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Abstract

Background: To increase the accuracy of microbiome data analysis, solving the technical limitations of the existing

sequencing machines is required. Quality trimming is suggested to reduce the effect of the progressive decrease in

sequencing quality with the increased length of the sequenced library. In this study, we examined the effect of the

trimming thresholds (0–20 for QIIME1 and 0–30 for QIIME2) on the number of reads that remained after the quality

control and chimera removal (the good reads). We also examined the distance of the analysis results to the gold

standard using simulated samples.

Results: Quality trimming increased the number of good reads and abundance measurement accuracy in Illumina

paired-end reads of the V3-V4 hypervariable region.

Conclusions: Our results suggest that the pre-analysis trimming step should be included before the application of

QIIME1 or QIIME2.
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Background
Microbiome studies have attracted much attention re-

cently. Several publications have reported the effects of

the microbiome on health and disease, which range from

the regulation of metabolism to its relation with diseases,

such as the inflammatory bowel disease [1–3]. The com-

position of human microbiome in the gut, milk, or skin

is affected by environmental, dietary, and lifestyle fac-

tors. For this reason, microbiome studies are gaining in-

creasing importance, and are not only limited to human

and health related issues, but are also being conducted

for ecological and environmental purposes [4].

There are several methods to determine the microbial

composition of biological samples, microbial culture and

nucleotide sequencing being the most important ones.

Although microbial culture is the classical method for

these kinds of studies, the majority of microbial species

cannot be cultured either because we do not have the re-

quired biological knowledge to culture them or because

more advanced laboratory techniques are needed to cre-

ate the appropriate culture environment [5]. In other

words, the efficiency of the microbial culture method is

dependent on the biological characteristics of bacteria,

including metabolism and their aerobic or anaerobic na-

ture. In contrast, nucleotide sequencing is neither af-

fected by the biological characteristics of bacteria nor by

the currently available technology to mimic the appro-

priate environment for culturing them. Rather, advanced

accurate sequencing technologies are required, which

are getting cheaper, faster, and more accurate [6]. Sev-

eral nucleotide sequencing techniques are currently
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available, such as the shotgun [7] and 16S rRNA gene

sequencing.

Whole genome shotgun sequencing is a new technique

that provides more abundant information, especially related

to the function, genome content, as well as taxonomic clas-

sification. However, it is more expensive and requires com-

plex and computationally-intensive analysis [8].

The amplicon analysis of the 16S rRNA genes is cur-

rently the most commonly used method; it has been

used in big projects, such as the Human Microbiome

Project [9]. The 16S rRNA gene is used because it is

highly conserved among microorganisms and contains

hypervariable regions that have sufficient variation to

allow distinction at individual taxonomic levels. The

basic idea is to amplify a selected region of 16S rRNA

gene using the polymerase chain reaction (PCR), sequen-

cing the amplified product, and comparing the sequence

with a reference database [10].

The accuracy of the results of amplicon analysis of the

16S rRNA genes is dependent on many factors, includ-

ing the sequenced region, the sequencing technology,

and the reference database used for the analysis. There

are several strategies to increase the accuracy of the ana-

lysis. One strategy is to sequence a longer region of the

16S rRNA gene to obtain enough information for tax-

onomy assignments. Unfortunately, this task is not free

of obstacles. A major problem is the increased error rate

along with the position of the sequenced base [11],

which is caused by the limitation of the sequencing tech-

nologies, and generally is not related to the sample prep-

aration or the steps preceding the sequencing. This

problem can be partially solved effectively by using

paired-end sequencing technology. In this context, one

approach is to sequence a hypervariable region shorter

than twice the sequencing ability of the machine to allow

enough overlapping regions for the reads to be effect-

ively joined.

The presence of low-quality bases towards the right

end of the sequence adversely affects the joining step,

leading to the failure of the joining, and consecutively to

the loss of the reads in the middle of the analysis. One

approach to reduce the consequences of this problem is

to trim the reads distal to a point where phred quality

score drops below a specific threshold (quality trim-

ming). If the length of the overlapping region is enough

for the paired-end reads to be joined effectively, this

may lead to reducing the loss of reads because of this

process.

In this study, we used QIIME (pronounced as chime

[12] and stands for Quantitative Insights into Microbial

Ecology), which is a pipeline for microbiome analysis

that starts from raw DNA sequencing data and ends

with visualization and statistical analysis. It consists of a

comprehensive collection of tools [13, 14] that are

available at http://qiime.org/. Some of these tools are

written in Python by the QIIME developers, while others

are incorporated in the pipeline, such as usearch [15]

and fastq-join [16, 17], wrapped over by QIIME scripts

to work in harmony with the entire pipeline. QIIME is

now the standard for microbiome analysis and in par-

ticular, for the analysis of Illumina paired-end reads.

Recently, a new version of QIIME, named as QIIME2,

was published [14], which is described as “a next-

generation microbiome bioinformatics platform that is

extensible, free, open source, and community devel-

oped”. QIIME2 [18] includes new tools and methods dif-

ferent from the older version, and also provides an

application programming interface (API) for automation

of the processing and for extending the platform to pos-

sible and manageable limits. Even though QIIME1 has

been succeeded by the newer version and is not sup-

ported anymore by the developer community, who

advise investigators to move to QIIME2, it is still exten-

sively used as is evident from several recently published

articles.

In this study, we examined the effect of quality trim-

ming prior to the joining of the read pairs on the overall

performance of the QIIME pipeline. We tested this ef-

fect qualitatively and quantitatively in both the QIIME1

and QIIME2 frameworks.

Results
We analyzed the results of the full QIIME1 and QIIME2

analyses in both real (RS) and simulated (Sim) samples

using the known gold standards. The quality trimming

was carried out using bbduk. We passed the –q param-

eter to that script to create the trimmed samples. There-

after, we calculated the number of good reads remaining

after the quality control steps (“split_library.py” and

“identify_chimeric_seqs.py” in QIIME1, and “DADA2

non.chimeric reads” in QIIME2); these two values were

used as indicators of the efficiency of analysis. Moreover,

we observed that the Sim set samples showed similar re-

sults compared to the RS set samples with regard to the

above-mentioned parameters. Using the Sim set, we

calculated the Euclidean distance of the samples to their

gold standard in the principal coordinate analysis

(PCoA) space, showing how quality trimming affected

the accuracy of determination of bacterial abundance in

the samples (Beta diversity).

The number of good reads

Good reads were those that were merged successfully

and passed the quality control and chimera removal

steps and were eventually used for the determination of

sample composition [operational taxonomic unit (OTU)

picking in QIIME1, amplicon sequence variant (ASV)

determination in QIIME2, and taxonomy assignment].
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In QIIME1, the RS and Sim datasets showed similar

behavior of the measurements for the good reads. The

increase in the quality trimming threshold lead to an in-

crease in the number of good reads until it reached the

maximum at level 12–14, and then decreased.

Moreover, the percentage of maximum difference

showed a hyperbolic curve. We found that the number

of good reads increased substantially from values 0 to 8,

and plateaued around 12 (Fig. 1a and b). The heat maps

of the normalized good reads for both the RS and Sim

datasets showed identical distribution of values suggest-

ing that the Sim dataset was comparable to the RS

dataset.

Increased percentage of maximum difference allows

more errors to pass to the subsequent steps of the ana-

lysis, and therefore, keeping a low percentage of the

maximum difference is theoretically better. Accordingly,

we chose low values of the percentage of maximum dif-

ference for the next steps. We selected the default value

(8) for the fastq-join script and two extra values (4 and

12) on the two sides. The RS and Sim sets showed

similar results with minimal difference (Fig. 2a and b).

As a general rule, using a trimming threshold greater

than 14 results in more loss of reads in all the three

values of percentages of maximum difference. However,

with the default value (8), the trimming significantly af-

fected the number of good reads in both the RS and Sim

datasets. This increase reached the maximum at

trimming thresholds of 12–14. At the same time, this ef-

fect was less prominent for the percentage of maximum

difference value of 12, especially in the Sim dataset.

The effect of trimming was more prominent on the

QIIME2 results. Without trimming, more than 75% of

the reads were lost in both the RS and Sim sets (Figs. 3a

and b). Trimming at thresholds smaller than 10 did not

have any effect; however, this effect was clearly visible at

trimming thresholds of 18–22 in the RS set and 18 in

the Sim set. In the Sim set, trimming at thresholds

greater than 18 resulted in a sudden drop in the number

of reads. This drop can be explained by the failure of

pair joining because of the quality score profile of the

simulated reads.

Diversity analysis

In QIIME1, the distance of the simulated samples (the

Sim set) to their gold standard was affected by the qual-

ity trimming. With percentage of maximum difference

having a value 8 (the default for fastq-join), we could see

that the trimming threshold of 12 showed less distance

from the gold standard, However, the distance increased

significantly with higher trimming thresholds (14 and

above). With the percentage of maximum difference

having a value 12, the distance was not affected by the

trimming (Fig. 4a). Moreover, the errors in the assign-

ment of OTUs showed a complicated behavior (Fig. 4b).

Higher values of the percentage of maximum difference

Fig. 1 The number of good reads after quality control and chimera removal using QIIME1 in the real sample (RS; a) and simulated (Sim; b)

datasets. Values of the heat map were normalized by dividing each value with the average of the whole data set. Peripheral plots show dots as

means, and error-bars represent the standard error of the means
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lead to more false positive OTU assignments. This was

possibly because of the merging of reads with the align-

ment errors, leading to the wrong OTU assignment. A

false negative percentage indicates the percentage of

OTUs that was not detected. It was much smaller in

comparison to the false positives. From Fig. 4a and b, we

can notice that the increase in falsely assigned OTUs did

not affect the overall distance among the samples. For

example, at a percentage of maximum difference value

12 and a trimming value 12, we could see results that

were much closer to the standard although the rate of

false positive OTU assignments was higher.

In QIIME2, the distance between the samples and

their gold standard started reducing with trimming

thresholds of 10–12 and reached its minimum around

18 and increased abruptly, thereafter (Fig. 5a). Moreover,

the number of observed ASVs showed minimal but sig-

nificant increase to reach a maximum around the trim-

ming threshold of 18; it also declined abruptly,

thereafter. The reason for this decline was the length of

Fig. 2 The effect of quality trimming threshold in QIIME1 on the number of good reads divided by the original number of raw reads for each

sample in the real sample (RS; a) and simulated (Sim, b) datasets, with three different values (4, 8, and 12) of percentage of maximum difference.

These plots show the means and the error bars represent the standard error of the means

Fig. 3 The effect of quality trimming threshold in QIIME2 on the number of good reads (non.chimeric) divided by the number of raw reads

(input) for each sample in the real sample (RS; a) and simulated (Sim; b) datasets. The bar shows the mean, and the error bars show the standard

error of the means
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the overlap segment (Fig. 6). In the RS dataset, the over-

lap was longer, with higher trimming thresholds, com-

pared to that in the Sim set, which can be explained

based on the quality profile of these two sets (Add-

itional file 2: Figure S1). In contrast to the results of

QIIME1, those of QIIME2 showed higher specificity

and lower sensitivity. This can be clearly understood

from the results presented in Figs. 4b and 5b.

QIIME1 showed high percentage of false positives,

which could reach 20% whereas QIIME2 showed only

3% false positives. Moreover, QIIME1 showed a low

percentage (< 1%) of false negatives in contrast with

> 10% in QIIME2. These results reflect the differences

in the quality control strategy between QIIME1 and

QIIME2. DADA2, the tool used in our analysis for

denoising the data, is more stringent than the quality

control steps in QIIME1.

Discussion
This is the first study that examines the effect of quality

trimming thresholds on paired-end Illumina reads in

microbiome analysis. However, the effect of quality trim-

ming using multiple tools has been explored in a previ-

ous study [19]. Our findings confirmed that quality

trimming has a significant effect on the results of micro-

biome analysis. In QIIME1, with the default value of per-

centage of maximum difference of fastq-join (8), the

quality trimming at thresholds of 10–14 showed the

highest number of good reads in both the RS and Sim

datasets. It also showed shorter Euclidean distance

Fig. 4 (a) The distance of each sample to its gold standard after the principal coordinate analysis using the Jaccard distance for QIIME1 analysis

in the simulated (Sim) dataset. (b) Operational taxonomic unit (OTU) assignment error: False positive percentage means the percentage of OTUs

that were assigned in the samples but were not originally present in the gold standard. False negative percentage is the percentage of OTUs that

were not detected in the results but were included in the gold standard

Fig. 5 (a) The distance of each sample to its gold standard after the principal coordinate analysis using the Jaccard distance for QIIME2 analysis

in the simulated (Sim) dataset. (b) Amplicon sequence variant (ASV) assignment error: False positive percentage means the percentage of ASVs

that were assigned in the samples but were not originally present in the gold standard. False negative percentage is the percentage of ASVs that

were not detected in the samples but were included in the gold standard
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between the sample and gold standard in the PCoA

multidimensional space using the Jaccard distance in the

Sim dataset. Although in QIIME2, a trimming threshold

of 18 also showed increased number of good reads in

both the RS and Sim datasets, it also showed a shorter

Euclidean distance between the sample and gold stand-

ard in the PCoA space using the Jaccard distance. These

values were affected by the overall quality profile of the

samples used in the analysis.

Because of the limitations of sequencing technology,

the phred quality is reduced as the length of the se-

quenced region is increased, and therefore, more bases

toward the end of reads are likely to be assigned

wrongly. As a result, the read-joining is also affected,

leading to low quality merged regions, and this might

also lead to the discarding of the whole read at the qual-

ity control step. Theoretically, discarding the parts with

low quality and putative wrongly assigned bases, im-

proves the results of pair-joining, and therefore, of the

subsequent analysis steps. In this study, we show this ef-

fect in terms of the number of good reads. We also show

the effect on the final analysis by demonstrating the

change in the alpha diversity of the samples, and the dis-

tance of samples to their gold standard in the PCoA

space using the Jaccard distance in the simulated data.

Next generation sequencing is used to determine the

bacterial abundance in biological samples by assigning

the taxonomical information to all the resulted se-

quences. In many cases, to make the samples compar-

able, rarefaction is applied, which is the random

selection of a specific number of sequences equally in all

the samples to be used in subsequent inter-sample com-

parisons. However, new methods of analysis that do not

involve sampling have been suggested [20]. Gaining

more reads after merging, quality control, and chimera

removal enhance the accuracy of the analysis, especially

for bacterial strains with low population in the sample,

which might not be detectable. Therefore, we show that

the number of reads were increased in the RS data,

which means increased accuracy of the result. We also

show, using the Sim dataset, that the distance of each

sample to its gold standard was similarly decreased.

These findings imply that, by applying quality trimming,

we can perform better abundance analysis.

Even though the results of this study are limited to the

V3-V4 hypervariable regions sequenced using Illumina

paired-end sequencing technology, this technology is ex-

tensively employed in microbiome research. It is one of

the most commonly used technology for DNA sequen-

cing, especially in microbiome analysis; we searched the

Sequence Read Archive (SRA) repository of NCBI [21]

using the query, “metagenomic”[source] AND “illumi-

na”[Platform] AND “paired”[Layout], and it returned

more than 680,000 hits, representing more than half

Fig. 6 The calculated overlap length between the pair end reads after trimming. RS: Real sample dataset; Sim: Simulated dataset. Negative values

represent the calculated gap between the reads, and their merging is impossible
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(56%) of the total metagenomic entries. Moreover, most

of the studies on the microbiome target either the V3 or

V4 region, or a combination of two or more regions. In

case, a combination of two regions are sequenced, the

most common combination is that of V3 and V4 [10].

Compared to QIIME1, which applies quality check

steps after merging the paired-ended reads, QIIME2 ap-

plies quality check steps before merging, when the

DADA2 [22] plugin is used. DADA2 uses a different

strategy based on ASV rather than clustering the OTUs

used in the QIIME1 uclust algorithm. This new method

is suggested to be more accurate and comprehensive

[23]. Our results show that using DADA2 makes the

method more specific and less sensitive than QIIME1;

however, further investigations are required to support

this notion.

We also did the same analysis using mock community

samples (data not shown); however, when we calculated

the distance of the samples to the gold standard using

principal coordinate analysis, we failed to see useful re-

sults because the gold standard was much far from all

the samples. That was possibly caused because of the ef-

fect of multiple steps of processing, starting with com-

munity preparation and ending with QIIME analysis,

passing thorough amplification and sequencing. The re-

sult can also be affected by the reference database used

[24]. To overcome these obstacles, we generated simu-

lated data samples to help us accomplish our goal to

understand the effect of quality trimming alone, without

allowing other interfering factors to affect the results.

For this, we wrote a novel simple script that produces

two sets of samples—one set with real quality scores

derived from real samples and another set with no intro-

duced errors and high quality scores (40) to be used as a

gold standard. The use of a gold standard sample helped

us investigate the effect of quality trimming without be-

ing affected by the reference database or analysis pipe-

line used.

To make the simulated data diverse and more general-

ized, we used the greengenes database as a reference to

generate the samples, and SILVA to analyze them. We

also used phred quality scores different from those for

the real dataset. We collected a large number of quality

scores from different kinds of samples. This resulted in

different optimum trimming thresholds in the Sim data

compared to that in the RS data. For example, trimming

at a threshold of 20 gave good results for the RS data,

whereas it resulted in poor results for the Sim data, the

reason for which was related to the difference in the

overlapping region. In the Sim data, the average number

of overlapping nucleotides was less than 10 (Fig. 6),

which is not enough to allow merging of the paired end

reads, whereas in the RS data, the average number of

overlapping nucleotides was more than 20. For further

elucidation, the quality plots of a sample from both the

datasets are shown in Additional file 2: Figure S1.

Our results also suggest the importance of the number

of overlapping nucleotides. This number can help in ac-

curately deciding the trimming threshold for the used

dataset by applying our protocol to the dataset and plot-

ting the overlapping threshold. That should be less com-

putationally expensive than conducting the full analysis

several times with different parameters. Moreover, our

method can also be applied by generating one or few

samples using the quality profiles of the dataset under

analysis, and applying the full analysis and comparing

the results with the gold standard. This method is obvi-

ously promising; however, more testing and evaluation

might be needed.

We suggest other parameters, such as the sequenced

region and sequenced length, to be investigated in future

studies. We also suggest that our protocol be followed to

obtain further insights using different datasets. Conduct-

ing such analyses needs a significant programming effort

and would be computationally expensive, especially with

QIIME1. However, we have created Auto-q script (Add-

itional file 1) [25], which helped us automate the entire

process in QIIME1. We also suggest that our approach

can be used in the future to create a tools to decide the

optimal parameters such as machine learning models.

Conclusions
Quality trimming at an appropriate quality threshold

leads to an increase in the number of good reads that

pass quality control steps in both QIIME1 and QIIME2

pipelines. Based on our results, we recommend trim-

ming thresholds of 10–14 for QIIME1 and 18 for

QIIME2 for the V3-V4 hypervariable regions sequenced

using Illumina paired-end reads sequencing technology;

however these values can be affected by the quality pro-

file of the samples.

Methods
Sample data

The real samples (RS) set consisted of 30 sequences of hu-

man fecal samples, downloaded from the SRA database

[21]. These samples were sequenced using Illumina

paired-end technology, with a length of 300 bases for each

read pair. We chose paired-end reads from Illumina be-

cause it is the most commonly used technology, and chose

300 bases for the V3-V4 region because it provides

enough overlap length to allow trimming to be done with-

out losing reads in the merging process. We randomly se-

lected the samples of the V3-V4 hypervariable region,

with accession codes SRR5446821–SRR5446850.

Sim set: Simulated data set consisted of 10 samples.

The Sim set was generated using an in-house script. It

was built on the greengenes database with 97 similarities
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“gg_13_8_otus/rep_set/97_otus.fasta” using S-D-Bact-

0341-b-S-17 and S-D-Bact-0785-a-A-21 primers [26].

For each sample a gold standard was generated with no

quality errors, following the steps mentioned below:

1. The reference sequence used to generate the

simulated data was: “gg_13_8_otus/rep_set/

97_otus.fasta” from the greengenes database.

2. Extraction of the V3-V4 region: The reads in the

reference file were truncated using the S-D-Bact-

0341-b-S-17 and S-D-Bact-0785-a-A-21 primers.

To detect the primer position, we used the

“nt_search” function from the “BioPython SeqUtils”

package [27]. The extracted and truncated reads

represented the V3-V4 hypervariable region, saved

in the V3-V4.fasta file.

3. Generation of paired-end reference files: The V3-

V4 sequences were truncated at length 310 from

both the sides. The reverse side read was reversed

using the “reverse_complement” method in the Bio-

Python package. This step resulted in two fasta files

(“ref_R1.fasta” and “ref_R2.fasta”).

4. Extraction of quality scores: we extracted the

quality scores from multiple R1 and R2 fastq files

retrieved from multiple publicly available datasets of

the V3-V4 region. The quality scores were ran-

domly ordered and saved in two separate text files.

All the sequence data for these samples were

discarded.

5. Generation of sample fastq file pairs: A random

number of sequences was selected from

“ref_R1.fasta” and “ref_R2.fasta”. The number of

copies for each sequence was randomly assigned

and a set of quality sequences was also

randomly assigned to each copy using the pool

of quality scores. The nucleotides in each read

were manipulated depending on the probability

of the incorrect base call using the choice

function in the numpy random package in

python [28]. Using this function, we can assign

probabilities, using the quality scores, for the

possible choices. For instance, if the correct

nucleotide is “C” and the quality score is 2, it

means the probability of the correct answer is

0.63. We give “C” a probability of 0.63 whereas

the other three nucleotides (“G”, “A”, and “T”)

are given probabilities of 0.123 each, which is

equal to (1–0.63)/3.

6. Generation of gold standard: for each sample,

another fastq files pair was generated using the

same reference sequences without manipulating

the nucleotides. All the quality scores in these

two files were set at 40. These two files were

used as the gold standard for that sample.

Primer and quality trimming

We trimmed the first 17 bases from the forward reads

and the first 21 bases from the reverse reads. Thereafter,

we applied quality trimming, which is the process of

trimming the right side of the read when the quality of

the base is reduced below a certain threshold. We used

BBDuk from bbtools using BBDuk version: 37.22 [29].

BBDuk is designed to decontaminate the reads using k-

mers. (Duk: decontamination using k-mers); however,

we used it only for quality trimming. We passed r (right

side trimming) for “-qtrim = r”, and passed the even

values from 0 to 20 for QIIME1 and 0 to 30 for QIIME2,

inclusive of quality trimming thresholds to “-trimq”

parameter.

QIIME analysis

For the QIIME1 (Version 1.9.1) analysis, we followed the

steps mentioned below:

1. Joining of the read pairs: we used fastq-join for

merging the paired reads. Fastq-join allows users to

decide the percentage of maximum difference,

which means the percentage of bases with a differ-

ent assignment. Increasing the percentage of max-

imum difference means allowing more errors to

pass to the next step in the analysis process. We did

the pair joining for all values of percentage of max-

imum difference from 0 to 40 with step 4 including

0 and 40. The joined read quality was assigned

using the highest value, if the base was assigned

similarly in both the forward and reverse reads. If

there was a mismatch, the base with the highest

quality value was assigned and given a quality value

equal to the difference of the quality of both the

bases.

2. Quality control is the step where the reads after

joining of pairs with average quality less than a

certain threshold is discarded. We used

split_library.py script with default parameters from

QIIME1.

3. Chimera removal using usearch version 6.1

wrapped by identify_chimeric_seqs.py script from

QIIME1. We used the SILVA [30, 31] database

(version 128) with 97% similarity as a reference for

this step.

4. For OTU picking, we used the pick_otus.py script,

with closed reference option. We used the SILVA

database (version 128) with 97% similarity.

For QIIME2 analysis, we imported the trimmed fastq

files resulting from “primer and quality trimming” step

to the QIIME2 artifact. Thereafter, we applied DADA2

to denoise, joined the paired reads, and removed the

chimera. DADA2 [32] is originally an R package that is
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wrapped by the QIIME2 plugin. We applied the default

parameter with truncation length for both (forward and

reverse) reads as zero.

Diversity and statistical analysis

The resulted data were exported as a BIOM table and

imported to R. The diversity analysis was done using the

Phyloseq [20] package from R. The principal component

analysis was done using the ade4 package [33] from R

with Jaccard distance from the vegan R package [34].

The sample-gold standard Euclidean distance for each

sample representation in the PCoA space and its corre-

sponding gold standard was measured. Other statistical

analyses and plotting were done in R (ggplot2 [35]) and

Python (Pandas [36] and matplotlib [37] packages).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s12859-019-3187-5.

Additional file 1: Auto-q automation script details.

Additional file 2: Figure S1. The quantiles of phred quality scores for a

random sample from both RS and Sim sets.
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