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Abstract

After the outstanding breakthrough of AlphaFold in predicting protein 3D models, new questions
appeared and remain unanswered. The ensemble nature of proteins, for example, challenges the
structural prediction methods because the models should represent a set of conformers instead of
single structures. The evolutionary and structural features captured by effective deep learning
techniques may unveil the information to generate several diverse conformations from a single
sequence. Here we address the performance of AlphaFold2 predictions under this ensemble
paradigm. Using a curated collection of apo-holo conformations, we found that AlphaFold2 predicts
the holo form of a protein in 70% of the cases, being unable to reproduce the observed
conformational diversity with an equivalent error than in the estimation of a single conformation. More
importantly, we found that AlphaFold2's performance worsens with the increasing conformational
diversity of the studied protein. This impairment is related to the heterogeneity in the degree of
conformational diversity found between different members of the homologous family of the protein
under study. Finally, we found that main-chain flexibility associated with apo-holo pairs of conformers
negatively correlates with the predicted local model quality score pIDDT, indicating that pIDDT values
in a single 3D model could be used to infer local conformational changes linked to ligand binding
transitions.
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Introduction

Attempts to predict protein structure from their sequences started in the early sixties with Anfinsen’s
experiment, which showed that the structure of a protein is encoded in its amino-acid sequence [1].
After decades of extensive experimentation and efforts, the practical demonstration of Anfinsen’s
motto came from deep learning techniques taking advantage of evolutionary information. In the last
year, the computational tool AlphaFold2 [2] developed by DeepMind, reached an impressive
performance in predicting protein structures with an accuracy similar to experimental techniques [3,4].
AlphaFold2 is based on a novel neural network architecture that attends over evolutionary
information, codified in an MSA, to create a novel representation of the sequence and the relative
distances between residues. Those representations are further improved using an end-to-end
approach to generate structure models with iterative structural refinement. The output of AlphaFold2
is a highly accurate set of structural models with accompanying residue-specific estimates of
modeling reliability.

This outstanding achievement is not only conceptual, in the sense of the advancement of novel deep
learning techniques and protein science, but also practical. It provides the scientific community with a
method for fast, reliable, and cheap determination of structural models that can be applied at a large
scale. Recently, DeepMind and EMBL-EBI have jointly released the database of AlphaFold2
predictions for the whole human proteome [5] and other key organisms (https://alphafold.ebi.ac.uk/).
Furthermore, an easy-to-use and fast version of the AlphaFold2 pipeline was introduced by modifying
the time-consuming step of multiple sequence alignments generation with almost identical results [6].
These exceptional endeavors will soon contribute to filling the gap between proteomes and
structuromes, triggering the blooming of almost every related biology field involving both wet-lab
practices and computational-based approaches.

The AlphaFold2 neural network is trained using structures derived from crystallization and X-ray
diffraction experiments. It is thus expected that the 3D models obtained will reproduce "regular" PDB
structures [2]. How much do regular PDB structures resemble the native state of proteins? It is widely
accepted that protein function relies on a conformational ensemble describing the native state of
proteins [7—10] that is not entirely captured in the PDB [11]. Structural differences between
conformers promote ligand binding [12], transport [13], or catalysis [14,15]. These differences are also
relevant for signal transduction [16] and define metabolic regulation by mechanisms like cooperativity
and allosterism [10,17—-19]. Conformers in the native ensemble could be identical in their backbones
but differ just in the conformations of some residues, defining open and close transitions of tunnels
[20,21] and/or volume variations in their cavities [22,23]. Increasing differences involve backbone
movements comprising loops, secondary structural elements rearrangements, and relative domains
movements [24-26]. Extreme cases of conformational diversity are represented by intrinsically
disordered proteins which lack tertiary structure and form complex ensembles with high ratios of
interchange between conformers [27].

Given the ensemble nature of proteins we explore the impact of conformational diversity in the
AlphaFold2 performance prediction. Firstly, we relied on a hand-curated set of proteins with different
extensions of experimentally estimated conformational diversity, defined by an apo conformer and the
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corresponding holo form bound to a biologically relevant ligand. Using this dataset, we studied if
AlphaFold2 can reproduce different conformers among their resulting top-scoring models. We also
explored how AlphaFold2's performance is affected by the degree of conformational diversity of the
protein under study. Additionally, as AlphaFold2's predictions heavily rely on evolutionary information,
we used families of homologous proteins with different extensions of conformational diversity among

its members to test whether this heterogeneity affects prediction.

Results

Description of the dataset

We selected 86 proteins (Supplementary Table 1) with different degrees of conformational diversity
expressed as the range of pairwise global Ca-RMSD between their conformers in the PDB (Figure 1).
All the pairs of conformers for each protein are apo-holo pairs selected from the CoDNaS database
[28] and bibliography. Hand-curation for each protein confirmed that structural deformations were
associated with a given biological process based on experimental evidence. This step is essential to
ensure that conformational diversity is not associated with artifacts, misalignments, missing regions,
or the presence of flexible ends. When more than two conformers are known, we have selected the
apo-holo pair showing the maximum Ca-RMSD (maxRMSD). Other considerations were absence of
disorder, PDB resolution, absence of mutations, and sequence differences. We previously observed
that when conformational diversity is derived from experimentally-based conformers, different
extensions of RMSD are obtained between them depending on the structure determination method
[20]. Here we considered a continuum of protein flexibility measured as the RMSD between apo and

holo forms as shown in Figure 1.
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Figure 1: Distribution of RMSD between apo-holo pairs. The average of the distribution is 3.5A.

AlphaFold2 does not reproduce conformational diversity

We have predicted the structure of each protein in the dataset using ColabFold (AlphaFold2.ipynb -
Colaboratory) running AlphaFold2 with MMSeqg2 [6] without the use of templates and with the option
to obtain relaxed models with Amber force fields [29], gathering the first five top models according to
pIDDT (predicted local Distance Difference Test) scores [30]. Supplementary Figure 1 shows the
distribution of the pIDDT scores for all the models. We found that 90% of the models scored higher
than 86.9, reaching 90.0 if only the best model for each protein is considered, evidencing the good
quality of the models obtained.

All AlphaFold2 models (five per protein) were structurally aligned to the experimentally resolved apo
and holo conformations for each protein in the dataset, and the RMSD value was calculated for each
alignment. Figure 2A shows the relationships of RMSD values against the apo and holo forms for all
the obtained AlphaFold2 models, while Figure 2B is limited to the best model for each protein,
according to the pIDDT.
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Figure 2: Correlation between RMSD values derived from the alignment of each AlphaFold2 model to
the apo (x axis) and holo (y axis) conformations of each protein. Panel A shows the distribution of

RMSD for all the models, while panel B is limited only to the best models according to pIDDT scores.

According to these RMSDs, we found that 67% of the proteins show a model with the lowest RMSD
to the holo form and 33% to the apo form. This tendency is maintained when only the highest scoring

model (in terms of pIDDT) is considered (69.8% and 30.2% for holo and apo form).

In Figure 3, we plot the distributions of the best RMSD obtained between the models with their apo
and holo forms, discriminating among proteins that were modelled closer to the apo (left) or to the
holo (right) forms. For proteins modelled closer to the apo form, the average of the lowest RMSDs

between the models and the apo and holo forms is 1.94A and 3.59A, respectively (Figure 3, left). On

the contrary, for proteins modelled closer to the holo form, the average of the lowest RMSDs between
the models and the holo form is 1.79A and climbs to 3.36A against the apo form (Figure 3, right). We
conclude that most of the proteins are modelled with a bias towards a given conformer. It is then
impossible to estimate the degree of conformational diversity captured in apo and holo pairs with the
same precision that can be estimated for a single representative conformation of a given protein. As
expected, the error in the estimation of the conformational diversity is highly correlated with the
structural differences between the apo and the holo forms. The correlation between the
conformational diversity of the protein with the best RMSD measured to the unfavored form (see

Figure 3) has a 0.96 Pearson Correlation (p-value < 0.001) (See supplementary Figure 2).
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Figure 3: Distribution of best RMSD between apo and holo forms and estimated models. “To Apo”
and “To Holo” are the average lowest RMSD towards apo and holo forms respectively. The different
panels involve proteins with a model showing best RMSD among models towards apo form (left

panel) and towards holo form (right panel).

The preference for a single conformer, apo or holo, is not associated with the AlphaFold2 predictive
performance since the median of the pIDDT score distribution for models that resemble the holo and
apo forms are 95,47 and 94.53, respectively (Wilcoxon p-value = 0.0315). When using the best

models only, the corresponding medians are 96.33 and 95.96, respectively (Wilcoxon p-value
0.494).

Figure 4 shows three examples that illustrate the model preference for the apo or the holo form, or its

lack, taken from the results described above.
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Figure 4: Three different situations of predictions respect experimental structure. A. The AlphaFold2
model closest to an experimental structure is closer to the holo (Ca-RMSD = 0.45A, PDB ID =
1LAH_E) than the apo form (4.67A, 2LAO_A). Apo and holo structures correspond to the multiple
ligand specificity of the periplasmic lysine-, arginine-, ornithine-binding protein (LAO) [31]. B.
Guanylate Kinase from yeast, where the best AlphaFold2 model showed better match with the apo
(Ca-RMSD = 0.94A, PDB ID = 1EX6_B) form than with the holo form (3.97A, 1EX7_A) [32]. C. A case
where AlphaFold2 model is different to both the apo (Ca-RMSD = 3.76A, PDB ID = 1MUT-11_A) and
holo (4.05A, 1PUN-7_A) forms of a nucleoside triphosphate pyrophosphohydrolase from E. coli [33].
Proteins are shown as cartoons while biologically significant ligands are labelled and shown in
surface representation.
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AlphaFold2 predictions worsen with increasing conformational diversity of the protein

Given that AlphaFold models better resemble the holo conformation of proteins, in this section, we
studied how the conformational diversity of the protein, measured as the structural differences
between apo and holo forms(RMSDapo_holo), affects performance predictions. We found that
models are less predictable as RMSDapo-holo increases, measuring the prediction error as the
lowest RMSD (lowestRMSD) of a model to the apo or holo forms (Figure 5A). We found that the
predictive performance highly depends on the conformational diversity of the protein (0.69 Pearson
correlation coefficient, p-value <0.001). This tendency is also observed when we studied the
correlation between the global pIDDT for the best model and the RMSDapo_holo (-0.53 Pearson

correlation coefficient and p-value <0.001) (Figure 5B).

The model error shows no dependency on the sequence number of the input alignment (-0.18
Pearson correlation coefficient, p-value >0.05) and protein length (-0.25 Pearson correlation
coefficient, p-value <0.05). To study how the error in the model depends on the type of protein
movements between the apo and holo forms, we classified the pairs in our dataset in two broad
categories [34]: according to the presence of domains and hinges movements using the DynDom
software [35] and the presence of flexible loops in just one domain. We found that the error measured
as the lowestRMSD is slightly dependent on the type of movement (Wilcoxon rank sum test W=

1128.5, p-value = 0.046) with a median of 0.93 and 1.6A for the domain movements group and
proteins with loop movements .
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Figure 5: Quality prediction of AlphaFold2. Panel A: As conformational diversity increases between
apo and holo forms, the lowest RMSD to any of the forms increases as well (Pearson correlation
0.69, p-value < 0.001). Panel B: Likewise, the global pIDDT scores decrease with larger protein
conformational diversity (panel b).

Fuzzy evolutionary information could affect AlphaFold2 prediction

To explain the impairment observed in AlphaFold2 prediction capacity with increasing protein
conformational diversity, we hypothesized that the evolutionary information in the input multiple
sequence alignment could be fuzzy due to the conformational diversity heterogeneity in the protein
family. Previously we have found that families with highly flexible proteins [20] heavily affect homology
modeling due to a noisy relationship between sequence and structure divergence [36]. Moreover, we
have also characterized that the inter-residue contacts predicted using coevolutionary methods are
the consensus ones, independently of the structural variations among family members [37]. Taking
into account the finding that protein dynamical behaviour is mostly not conserved in protein families
[36], families that include highly flexible and rigid proteins could have confounding mixtures of
sequence signatures.

To test this hypothesis, we explore families of homologous proteins with experimentally based
conformational diversity. These families were obtained from the CoDNaS database using a
sequence-based clustering with 40% sequence identity and 70% coverage. Each of the ~29000
protein entries in CoDNaS has an associated maximum Ca-RMSD derived from comparing all the
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conformers belonging to a given protein. This maxRMSD is taken as the maximum conformational
diversity the protein could have. Clusters were further classified into homogeneous or heterogeneous
according to the range between the minRMSD and the maxRMSD for each protein in each family
(range < 4A for homogeneous families, or heterogeneous otherwise).
Mapping our 86 proteins to these clusters only retrieved 20 proteins distributed in 10 homogeneous
and 10 heterogeneous clusters. For each of these 20 proteins we study the correlation between their
corresponding error in AlphaFold2 predictions (estimated above as the lowest RMSD to any
experimental conformer) and the dispersion of the conformational diversity in all proteins from the
same family. We found that the heterogeneous clusters performed worse than the homogeneous
ones (average lowestRMSD values for hetero and homogeneous families are 2.03A and 1.31A,
respectively; Wilcoxon p-value <0.005).
To further test this hypothesis, we repeated the estimation with 175 chosen proteins, one for each of
the most populated clusters described above (23.53 homologous proteins on average per cluster).
For each of these 175 proteins, we ran AlphaFold2 using ColabFold and estimated the lowest RMSD,
comparing the top obtained models with the corresponding structure of the protein. We observed the
same trend as shown in Figure 6A (average lowest RMSD of 1.94A and 1.54A for hetero and
homogeneous families, respectively; Wilcoxon p-value < 0.005).
To further explore if the model estimation is affected by the flexibility of each family, we further
classified the clusters in “flexible” and “rigid”, with a flexible cluster defined with an average
maxRMSD >1.0A, and a rigid cluster otherwise [20]). Same results were obtained using this

classification (Figure 6B) (average lowest RMSD = 1.74A and 1.52A for flexible and rigid families,
Wilcoxon p-value < 0.001).
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Figure 6: Model error estimated as the lowest RMSD to the apo and holo forms as a function of the
evaluation of the distribution of the conformational diversity in 175 homologous families. Panel A
contains families classified as heterogeneous and homogeneous using the range of the proteins in

each family, while in Panel B they were classified as flexible and rigid.

High flexibility regions are anti correlated with pIDDT score

We mentioned that structural differences between conformers could be so tiny as the rotation of the
side chains to large movements of loops and domains. This section studies how more flexible regions

between apo and holo conformations are related to the pIDDT score.

Using RMSF to measure protein flexibility between apo and holo conformers, we studied how this
parameter correlates with pIDDT. Taking only the models with the lowest RMSD to apo and holo
forms, we found that the correlation between RMSF and pIDDT is -0.39 (Pearson p-value < 0.001).
However, this correlation increased when we used windows of different widths, reaching a maximum
correlation of -0.45 (Pearson p-value < 0.001) with a window of 15 residues (Figure 7). RMSF
captures the flexibility of the protein per position, as derived from the comparison between apo and
holo conformers. To study how the intrinsic flexibility of each conformer relates with the pIDDT, we
used the profile of the normalized a carbons B-factors obtained by performing normal mode analysis
for the apo form of the protein as described in Methods. In this way a similar correlation of -0.44

(Pearson p-value <0.001) was obtained.
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Figure 7: Distributions of pIDDT score as a function of RMSF between apo and holo forms (left for all
the positions and right using a window of 15 residues). Models were selected according to their
lowest RMSD.

Low values of pIDDT have been related to the occurrence of disordered regions [2]. However,
according to our results, low-scoring regions could also represent flexible regions connecting ordered
conformers, as observed for most of the proteins in our dataset.

Discussion

AlphaFold's breakthrough in predicting protein 3D models has certainly changed the way we study
the protein structure-function relationship. Full structuromes of key organisms have been made
available recently, along with easy-to-use utilities to run predictions. It is also outstanding to note that
most of the predictions made are of the highest quality, mostly comparable with crystallographic
resolution. In this work we have studied how the conformational diversity of the native state could be
available through predictions and how in turn this key feature of protein biology affects the
performance of predictions.

The first purpose is a practical one: Can we consider the top predicted models as snapshots of the
conformational ensemble that describes the native state of proteins? Unfortunately, we can't. In our
dataset only 2% of the proteins showed models similar to either the holo or the apo forms with similar
error, measured as the best RMSD to a given form (Figure 2). For the rest of the proteins, it is not
possible to model both the apo and holo forms simultaneously with the same low error as when
considering a single conformer (Figure 3). Far from disappointing, this observation was expected
since a large set of redundant protein structures (conformers) would have been required during the
neural network training processes [5] in order to predict conformational diversity.

We also found that most of the predictions made resemble and are mostly indistinguishable from the
holo form of the studied protein (68% of the dataset). This is an exciting result because holo forms of
proteins describe the binding capacity to a substrate or any other biologically relevant ligand (see
Figure 4). Jumper et al. mentioned that AlphaFold could infer structures when the presence of a
ligand is predictable from the sequence [2]. We thought that this finding could be explained due to a
bias in the training process of AlphaFold2. However, exploring the BioLip database to estimate the
relative presence of apo and holo forms in PDB shows about 64% of apo forms (a similar proportion
observed in CoDNaS, from which our dataset was obtained). We hypothesized that holo forms could
have a higher number of inter-residue contacts and that these could have influenced the modeling
process in AlphaFold2. However, we did not detect differences in the number of contacts between
holo and apo forms (the median number of contacts are equal to 3.47 and 3.44 of the apo and holo
forms, Wilcoxon p-value >0.5). Apparently, differences in the number of directional polar interactions
in contrast to interactions between nonpolar residues can explain differential flexibility patterns
between holo and apo forms [12,38]. At this point, further work is required to understand this bias
fully.
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Does conformational diversity affect AlphaFold predictions? This second purpose of our work was a
conceptual one related to the capability to recover evolutionary information related to protein flexibility
encoded in multiple alignments. We have found that AlphaFold prediction capacity worsens with
increasing conformational diversity of the protein being studied (Figure 5). We showed that this
impairment is related to the heterogeneous dynamic behaviours in homologous protein families.
Additionally, proteins from flexible homologous families are also difficult to predict (Figure 6). Several
works showed that conformational diversity modulates the evolutionary process imprinting sequence
information with dynamic behaviour [39—44]. Due to functional divergence, protein families could
show different degrees of conformational diversity, making it difficult to extract specific sequence
information from multiple sequence alignments for a given conformational motion. After the early and
well-established observation that structures are very well conserved during evolution, it became
evident that this conservation imposes structural constraints on sequence divergence [45—49].
However, and more recently, we showed that this sequence-structure relationship becomes fuzzy
within families with significant degrees of conformational diversity [36]. Moreover, in protein families
with complex dynamical behaviour (i.e., different degrees of conformational diversity), coevolutionary
analysis allowed to infer inter residue contacts representing the most populated contacts among the
family's different structures, challenging the extraction of sequence features characterizing specific
conformational patterns [37]. It is then expected that proteins belonging to families with
heterogeneous flexibility behaviour would be difficult to predict from the evolutionary information used
by AlphaFold2 (Figure 6 A and B).

Finally, our results suggest that the pIDDT score can be used to scan flexible regions between
ordered conformers. It was pointed out that pIDDT could be helpful to predict disordered regions, but
we can speculate that, as there is a continuum in ordered-disordered proteins [50], there could exist a
range of pIDDT thresholds to detect different sorts of protein flexibility. All the proteins in this work are
mostly ordered (less than 15% of disordered regions), with regions with different flexibility. A ~0.45
correlation between RMSF and pIDDT in Figure 7 indicates that pIDDT could capture the presence of
flexible regions defining the conformational plasticity between apo and holo forms.

We think that our results provide tentative guidelines for practical uses in predicting 3D models of
proteins using AlphaFold2 and adds a novel approach to a growing corpus of publications that nourishes
the field by improving this extraordinary tool.

Materials and Methods

Description of the dataset

The set of apo and holo structures was obtained from the database of Conformational Diversity in the
Native State of proteins (CoDNaS) [28]. CoDNaS is a redundant collection of PDB structures for the
same sequence that can be taken as snapshots of protein dynamism. The conformational diversity for
each protein was estimated as the Ca-RMSD between apo and holo forms. In order to obtain a
well-curated dataset containing protein motions related to a given biological activity we followed
several specific quality criteria: (i) Only crystal structures with resolution < 3.9A were considered; (ii)
structures must not have missing residues; (iii) there must be 100% sequence identity between the

13


https://sciwheel.com/work/citation?ids=4163001,1358971,2018975,1736792,748209,4165188&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=2960497,389164,1262331,702931,1188866&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=4164053&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5724774&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6835280&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4162473&pre=&suf=&sa=0
https://doi.org/10.1101/2021.10.27.466189
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.27.466189; this version posted October 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

conformers; (iv) structural deformations between pairs of conformers were associated with a given
biological process based on experimental evidence; (v) no reported mutations; (vi) less than 15%
disordered regions according to MobiDB consensus; and (vii) visual inspection was used to confirm
an existing conformational diversity (e.g., movements should not be limited to flexible ends or arise
from errors in the structural alignment). This allowed us to finally obtain apo-holo pairs of conformers
for a total of 86 protein structures.

Predictions and comparison of structures

Predicted models for each protein in the dataset were obtained using ColabFold ([6]) due to its easy
access through Google Colab Notebooks. Runs were performed using no templates, automatic
alignments and Amber energy minimization. For each run we used the 5 top models derived from the
energy minimization. Each model was structurally compared between each other and against the
correspondent apo and holo structures. As sequences between conformers and models are identical,
the alignments are straightforward. We then quantified the structural similarity using the Ca Root
Mean Square Deviation (Ca-RMSD).

Evolutionary information

We sequentially clustered the CoDNaS database into homologous families containing sequences with
more than 40% sequence identity and 70% coverage using CD-HIT. Each protein in CoDNaS has an
associated maximum RMSD (maxRMSD) derived from the pairwise comparison of all its conformers.
The maxRMSD is taken as the extent of the protein conformational diversity. A total of 175
well-populated clusters were taken (>8 proteins per cluster). A random protein from each cluster was
modeled using ColabFold following the procedure mentioned above. The error of this model
estimation was calculated as the lowest RMSD obtained from the comparison of any of the top 5
models with the crystallographic structures of the protein.

B-factors analysis

Temperature factors or B-factors (B;) have been obtained performing normal mode analysis (NMA)
using the coarse-grained Elastic Network Model [51,52] that considers the protein as an elastic
network with nodes linked by springs within a cutoff distance r.. Herein the Ca are taken as nodes,
and the value of r, is varied from 7A to 15A for X-ray structures in order to optimize the correlation
between theoretical and experimental B-factors, while r.=11A is used for NMR structures. We perform
the NMA for the apo form of the protein on the basis that normal modes obtained with the apo form of
a given protein give a better description of the conformational change than those obtained with the
holo form [53] . The normalized B-factor B, of atom i is obtained as B; =(B-<B>)/a(B), being <B> and
o(B) the average and standard deviation of the B-factor distribution for the corresponding protein
structure, respectively. Each B; was averaged over the neighbors of the ith residue within a radius of

7A.

Inter residue contacts analysis

Inter residue contacts have been obtained using the RING 2.0 web server [54]. Interacting pairs were
identified following the closest contact strategy, i.e., all atoms are included to measure distances
between residue pairs. While every pair of residues forms multiple interactions, the most energetic
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interaction per pair was considered. Interactions were defined distinguishing disulfides, salt bridges,

hydrogen bonds, and aromatic interactions from generic van-der-Waals contacts.

Motions classification

We have used the DynDom software v1.5 [35] to classify our dataset into proteins with “domain
movements” (two or more domains presenting hinge movements) and proteins with “loop movements”

(one domain, movements due to loops).

Apo-holo characterizations

Classification of the 86 proteins in the dataset was done by manual curation following the
bibliography. In parallel, the database of biological ligands BioLip [55] in its most recent version
(October 01, 2021) was used to crosslink all the chains of the PDB (October 2021, total chains
661494) and CoDNaS v3 (March 2021, total chains 430151). If at least one biological ligand is found

for a chain, it is assigned in the holo category; otherwise, it is considered as an apo conformer.
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Supplementary Figures and tables

Supplementary Table 1: PDBs used in the dataset
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Supplementary Figure 1: Distribution of pIDDT scores for all the models obtained (panel A) and for
the best model obtained (panel B).
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Supplementary Figure 2: Correlation between the conformational diversity of the protein with the
best RMSD measured to the unfavored form.
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