DFIG WIND TURBINE

The dynamic model of the grid-connected DFIG wind

turbine is recalled in this section including the mechanical

part, generator part, rotor side converter, and PLL.

A. Model of the Mechanical Part

The mechanical part of the wind turbine is mainly to capture

wind energy and convert it into kinetic energy. According to

the theory of aerodynamics, the captured wind power Pm at

wind speed vw is:

Pm =
1

2
Cp(β ,λ )ρπR2v3

w (1)

The wind turbine, generator, gearbox, and shafts could

be modeled as a two-mass drive train. The low-speed shaft

and wind turbine equal to one mass, while the other mass
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represents the high-speed shaft and wind generator. The math-

ematical description of such two-mass driven system is [32]:



























2Ht

dωt

dt
= Tm −Ksθs −Bs

dθs

dt

2Hg

dωr

dt
= Ksθs +Bs

dθs

dt
−Te

dθs

dt
= ωB(ωt −ωr)

(2)

B. Model of the Generator

Under balanced and unsaturated conditions, in the dq-frame,

the stator voltage equation of DFIG is given as follow [32]:
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′
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′
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′
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′

0

E
′

d +
Lm
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1

ωB

d

dt
E

′

q =
Xs −X

′

s

T
′

0

isd +(1−ωr)E
′

d −
1

T
′

0

E
′

q −
Lm

Lrr
Urd

(3)

C. Model of the Rotor Side Converter

The control of the rotor side converter plays an important

role in the operation characteristics of DFIG wind turbines.

The main goal of the rotor side converter is to realize the

maximum power point tracking (MPPT) control of active

power and the unity power factor control of reactive power.

When Urid and Uriq are taken as the disturbance terms to

conduct feed-forward compensation, the current inner-loop

vector control equation of the rotor side converter can be

represented as follows [32]:











U∗
rd =−(KriP +

KriI

s
)(i∗rd − ird)+Urid

U∗
rq =−(KriP +

KriI

s
)(i∗rq − irq)+Uriq

(4)

Ignoring the impact of the stator flux and the terminal

voltage, the active power output of the wind turbine mainly

depends on the d-axis rotor current, the reactive power output

mainly depends on the q-axis rotor current, so the control

strategy of the power outer-loop is [12]:











i∗rd =−(KrpP +
KrpI

s
)(P∗

s −Ps)

i∗rq =−(KrpP +
KrpI

s
)(Q∗

s −Qs)

(5)

D. Model of the PLL

The proportional and integral (PI)-based PLL in the generic

synchronous frame is shown in Fig. 1, where KP and KI are

the proportional and integral coefficients of the PLL. The input

voltage U∠α satisfies:

U p
q =U sin(θ p −α)≈U(θ p −α) (6)

The linearization model of the PLL system can be repre-

sented as:

{

s∆θ p(s) = ∆ω p(s)

∆ω p(s) =−∆U
p
q (s)(KP +KI/s)

(7)

Fig. 1. PLL structure based on d-axis orientation

If U
p
q = 0, the phase angle θ p obtained by the PLL is

the same with the phase angle α of the input voltage, which

realizes the phase tracking. However, when the external power

system is weak, oscillation will occur at the PLL loop. The

frequency calculated by the differential of θ p oscillates and

deviates from 50 Hz. By affecting rotor side converter control

signals, this oscillation would lead to the oscillation of the

DFIG output power. The dynamic characteristic of the PLL is

usually neglected for small signal stability analysis of DFIG

[18], [19]. In this paper, to take the influence of the PLL into

account, the dq voltages U
′

rdq and currents I
′

rdq of the rotor side

converter should be obtained by using the phase θ p observed

by the PLL.

E. Single Grid-Connected DFIG Wind farm

DFIG

s
i t

U
1
T

1T
X

1
L

1 1L L
R X+

2
L

2 2L L
R X+

b
U

RSC GSC

dc
U

r
U

r
i

Grid Side Filter

Infinity Bus

Fig. 2. Single grid-connected DFIG wind farm

For a single grid-connected DFIG wind farm illustrated in

Fig. 2, this paper defines the SCR at the PCC bus of the wind

farm, named Stip, as the ratio of the short-circuit capacity to

the rated capacity of the wind farm. Thus, the SCR at the

PCC bus equals to the ratio of the equivalent admittance of

the wind power transmission system to the rated power of the

wind farm:

Stip = 1/(|Zw f |Sw f ) (8)

F. Flowchart of the Proposed Approach

After building the detailed model of the grid-connected

DFIG wind farm, an approach is proposed to investigate the

impact of power grid strength and PLL parameters on stability

of grid-connected DFIG wind farm. The flowchart of the

proposed approach is depicted in Fig. 3. The detail of how to

use this approach will be introduced in the following sections.
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Detailed model of grid-connected DFIG 

including PLL is built and linearized

Conduct modal analysis and find the 

critical mode

The simplified complex torque model of 

the wind turbine is proposed

Instability mechanism analysis is conducted 

by Complex Torque Coefficients Method

Design damping controller to suppress the 

critical oscillation mode

Validation by Electromagnetic transient 

simulation

Start

End

Fig. 3. Flowchart of the proposed approach

III. EIGENVALUE ANALYSIS UNDER DIFFERENT POWER

GRID STRENGTHS AND PLL PARAMETERS

In order to investigate the small signal stability of the grid-

connected DFIG wind farm shown in Fig. 2, its dynamic model

including the PLL block is established in Matlab/Simulink.

And the linearized model is obtained from this non-linear

model by using the Control Design Toolbox/Linear Analysis

provided in MATLAB [31]. The DFIG depicted in Fig. 2

is an equivalent generator of 5 wind farms. The total rated

power of the wind farms is 200 MVA. The base power of

the system is 100MVA. The base voltages of all buses are

their rated voltages. The parameters of the DFIG could be

found in [32]. Then this system is linearized at its equilibrium

point, and modal analysis is conducted under different cases.

Comparative studies are conducted when the DFIG is operated

under the sub-synchronous state, the synchronous state, and

the super-synchronous state, respectively. The influences of

power grid strengths and PLL parameters are also investigated.

A. Modal Analysis of Grid-Connected DFIG Wind Farm

When the equivalent impedance of the wind power transmis-

sion system is Zw f =0.0378+j0.1675, the SCR is Stip=3. The

power output of the DFIG is set as 2 p.u.. Modal analysis

results are listed in Table I. Since we only concern the

conjugate roots, the negative real roots are not listed here.

It can be found that there are three oscillation modes in the

grid-connected DFIG wind turbine. Mode 1 is related to the

equivalent internal d-axis and q-axis voltages E
′

d , E
′

q. Thus,

it is an oscillation mode associated with stator voltage. The

oscillation frequency of this mode is close to 50 Hz and its

damping ratio is 1.4%. Mode 2 is mainly related to the two

state variables of the PLL block, ω p and θ p. The participation

factors of all states in the PLL mode are depicted in Fig. 4.

Thus it is a PLL oscillation mode. The oscillation frequency

of the PLL mode is about 12 Hz and its damping ratio is 48%.

Mode 3 is related to the rotor speed ωr and the torsion angle

θ s of the shaft, thus it is a mechanical oscillation mode. Its

oscillation frequency is about 3 Hz and damping ratio is 12%.

TABLE I
MODAL ANALYSIS OF GRID-CONNECTED DFIG

Oscillation Damping Participating Oscillation
No Frequency Ratio Variables Mode

1 49.84 0.014 E
′

d ,E
′

q Stator Voltage

2 12.03 0.475 ωp,θp PLL

3 3.16 0.117 θs,ωr Mechanical

0
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0.4

0.6

pwpq 1
X 2

X
3
X

4
X ' '

, , ,etcd q rE E wpwpq 1
X 2

X
3
X
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X ' '
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Variables of Wind turbine and 

generator
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P
a

r
ti

c
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a
ti

o
n

 f
a

ct
o
r

Fig. 4. The participation factor of the states in the PLL mode

B. Oscillatory Characteristics under Sub-synchronous State

When the wind speed is 7.2m/s, the rotor speed of the

equivalent DFIG is about 0.8p.u., and the active power output

of the DFIG is 0.59 p.u.. By gradually increasing the length of

transmission lines, the equivalent impedance Zw f will increase

from 0.0218+ j0.0932 to 0.1134+ j0.4846, and then the SCR

Stip will decrease from 5.2 to 1 accordingly. The changes of

the eigenvalues of the above three concerned modes with Stip

are shown in Fig. 5. It can be found that, the mechanical

oscillation mode is mainly affected by the state variable θs

and ωr. The impact of the power grid strength on those two

state variables is relatively small. Thus the damping ratio of

the mechanical oscillation mode almost remains constant with

the decrease of Stip. Whereas the damping ratio of the stator

voltage oscillation mode increases slightly, the damping ratio

of the PLL oscillation mode decreases significantly. Since the

active power output of the DFIG is relatively small, the load

of the transmission line is low. Thus, all the eigenvalues locate

in the left half of the complex plane.

PLL oscillation mode

Stator voltage oscillation mode

Mechanical oscillation mode

-2.3 -2.2 -2.1
19.5

20

20.5

Fig. 5. Dominated eigenvalues of the grid connected DFIG under
sub-synchronous state

C. Oscillatory Characteristics under Synchronous State

When the wind speed is regulated, the rotor speed of the

equivalent wind turbine changes to 1 p.u. The wind turbine

operates at the synchronous state and the active power output

is 1.16p.u. With the Stip varies from 5.2 to 1, the eigenvalues

of the three concerned modes are shown in Fig. 6. Similar

analysis results can be obtained. When Stip decreases, the
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eigenvalues of the mechanical oscillation mode almost has

no change, whereas the damping ratio of the stator voltage

oscillation mode increases slightly, and the damping ratio of

the PLL oscillation mode decreases significantly. Although the

active power output of the wind farm is still small, the damp-

ing ratio of the PLL oscillation mode becomes significantly

smaller than that in the sub-synchronous state.

PLL oscillation mode

Mechanical oscillation mode

Stator voltage oscillation mode

-2.3 -2.2
19.5

20

20.5

Fig. 6. Dominated eigenvalues of the grid connected DFIG under
synchronous state

D. Oscillatory Characteristics under Super-synchronous State

In the rated operation state, the rotor speed of the DFIG is

1.2 p.u. and the active power output is 2 p.u. It is a typical

super-synchronous operation state. When the Stip decreases

from 5.2 to 1.38 by changing the length of the transmission

lines, the eigenvalues of the three concerned modes are shown

in Fig.7. It can be found that the damping ratio of the stator

voltage oscillation mode increases slightly with the decrease of

Stip. However, the damping ratio of the PLL oscillation mode

decreases significantly. When Stip equals to 1.38, the load of

the transmission line is relatively heavy, and the eigenvalues

of the PLL oscillation mode move to the right half of the

complex plane. It becomes the first unstable mode. Obviously,

when bulk wind power is exported via a long transmission

line, the unstable PLL oscillation mode would lead to system

instability.

The stability of the DFIG based wind farm is affected by

both the power grid strength (the SCR) and the operation state

(the power output). It can be observed that the damping ratio

of the PLL oscillation mode would decrease when the wind

power exported increases or the Stip of the wind power system

decreases.

-2.3 -2.2 -2.1
19.5

20

20.5

Stator voltage oscillation mode

PLL oscillation mode

Mechanical oscillation mode

Fig. 7. Dominated eigenvalues of the grid connected DFIG under
super-synchronous state

E. Impact of PLL Parameters on Oscillatory Characteristic

As mentioned above, the DFIG connected to a weak grid

may easily lose stability under the heavy-duty operating con-

ditions. Thus, the DFIG based wind farm operated under the

super-synchronous state is chosen to analyze the impact of

PLL parameters on the oscillatory characteristic. Under such

a scenario, the SCR at the PCC bus is 1.68 and the integral

coefficient KI of the PLL is 333. When the proportional coeffi-

cient KP of the PLL increases from 20 to 100, the eigenvalues

of the oscillation modes are shown in Fig. 8. Since the stator

voltage oscillation mode and the mechanical oscillation mode

are mainly dominated by the state variables E
′

d , E
′

q and ωr,

θs, both the two modes are almost unaffected by the PLL

parameters. The eigenvalues of those two oscillation modes

slightly change when KP increases. However, the parameters

of the PLL have a significant impact on the PLL oscillation

mode. The oscillation frequency of the PLL oscillation mode

will increase when KP increases, and the damping ratio of this

oscillation mode will decrease. If the proportional coefficient

KP is too large, the PLL oscillation mode will lose stability.

-2.3 -2.2 -2.1
19.5

20

20.5

Stator voltage oscillation mode

PLL oscillation mode

Mechanical oscillation mode

Fig. 8. Dominated eigenvalues of the grid connected DFIG with the
increase of the PLL parameters

In summary, both the power grid strength and the operation

state can influence the stability of grid-connected wind farm.

Especially, the DFIG connected to a weak grid may easily lose

stability under the heavy-duty operating conditions. Just like

the low frequency oscillation of the conventional synchronous

generator, power oscillation of the DFIG based wind farm will

occur when bulk wind power delivered via long transmission

lines. Thus, if a contingency happens and leads to the outage

of one transmission line, the Stip of the power grid would

become relatively low. Hence, the system is in the high risk

of the oscillation caused by the PLL oscillation mode when the

power output of the wind farm is high. Also, the stability of

the PLL oscillation mode is affected by the PLL parameters.

When the gain of the PLL is too high, the damping ratio of the

PLL oscillation mode will become negative, and the oscillation

of the wind power system may occur.

IV. INSTABILITY MECHANISM ANALYSIS BY COMPLEX

TORQUE COEFFICIENTS METHOD

To investigate the instability mechanism of the PLL oscilla-

tion mode, this section proposes a simplified complex torque

model of the wind turbine and investigates the impact of power

grid strengths and parameters of PLL on the system stability.

A. Complex Torque Model of the Wind Turbine

Like the complex torque model of the synchronous genera-

tor, the structure of PLL can be turned into the format shown

in Fig. 7(a). For the convenience of description, it is called
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the control loop including the PLL block in this paper. G1(s)
denotes the transfer function from the phase angle ∆θp to the

q-axis bus voltage ∆U
q
p both measured by the PLL.

The transfer function G1(s) represents other parts of the

grid-connected DFIG-WT excluding PLL block. The detailed

transfer function of G1(s) is very complicated and cannot be

represented as a simple formula directly. Under a specific op-

erating condition, the bode diagram of G1(s) can be obtained

by linearizing of the nonlinear model of the grid-connected

DFIG wind turbine excluding PLL block. According to the

participation factor of the states in the PLL mode depicted in

Fig. 4, it can be found that the PLL mode is mainly related

to the PLL states and controller states of the RSC converter.

Therefore, the dynamic states of wind turbine and DFIG can be

ignored for analyzing PLL mode only. In addition, the resistor

of the long transmission line can also be ignored. Based on the

above simplification, a simplified model G1(s) depicted in Fig.

10 is proposed for analyzing PLL mode. Note that Xw f is the

equivalent reactance of the wind power transmission system,

which is related to SCR of the power grid. U
′

rd and U
′

rq are

the rotor dq axis voltage in the converter dq-frame. The bode

diagram of the simplified model and detailed model G1(s) is

shown in Fig. 11. It can be found that the bode diagram of

the simplified model is almost the same as that of the detailed

model in the range of 3 to 100Hz. Since the frequency of the

PLL mode is around 10Hz, the proposed simplified model can

be used for analyzing PLL mode.

According to the complex torque method, the relationship

among the voltage deviation ∆Ue measured by the PLL, the

phase angle deviation ∆θ p, and the frequency deviation is [30]:

∆Ue = KS(s)∆θ p +KD(s)∆ω p (9)

where, KS(s) and KD(s) denote the synchronizing and damping

torque coefficient, which are closely related to the oscillation

frequency. According to (9), the relationship between the

above variables could be illustrated by vectors as shown in

Fig. 7(b). If ∆Ue locates in the first quadrant, its projections

on the ∆θ p axis and ∆ω p axis are both positive and the system

is stable. If ∆Ue locates in the third quadrant, its projection on

the ∆ω p axis is negative, the damping of the PLL oscillation

mode is negative and the power oscillation may occur. The

relationship between the ∆Ue vector and the ∆θ p vector is

determined by the following transfer function:

GPLL(s) =
∆Ue

∆θ p
=

KI +KPs

KI

G1(s) (10)

The location phase of ∆Ue in the complex plane can be

obtained by formulating GPLL(s) and calculating its phase

angle. Also, the eigenvalues of the PLL oscillation mode can

be approximated by [30]:

SPLL =−KD ±
1

2

√

K2
D −4KIKS (11)

From (11), it can be concluded that the larger the gain of the

control loop including the PLL block is, the larger the KS(s)
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and KD(s) coefficients are, and thus the oscillation frequency

of the PLL oscillation mode will also be large.

B. Influence Factors of System Small Signal Stability

According to (10), the phase characteristics of GPLL(s) are

determined by G1(s) and (KI +KPs)/KI . The former one is

closely related to Stip and the latter one is related to PLL

parameters. In the following part, the impact of Stip and PLL

parameters on the PLL oscillation mode is investigated.

1) Power Grid Strength: The DFIG is set to operate at the

rated state, and the output active power is 2 p.u. With typical

PLL parameters (KP = 74, KI = 333), taking ∆θ p as input and

∆Ue as output, the bode diagram of this wind power system

under different Stip is shown in Fig. 12. Since the gain of

GPLL(s) is more than zero dB, the GPLL(s) control loop would

amplify the input signal. Therefore, only when the GPLL(s) is a

negative feedback control loop, ∆Ue will be located in the first

quadrant, the damping ratio of the PLL mode will be positive.

Otherwise, the damping ratio of the PLL mode is negative,

and the wind power system could not keep stable.

13.6Hz

Stip decreases

Stip decreases

Fig. 12. Bode diagram of open loop PLL control loop under different Stip

From the eigenvalue analysis, it is found that the oscillation

frequency of the PLL oscillation mode is 13.6 Hz. Since the

gain of the GPLL(s) almost keeps constant around 13.6 Hz

when Stip changes, thus the oscillation frequency of the PLL

oscillation mode would almost remain unchanged. Assuming

that the oscillation frequency of the PLL mode equals to 13.6

Hz, the phase angle θGPLL
of the GPLL(s) control loop will

decrease with the decrease of Stip. Namely, the angle between

the ∆Ue vector and ∆θ p vector in the complex plane will

decrease accordingly. Thus, the projection of the ∆Ue vector

on the ∆ω p axis decreases, and the damping torque coefficient

and damping ratio of the PLL mode decrease. Particularly,

when Stip decreases to 1.38, θGPLL
is -6.93 degrees. The

vector ∆Ue locates in the fourth quadrant, and its projection

on the ∆ω p axis is negative. The PLL oscillation mode will

be excited, and the power oscillation of the wind farm will

occur. It can be concluded that the damping ratio of the PLL

oscillation mode decreases with the decrease of Stip, and the

system will be unstable if Stip is lower than a critical value.

2) PLL Parameters: PLL parameters mainly affect the

GPLL(s) in two aspects. One is the gain of the control loop

including the PLL block. The larger the gain of the control

loop including the PLL block is, the higher the oscillation

frequency will be. The other is the value of KP/KI , which can

change the phase-frequency characteristic of the control loop

including the PLL block. The larger KP/KI is, the larger the

phase angle of (KI +KPs)/KI is. In order to investigate the

effect of PLL parameters on PLL mode, when Stip is set to be

1.38, the output power of the DFIG is 2 p.u., and KI is 333,

the bode diagrams of GPLL(s) with the KP increasing from 24

to 84 are shown in Fig. 13.

Kp increases

Kp increases

Oscillation 

frequency 

increases

Fig. 13. Bode diagram of the control loop including PLL under different
KP

As shown in Fig. 13, the phase angle of GPLL(s) will

increase with the increase of KP in the low frequency range

from 1 to 10 Hz. Thus, the increase of KP will improve the

damping ratio of the oscillation mode in this frequency range.

However, the frequency of the PLL mode is about 12 Hz.

Even if the value of KP/KI changes significantly from 0.07 to

0.25, it has little impact on the phase angle of (KI +KPs)/KI

in the high frequency range. As the gain of (KI +KPs)/KI

will increase with the increasing of KP, the magnitude of the

vector ∆Ue will increase accordingly, leading to the increase of

KD and KS. Thus, the oscillation frequency of the PLL mode

will also increase. According to Fig. 13, it is easy to find

that the phase margin of the PLL mode will decrease with the

increase of the oscillation frequency. Thus the damping ratio of

the PLL mode will decrease, and the wind power system will

lose stability when the oscillation frequency exceeds a critical

value. Similarly, if KI is too large, the gain of the control loop

including the PLL block is also high, and the damping ratio

of the PLL mode would be negative.

In conclusion, Stip mainly influences the phase frequency

characteristics of the control loop including the PLL. The

phase margin of the PLL oscillation mode decreases with

the decrease of Stip. When Stip is too low, the grid-connected
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DFIG wind turbine will lose stability for the PLL mode lacks

of damping. PLL parameters mainly influence the oscillation

frequency of the PLL mode. If the gain of the control loop

including the PLL block increases, the oscillation frequency

of the PLL mode will also increase. The wind power system

would oscillate for lack of damping. However, if the values of

KP,KI are too small, the PLL cannot obtain the phase change

of the power system accurately. Low gain of the control loop

including the PLL block would deteriorate the synchronizing

ability of the grid-connected DFIG wind turbine.

V. DAMPING CONTROLLERS DESIGN FOR DFIG
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Fig. 14. Complex torque analysis of PLL

To suppress the PLL oscillation, the damping controller

shown in Fig. 14 is proposed for the DFIG. This damping

controller takes ∆θ p as input and adds its output ∆Qra on

reactive power reference of RSC to form the additional ∆Uea

component. G2(s) is the transfer function from ∆Qra to the

voltage ∆Uqa. GP(s) is the transfer function of the damping

controller.

A. Design of Mixed H2/H∞ Robust Damping Controller

W3(s)K(s) P(s)

W1(s)

W2(s)

e u

w

y
r

Z2

Z  

(a) Robust damping controller

Im

ReAdmissible 

pole region

(b) Pole placement region

Fig. 15. Block diagram of the mixed H2/H∞ robust damping controller

In order to achieve the robustness under a wide range of

system operating conditions, a mixed H2/H∞ robust damp-

ing controller (MRDC) is proposed to suppress the PLL

oscillation. The configuration of the mixed H2/H∞ robust

damping controller is shown in Fig. 15(a). To achieve a good

response and avoid the fast dynamics and high-frequency

gain in the controller, all closed-loop poles are configured in

the expected region of the left-half plane, as shown in Fig.

15(b). By applying this multi-objective synthesis approach,

the controller could not only has good robustness against

uncertainty, but also give good dynamic performance to the

system. The detailed description of an LMI approach to such

a complex problem of mixed H2/H∞ robust damping control

with regional pole placement has been given out in [33], [34].

For the single grid-connected DFIG wind farm power sys-

tem, weighting functions of the controller are given by

W1(s) =
10

s+10
, W2(s) = 0.001, W3(s) =

40s

s+40

Thus, the transfer function of the controller GP(s) for the

single-DFIG system depicted in Fig. 2 is,

GP(s) =
0.661s2 +38.33s+89.52

s3 +6.548s2 +49.6s+19.29

Similarly, the transfer functions of the controller GP(s) for the

multi-DFIG system depicted in Fig. 19 is,

GP(s) =
0.96s2 +19.87s+43.56

s3 +7.93s2 +22.84s+37.65

B. Design of Phase Compensation Damping Controller

In this paper, the widely used phase compensation damping

controller (PCDC) used in [35], [36] is designed for com-

parison. The PCDC consists of two lead-lag elements and its

transfer function is

GP(s) = KPC

TW s

1+TW s
(

1+αT s

1+T s
)2 (12)

where, TW is the washout time constant, T and α are the time

constant and coefficient of the lead-lag part, respectively, KPC

is the gain of the controller.

The parameters of PCDC are designed based on the residue

method and the linearization model of the benchmark under

a special operation condition. Usually, TW could be chosen as

3∼10 seconds. In this paper, TW is chosen to be 3 seconds

to isolate the DC component and pass the signal in the

PLL oscillation frequency ranges. Thus, the parameters of the

PCDC of the single grid-connected DFIG system depicted in

Fig. 2 are α = 4,T = 0.075,KPC = 0.2, while the parameters

of the PCDC designed for the wind turbines in WF A of

the multi-DFIG system depicted in Fig. 19 are α = 5.4,T =
0.055,KPP = 0.6.

C. Design of LQR-based Damping Controller

In addition, the linear quadratic regulator (LQR) proposed

in [37] is also designed for comparison. The detailed design

procedure can refer to [37] and is omitted here for page

limitation.

Compared with the damping controller proposed in [35]–

[37] for DFIG used for damping low frequency oscillations,

the proposed mixed H2/H∞ damping controller in this paper

is used for damping PLL mode. In addition, the conventional

lead-lag structure-based damping controller [35], [36] and

the LQR-based damping controller [37] are also designed

for damping the PLL mode for comparison. Obviously, other

advanced control techniques can also be adopted for designing

advanced damping controller to improve the damping perfor-

mance of the PLL mode.
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VI. SIMULATION VALIDATIONS

A. Single Grid-Connected DFIG System

To validate the effectiveness of the proposed MRDC, the

detailed electromagnetic transient model of the grid-connected

DFIG wind turbine shown in Fig. 2 is established in P-

SCAD/EMTDC environment. The output power of the wind

farm is 2 p.u., and is delivered through the double-circuit

transmission lines. In this situation, the pre-fault Stip of the

wind farm is about 2.5. One of the parallel transmission lines

occurs a three-phase-to-ground fault at 3s and is switched

off at 3.05s. Consequently, the post-fault Stip of the wind

farm decreases to 1.38. The response of the voltage at PCC

bus, the frequency deviation at the PCC bus, and the power

output of the wind farm are shown in Figs. 16 and 17. It

can be found that the post-fault power output of the wind

farm oscillates with the frequency about 10Hz. Meanwhile,

the frequency deviation of the wind power system measured

by the PLL also oscillates with the same frequency. Therefore,

it can be concluded that the oscillation of the wind power

system is dominated by the PLL mode. It can also be found

from Figs. 17 that the MRDC, PCDC, and LQR can suppress

the oscillation of the PLL mode effectively. Moreover, the

performance of system with the proposed MRDC is better than

that of system with the PCDC and is similar to that of system

with the LQR. By using the proposed damping controller,

the power output of the wind farm could be stabilized, and

the frequency deviation measured by the PLL at the PCC

bus attenuates to zero rapidly. The resonance phenomenon of

the voltage at the PCC bus is also avoided. These simulation

results demonstrate that the proposed damping controller could

improve the small signal stability of the wind power system

at low SCR situation significantly.

To verify the adaptability of the proposed damping con-

troller, the length of wind power transmission lines is increased

to set the Stip = 2.2 under the nominal operating conditions.

When one of the transmission lines is switched off due to

the fault at 3 s, the Stip of the wind farm will decrease to

1.2. The responses of the test system at this situation are

shown in Fig. 18. Compared with Fig. 17, it can be seen that

with the decrease of Stip, the damping ratio of the PLL mode

decreases, the frequency deviation oscillates more rapidly

and the oscillation magnitude is larger. Similarly, the active

power output of wind farm oscillates with larger oscillation

magnitude and the beat phenomenon of the voltage at the PCC

bus is more evident. Fig. 18 shows that the proposed MRDC

is adaptive to different operating conditions. In addition, the

performance of the proposed MRDC is slightly better than that

of the LQR.

B. Multiply Grid-Connected DFIG System

In order to further verify the analysis and validity of the

proposed controller, the multiply grid-connected DFIG System

depicted in Fig. 19 is used for test system. WF A is composed

of five 10MW equivalent wind turbines, whose wind speed is

9, 10, 11.4, 12, 13m/s, respectively. The transmission line 17-

18 is replaced with two parallel lines. The detailed parameters

of the test system can be found in [38].
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.

At 5s, one of the parallel lines is removed, the response of

the system with MRDC, with PCDC, and without damping

controller are shown in Fig. 20. When one of the parallel

lines is removed, the SCR of the power grid decreases and

the damping ratio of the PLL mode is not enough. It can be

found from Fig. 20 that the both the MRDC and PCDC can

also effectively suppress this PLL oscillation for a multiply
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Fig. 19. The multiply grid-connected DFIG system

grid-connected DFIG System. Moreover, the performance of

system with the proposed MRDC is better than that of system

with the PCDC. Therefore, both the frequency oscillation of

the PCC voltage and the active power oscillations of wind

farm will be quickly suppressed. In addition, the frequency

response of the each wind turbine in WF A, the frequency

response of WF B, rotor speed and active power of G2 under

this situation without the damping controller are depicted in

Fig. 21. It can be found that both the frequency deviation of

WF B and rotor speed deviation of G2 are much less than the

frequency deviation of WF A. Therefore, it can be concluded

that the PLL mode oscillation is the inner oscillation in WF

A and almost no interaction with the synchronous generator

and other wind farm.
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Fig. 21. Response of the multi-DFIG system without the damping
controller

VII. CONCLUSIONS

This paper establishes a dynamic wind turbine model

including the detailed characteristics of the PLL block to

investigate the power oscillation of the grid-connected DFIG

wind turbine. Modal analysis results indicate that the power

oscillation phenomenon of the grid-connected DFIG wind tur-

bine is closely related to the oscillation mode dominated by the

state variables of PLL block, which is called PLL mode in this

paper. Modal analysis results reveal that reason of the DFIG

connected to a weak grid may easily lose stability under the
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heavy-duty operating conditions. A simplified linear system

model of the grid-connected DFIG wind turbine is proposed

for analyzing the PLL mode. The frequency response of the

closed-loop system including PLL shows that the grid strength

at the PCC bus mainly influences the phase characteristics,

while the PLL parameters mainly influence the magnitude

characteristics. Low grid strength or high gain in the control

loops could reduce the damping ratio of the PLL oscillation

mode. In order to suppress the power oscillation in PLL

mode, a mixed H2/H∞ robust damping controller is proposed

and designed for grid-connected DFIG. The electromagnetic

simulation results of both the single and multiply DFIG

systems not only verify the analysis conclusions, but also

demonstrates the effectiveness of the proposed mixed H2/H∞

robust damping controller. Note that the proposed method

can also be generalized to analyze and damp the oscillation

phenomenon of the other renewable generation systems like

grid-connected photovoltaic system, grid-connected PMSG

system. The experimental validation will conducted in our

future work.
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