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Abstract. To mitigate the impacts of the pandemic of coro-

navirus disease 2019 (COVID-19), the Indian government

implemented lockdown measures on 24 March 2020, which

prohibited unnecessary anthropogenic activities, thus lead-

ing to a significant reduction in emissions. To investigate the

impacts of this lockdown measure on air quality in India,

we used the Community Multi-Scale Air Quality (CMAQ)

model to estimate the changes of key air pollutants. From

pre-lockdown to lockdown periods, improved air quality is

observed in India, indicated by the lower key pollutant levels

such as PM2.5 (−26 %), maximum daily 8 h average ozone

(MDA8 O3) (−11 %), NO2 (−50 %), and SO2 (−14 %).

In addition, changes in these pollutants show distinct spa-

tial variations with the more important decrease in northern

and western India. During the lockdown, our results illus-

trate that such emission reductions play a positive role in the

improvement of air quality. Significant reductions of PM2.5

concentration and its major components are predicted, espe-

cially for secondary inorganic aerosols that are up to 92 %,

57 %, and 79 % for nitrate (NO−

3 ), sulfate (SO2−

4 ), and am-

monium (NH+

4 ), respectively. On average, the MDA8 O3

also decreases 15 % during the lockdown period although

it increases slightly in some VOC-limited urban locations,

which is mainly due to the more significant reduction of NOx

than VOCs. More aggressive and localized emission control

strategies should be implemented in India to mitigate air pol-

lution in the future.

1 Introduction

India, the second-most populous country in the world, has

been suffering from severe air pollution along with rapid ur-

banization and industrialization in recent decades (Karam-

belas et al., 2018), and 13 Indian cities were among the

world’s top 20 most polluted cities according to the World

Health Organization (WHO) (WHO, 2018). High-level pol-

lution leads to health risks and ecosystem damage, which

caused 1.24 million deaths in India in 2017 (Balakrishnan et

al., 2019) and a great loss of crops (Oksanen et al., 2013; Lal

et al., 2017). To mitigate air pollution, the Indian government

has been promoting effective emission control strategies such

as the conversion of fossil fuels to clean fuels in the nation-

wide Clean India Mission (CIM). However, such long-term

or short-term reduction strategies seem to show insufficiency

in the restoration of ambient air quality (Beig et al., 2013;

Purohit et al., 2019; Banerjee et al., 2017).

Due to the pandemic of coronavirus disease 2019

(COVID-19), nationwide or partial lockdown measures have

been implemented in many countries (Chintalapudi et al.,

2020; Dantas et al., 2020; Ehrlich et al., 2020). The Indian

government declared corresponding bans since the detection

of the first confirmed case on 30 January 2020. Then, to

counter the fast contagion of COVID-19, a 3-week nation-

wide lockdown was imposed in India on 24 March, which

was extended until 30 June. The lockdown measures miti-
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gate the impact of COVID-19 on Indian health infrastructure

and it also helped in curbing the rate of the spread of this in-

fectious disease among people (Pai et al., 2020; Anderson et

al., 2020). Because of the prohibition of industrial activities

and mass transportation, anthropogenic emissions showed a

tremendous reduction. As well as this, several studies showed

that dramatic emission reductions had an enormous impact

on the formation of air pollution and positively influenced air

quality (Isaifan, 2020; Bao and Zhang, 2020; Gautam, 2020).

Thus, the lockdown also provides a valuable opportunity to

assess the changes in air pollutants with significantly reduced

anthropogenic emissions in a short time.

Conspicuous reductions in concentrations of pollutants

were also claimed in different regions (Otmani et al., 2020;

Dantas et al., 2020; Nakada and Urban, 2020). Most Indian

studies claimed the greatest reduction of particulate matter

with an aerodynamic diameter of less than 2.5 µm (PM2.5),

up to 50 % (Kumar et al., 2020; Mahato et al., 2020; Sharma

et al., 2020). However, an increase in ozone (O3) concen-

trations was observed (Collivignarelli et al., 2020; Sicard et

al., 2020) and severe air pollution events still occurred after

large emission reductions due to unfavorable meteorologi-

cal conditions (Wang et al., 2020). Moreover, another analy-

sis showed that the effects of lockdown during the COVID-

19 pandemic on PM2.5 and O3 pollution levels were smaller

than the expected response to the enacted stay-at-home order

(Bujin et al., 2020). Hence, the significance and impacts of

lockdown measures are still not well understood.

Therefore, it is significant to understand the mechanisms

involved in air pollution formation before and after dramatic

emission changes comprehensively, in addition to the com-

parison of air pollution levels. Mahato et al. (2020) con-

cluded that air quality in India from 24 March to 14 April im-

proved sharply according to the change of the National Air

Quality Index, especially for Delhi. Srivastava et al. (2020)

reported the concentrations of primary air pollutants were

drastically lowered as a result of emission reductions. Ku-

mari and Toshniwal (2020) also stated that the concentration

of key pollutants such as PM2.5 in both Delhi and Mumbai

shows a decreasing trend. These studies pointed out that the

air quality was improved during the lockdown period com-

pared with the period before lockdown and depends on the

duration of the lockdown (Kumar et al., 2020; Mor et al.,

2021). As well as this, compared with the same period in

previous years, Gautam (2020) claimed that aerosol concen-

tration levels are at their lowest in the last 20 years during

lockdown based on satellite data. Selvam et al. (2020) stated

that the Air Quality Index (AQI) was improved by 58 % in

Gujarat state in western India during lockdown (24 March–

20 April 2020) compared to 2019. Kabiraj and Gavli (2020)

concluded that the mean concentration of PM2.5 decreased

by 42.25 % from January to May in 2020 compared with

2019. Similarly, Das et al. (2020) also showed that great

reductions of PM2.5 were found across cities in the Indo-

Gangetic Plain (IGP) compared with 2018 and 2019. How-

ever, the role of meteorological conditions and chemical re-

actions involving changes in air quality is not clear from

these observation-based studies, which only showed the phe-

nomenon of concentration reduction and switch of major pri-

mary pollutants mainly in urban cities. Further, the number

of monitoring stations in the country is way below the guide-

lines given by the governing bodies and not uniformly dis-

tributed, which results in observation data limitations in India

(Sahu et al., 2020).

In this study, the Community Multi-Scale Air Quality

(CMAQ) model was used to investigate changes in air pol-

lutants before the lockdown (from 21 February to 23 March

2020) and during the lockdown (from 24 March to 24 April

2020) periods throughout the Indian region. We explored the

synergetic impacts from the meteorological conditions and

anthropogenic emissions during the pre-lockdown and lock-

down periods. As well as this, we directly quantified the

change in air quality during the lockdown due to the reduced

anthropogenic emissions by comparing the differences be-

tween Case 1 (without emission reductions) and Case 2 (with

emission reductions). The model performance was evalu-

ated by comparing the simulation results with the observa-

tion data, which is collected by the Central Pollution Control

Board (CPCB). This study has important implications for de-

veloping control strategies to improve air quality in India.

2 Methodology

2.1 Data collection

We used observed hourly PM2.5, O3, carbon monoxide

(CO), and nitrogen dioxide (NO2) data from 21 February to

24 April 2020 from the CPCB online database (https://app.

cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing, last

access: 20 January 2021), which is widely applied in previ-

ous studies (Kumar, 2020; Sharma et al., 2020; Srivastava et

al., 2020; Shehzad et al., 2020). The CPCB database provides

data quality assurance (QA) or quality control (QC) pro-

grams by establishing strict procedures for sampling, anal-

ysis, and calibration (Gurjar et al., 2016). As well as this,

the observed daily averages of PM2.5 and maximum daily

8 h average ozone (MDA8 O3) have been further calculated

to analyze the change in air quality during the pre-lockdown

(from 21 February to 23 March 2020) and lockdown (from

24 March to 24 April 2020). The satellite-observed NO2

and formaldehyde (HCHO) column number density datasets

are from the Sentinel-5 Precursor TROPOspheric Monitoring

Instrument (S-5P TROPOMI) (https://scihub.copernicus.eu,

last access: 7 February 2021). As well as this, we effectively

removed the pixels with a QA value less than 0.75 for NO2

tropospheric column density and 0.5 for HCHO from the

datasets to exclude the interferences such as clouds and snow

or ice (Apituley et al., 2018).
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Figure 1. The simulation domain with the location of major Indian

cities selected for analysis.

2.2 Model description

This study applied CMAQ (Byun and Schere, 2006) ver-

sion 5.0.2 with an updated SAPRC-11 photochemical mech-

anism (Carter, 2011; Hu et al., 2016) and aerosol mod-

ule (AERO6) (Binkowski and Roselle, 2003) to simulate

air pollution across India with a horizontal resolution of

36 km × 36 km (117 × 117 grid cells). Figure 1 shows the

simulation domain with positions of the main Indian cities.

The simulation was conducted from 21 February to 23 March

as a pre-lockdown and 24 March to 24 April as a lockdown

period.

The Weather Research & Forecasting model (WRF) ver-

sion 3.6.1 was utilized to generate meteorology fields driven

by the latest FNL (Final) Operational Global Analysis

data. Anthropogenic emissions were from the monthly data

from the Emissions Database for Global Atmospheric Re-

search (EDGAR) version 4.3 (http://edgar.jrc.ec.europa.eu/

overview.php?v=431, last access: 20 September 2020). The

monthly emissions from different source sectors were di-

vided into six major groups, residential, industrial, agricul-

ture, on-road, off-road, and energy, before being adjusted

from the base year of 2010 to 2019 based on population

and economic growths similar to Guo et al. (2017), and the

adjustment factors are shown in Tables S1–S3 in the Sup-

plement. Weekly and diurnal profiles were used to convert

monthly emissions to hourly inputs, and the US EPA’s SPE-

CIATE 4.3 source profiles were used to speciate total partic-

ulate matter (PM) and volatile organic compounds (VOCs)

to model species (Wang et al., 2014).

The biogenic emissions were derived from The Model of

Emissions of Gases and Aerosols from Nature (MEGAN)

version 2.1 (Guenther et al., 2012), and the emissions from

Table 1. The criteria on the “range of pollution index” for the pur-

pose of categorization of industrial sectors.

Categories∗ Pollution index

score

Very polluting (VP) ≥ 60

Medium polluting (MP) 41–59

Low polluting (LP) 21–40

Note: ∗ VP, MP, and LP industries are also defined as the

red, orange, and green categories of industrial sectors

respectively, based on the Indian Ministry of Environment,

Forest and Climate Change website (https:

//pib.gov.in/newsite/printrelease.aspx?relid=137373).

biomass burning for 2018 were based on the Fire Inventory

from the National Center for Atmospheric Research (FINN)

(Wiedinmyer et al., 2011).

2.3 Emission reduction during COVID-19

Due to the COVID-19 lockdown, human activities were lim-

ited and related anthropogenic emissions were reduced. Dif-

ferent sources were used to obtain changes in anthropogenic

emissions from different sectors in comparison to 2019.

For the sectors of on-road and off-road, the vehicle emis-

sion changes were based on the number of registered vehicles

verified from the article (ET Bureau, 2020). The changes in

energy demand were obtained from official data released by

the Power System Operation Corporation (POSOCO) (Abdi,

2020). Residential and agricultural emissions remain un-

changed due to a lack of sufficient information.

For the industrial sector, we classify the Indian in-

dustries into three different classes based on the de-

gree of air pollution caused (https://www.indianmirror.com/

indian-industries/environment.html, last access: 7 Febru-

ary 2021) (Table S4) including very polluting (VP), medium

polluting (MP), and low polluting (LP) industries. The pol-

lution index (PI) of any industry is a number ranging from

0 to 100 and the increasing value of PI denotes the increas-

ing degree of pollution load from the industry. As well as

this, CPCB, State Pollution Control Boards (SPCBs), and

the Ministry of Environment, Forest and Climate Change

(MoEFCC) have finalized the criteria on the range of PI for

the purpose of categorization of the industrial sector (https:

//pib.gov.in/newsite/printrelease.aspx?relid=137373, last ac-

cess: 7 February 2021) (Table 1).

Based on the above definition of the VP, MP, and LP in-

dustry, the emissions before lockdown can be expressed as

follows:

E1 = NVP-pre × SVP + NMP-pre × SMP + NLP-pre × SLP, (1)

where SVP, SMP, and SLP are 1, 0.6, and 0.4 as the assigned

scores, and NVP-pre, NMP-pre, and NLP-pre are the number of

each category industry before the lockdown. Similarly, the

emissions during the lockdown are as follows:
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Table 2. Percentage reduction in anthropogenic emissions in India

during the COVID-19 lockdown.

Sector Percentage reduction

Residential 0

Industrial 82

Agriculture 0

On-road 85

Off-road 85

Energy 26

E2 = NVP-lock ×SVP +NMP-lock ×SMP +NLP-lock ×SLP, (2)

where NVP-lock, NMP-lock, and NLP-lock are the number of

functioning industries during the lockdown. Therefore, the

percentage reduction of industrial emissions can be calcu-

lated as follows:

%reduction =
E1 − E2

E1
× 100. (3)

In this study, two sensitivity simulations were conducted dur-

ing the lockdown periods. Case 1 assumes business as usual

with the same emissions as in 2019, while Case 2 adjusts an-

thropogenic emissions using factors obtained above for dif-

ferent sectors (Table 2). The differences between Case 2 and

Case 1 can be assumed as the effects of COVID-19 lock-

downs.

3 Results and discussion

3.1 WRF-CMAQ model validation

Meteorology plays an important role in emissions, trans-

port, deposition, and formation of air pollutants (Zhang et

al., 2015). Hence, the performance of WRF is validated to

ensure accurate air pollution simulation against available ob-

servation from the National Climate Data Center (NCDC).

There are more than 1300 stations within the simulation do-

main with hourly observations. The variables considered in-

clude temperature at 2 m above the surface (T2), wind speed

(WS), wind direction (WD), and relative humidity (RH). Ta-

ble S5 shows the statistics of mean observation and mean

prediction of meteorological parameters, along with mean

bias (MB), gross error (GE), and root mean squared error

(RMSE), which are compared to benchmarks suggested by

Emery et al. (2001). All the statistical indexes are listed in

Table S6.

In general, the WRF model performance is similar to

previous studies in India (Kota et al., 2018). For the pre-

lockdown and lockdown period, predicted T2 was under-

estimated with MB values of −1.5 and −1.2 K, respectively.

The GE values for WS were 1.7 % (pre-lockdown) and 1.8 %

(lockdown), satisfying the suggested criteria of 2.0 %, and

RMSE was slightly over the criteria. The MB values for

WD were 3.2 and 2.6◦ during the two periods, which are

within the criteria of ±10◦. The GE and RMSE for WD were

slightly out of the benchmarks. The under-predicted RH was

also observed in this study, which was reported in other Asian

studies (Hu et al., 2015). Those statistic values that did fall in

the benchmark were mainly due to the resolution (36 km) ap-

plied in this study compared to the finer resolution (4–12 km)

suggested in Emery et al. (2001) and Sahu et al. (2020).

Table S7 shows the model performance of MDA8 O3,

PM2.5, CO, and NO2 in five major cities in India includ-

ing Delhi, Mumbai, Chennai, Hyderabad, and Bengaluru.

For PM2.5, after excluding some abnormally high values of

greater than 300 µg m−3, the averaged mean fractional bias

(MFB) (−0.48) and mean fractional error (MFE) (0.61) val-

ues in all the five urban cites met the criteria limits of ±0.6

and 0.75 claimed by the EPA (2007). And the recommended

criteria are commonly used for validating air quality model

performance in the Indian region (Mohan and Gupta, 2018;

Kota et al., 2018). For O3, a cut-off value of 40 ppb is applied,

which is based on EPA’s recommendations (EPA, 2005). As

well as this, the model was able to reproduce the variation

trends of observed hourly O3 in all these major cities, al-

though slightly over-estimations have occurred. And aver-

aged MFB (−0.05) and MFE (0.25) values of O3 also satisfy

the benchmarks of ±0.15 and 0.30 set by the EPA (2005) in

most of these cities with Chennai and Hyderabad exceeding

the limits slightly. The performance of PM2.5, NO2, O3, and

CO in these urban areas was also similar to Kota et al. (2018),

which could provide robust results for the following air qual-

ity study.

To further validate modeled HCHO and NO2, we com-

pared our simulated results with satellite-observed data dur-

ing pre-lockdown and lockdown periods (Fig. S1). The

CMAQ predicted vertical column densities (VCDs) of tropo-

spheric NO2 and HCHO were calculated using Eq. (4) (Eskes

et al., 2020).

VCD =
∑n

i=1
Ci × Hi × α, (4)

where n equals 17 as the number of vertical layers in the

model (with the highest layer height of ∼ 10 km), Ci means

species concentration (ppm), Hi represents each layer height

(m), and α is the coefficient for converting units from ppm

to molec. cm−2. The predicted regional distribution of tro-

pospheric column NO2 and HCHO is similar to satellite ob-

servations. Overall, HCHO and NO2 are higher in eastern

and northern India than in other regions. And their varia-

tion trends from CMAQ and TROPOMI are consistent so that

NO2 decreases while HCHO increases during the lockdown.

We also acknowledge that the uncertainty of the emission in-

ventory and chemical mechanism in the modeling may affect

the simulated results (Dominutti et al., 2020; Kitayama et al.,

2019).
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3.2 Changes in air quality from pre-lockdown to

lockdown periods

Figure 2 shows predicted and observed PM2.5 from 21 Febru-

ary to 24 April in Delhi, Mumbai, Chennai, Hyderabad, and

Bengaluru. The model succeeds in estimating the observed

peak and valley values with slight under-estimation in all

these cities. Overall, sharp decreases are found in the ob-

served PM2.5 in all these cities, and the averaged PM2.5

level drops from 43.18 to 27.62 µg m−3. The mean observed

PM2.5 concentrations during lockdown are 42.47 µg m−3

(Delhi), 24.53 µg m−3 (Mumbai), 15.73 µg m−3 (Chennai),

31.29 µg m−3 (Hyderabad), and 24.08 µg m−3 (Bengaluru),

which are reduced by 41 %, 40 %, 42 %, 10 %, and 43 % re-

spectively compared with that of the pre-lockdown period.

As well as this, the observed peak values of PM2.5 in each

city also decrease appreciably (up to 57 %) during the lock-

down period. On 24 March, the first day of lockdown, a sig-

nificant drop in PM2.5 concentration due to the emission re-

duction of primary pollutants is observed (Fig. S2). However,

most of the PM2.5 concentrations are still above the WHO an-

nual guideline values of 10 µg m−3 (WHO, 2016) during the

lockdown period, with peak values over 60 µg m−3 occasion-

ally.

Figure 3 shows the temporal variation of MDA8 O3 in

these five cities. The predicted MDA8 O3 is consistent in

trend with observation values on most days, while simulated

concentrations are overall higher, particularly in Hyderabad.

The observed average MDA8 O3 during lockdown is higher

than that before the lockdown in Delhi (2 %), Hyderabad

(12 %), and Bengaluru (2 %). This is likely due to the fact that

O3 formation in these cities is under VOC control (Sharma

et al., 2020), and a nitrogen oxide (NOx) reduction leads to

an O3 increase by enhanced hydrogen oxide radical (HOx)

concentrations (Zhao et al., 2017). The increase in monthly

average T2 from before the lockdown (281.0 K) to lockdown

(285.1 K) could also lead to an increase in O3 (Chen et al.,

2019). In contrast, the observed average MDA8 O3 during

lockdown is reduced compared with the pre-lockdown period

in both Mumbai (−35 %) and Chennai (−13 %). This could

be caused by a much larger reduction in emissions as Mum-

bai and Chennai with high urbanization and industrialization

are the most affected areas. Specifically, more stringent lock-

down measures may be implemented in Mumbai than we as-

sumed, which accounted for more than a fifth of infections in

India (Mukherjee, 2020).

Figure 4 shows the comparison of predicted air pollu-

tants before and during the lockdown throughout India.

Generally, decreases in key pollutants including particulate

matter with an aerodynamic diameter of less than 10 µm

(PM10) (−16 %), PM2.5 (−26 %), MDA8 O3 (−11 %), NO2

(−50 %), and sulfur dioxide (SO2) (−14 %) are calculated

across India. Changes in these pollutants present distinct re-

gional variations. In northern and western India, the lower

levels of these pollutants are observed during the lockdown,

Figure 2. Comparison of predicted and observed PM2.5 from

21 February to 24 April 2020 in Delhi, Mumbai, Chennai, Hyder-

abad, and Bengaluru. The unit is µg m−3.

with reductions of PM2.5 and PM10 of up to 79 %. In par-

ticular, the most significant decreases during the lockdown

are found in the populated, industrialized, and polluted IGP

region. The average PM2.5 even drops from approximately

35–70 µg m−3 (pre-lockdown) to 15–40 µg m−3 (lockdown)

in these regions because local emissions are generally the

largest contributor (38 %–78 %) to PM2.5 in India (David

et al., 2019). However, increases in these key pollutants are

found mainly in the northeastern, eastern, and parts of south-

ern India.

As well as this, changes in PM2.5 also show prominent

differences in the rural and urban areas. In India, rural ar-

eas have different emission sources from urban areas and

are less influenced by lockdown measures (Garaga et al.,

2020). In megacities such as Delhi, the predicted concentra-

tions of PM2.5 declined during the lockdown, which is con-

sistent with previous results (Kumari and Toshniwal, 2020;

Chauhan and Singh, 2020). For instance, a reduction of over

60 % in PM2.5 is estimated in Delhi and Ahmedabad. How-

ever, increases in PM2.5 (∼ 20 %) are observed in the remote

northeastern part of India. Variations in near-surface mete-

https://doi.org/10.5194/acp-21-4025-2021 Atmos. Chem. Phys., 21, 4025–4037, 2021
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Figure 3. Comparison of predicted and observed MDA8 O3 from

21 February to 24 April 2020 in Delhi, Mumbai, Chennai, Hyder-

abad, and Bengaluru. The unit is ppb.

orological factors during lockdown also play an important

role in PM2.5 changes. As is shown in Fig. S3, lower PM2.5

in urban areas during lockdown (Fig. 4) may be attributed to

the decrease in RH and increase in planetary boundary layer

(PBL) height, while the decrease in precipitation and WS al-

lows PM2.5 to accumulate in some rural areas (Schnell et al.,

2018; Le et al., 2020).

As gaseous precursors of major components to PM2.5 (Jain

et al., 2020), concentrations of NO2 and SO2 also decrease

significantly in most regions by up to 90 % and 87 %, respec-

tively. However, their levels increase in parts of eastern and

southern India, thus leading to higher levels of PM2.5 and

PM10 in the same regions. MDA8 O3 is also rising in eastern

India by the highest increasing rate of 29 %, while a 30 % re-

duction is observed in northern and western India. Although

significant reductions are found in O3 precursor emissions

throughout India during the lockdown, the MDA8 O3 has not

shown a comparable decrease, which is affected by meteo-

rological conditions such as an increase in temperature and

decrease in RH (Fig. S3). Higher temperatures speed up pho-

tochemical processes that produce O3, while a higher RH re-

Figure 4. Predicted PM10 (µg m−3), PM2.5 (µg m−3), MDA8 O3

(ppb), NO2 (ppb), and SO2 (ppb) before lockdown, during the lock-

down and the changes between them in India. “Case 2 − Case 1”

indicates (Case 2 − Case 1) / Case 1, reported as %.

duces them (Chen et al., 2019; Zhao et al., 2017; Ali et al.,

2012).

In summary, the decrease in PM2.5, PM10, NO2, and SO2

and the increase in MDA8 O3 during lockdown are consis-

tent with previous results (Srivastava et al., 2020; Mahato et

al., 2020). In the case of Delhi, compared with the previ-

ous studies, the PM2.5 reduction (34 %) is comparable with

35 % reported by Chauhan and Singh (2020), with less than

53 % stated by Mahato et al. (2020) and 49 % calculated by

Kumari and Toshniwal (2020) during the first phase of lock-

down (from 24 March to 15 April 2020). These differences

may be caused by the considered duration of the lockdown

period. Our study concerns the later lockdown period (af-

ter 15 April 2020) when there is an increase in traffic flow

and some relaxation of lockdown measures (Kumar, 2020).

Moreover, the different characteristics of these air pollutants

in rural and urban areas have not been investigated compre-

hensively in previous studies. Kumari and Toshniwal (2020)

also concluded that concentrations of PM10, PM2.5, and SO2

tended to rise in Singrauli (rural area, located in central In-

dia) during the lockdown, contrary to the results of Delhi and
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Figure 5. Predicted PM2.5 components and the changes caused

by lockdown measures from 24 March to 24 April 2020

in India. The unit is µg m−3. “Case 2 − Case 1” indicates

(Case 2 − Case 1) / Case 1, reported as %.

Mumbai. Therefore, our results have important implications

for the study of air quality changes and their regional distri-

bution across India and indicate more strident emission re-

duction policies should be implemented across India, espe-

cially in the later phases of lockdown and in rural areas.

3.3 Effects of emission reductions on PM2.5 during the

lockdown

There are significant changes in PM2.5 between the lockdown

and pre-lockdown periods. Moreover, we directly quantify

the change in PM2.5 during the lockdown. Figure 5 shows the

differences in major PM2.5 components during the lockdown

period with (Case 2) and without (Case 1) control measures.

Major components of PM2.5 including nitrate (NO−

3 ), sul-

fate (SO2−

4 ), ammonium (NH+

4 ), elemental carbon (EC),

primary organic aerosols (POAs), and secondary organic

aerosols (SOAs) decreased significantly in Case 2 compared

to Case 1, indicating the positive effects of emission reduc-

tion. Primary components of PM2.5 (EC and POAs) are low-

ered by an average of 37 % and 14 %, respectively. EC is

usually emitted from combustion sources and a drastic de-

crease of up to 74 % directly reflected the impact of emission

reductions from industry and transportation. Secondary inor-

ganic aerosols (SIAs) including NO−

3 , SO2−

4 , and NH+

4 and

SOAs accounted for most of the PM2.5 bulk mass (39 %) and

showed greater decreases than primary components. More-

over, the spatial distribution of SIAs is similar to PM2.5 in

that the reduction is more significant in the north of India

where the decrease in NO−

3 , SO2−

4 , and NH+

4 are up to 92 %,

57 %, and 79 % respectively. The largest reduction of NO−

3 ,

averaging 62 %, resulted from transportation reduction, and

the SO2−

4 reduction (averaging 31 %) is likely due to the

falling industry emissions (Gawhane et al., 2017; Wang et al.,

2020). On average, NH+

4 and SOAs are decreased by 41 %

and 14 %, respectively. The significant decrease in NH+

4 can-

not be attributed to the absence of reduced agricultural emis-

sions in the simulation but may be due to the relatively re-

duced (NH4)2SO4 and NH4NO3 in the CMAQ chemistry-

transport model (Fountoukis and Nenes, 2007). By contrast,

compared with VOCs, an important precursor of SOAs, the

smaller reduction of SOAs may be related to the weakening

of the atmospheric oxidizing capacity (AOC), which plays an

important role in the formation of SOAs (Feng et al., 2019).

As well as this, the reduction of NOx may lead to an increase

in SOAs offsetting some of the influence by the reduction in

VOC emissions (Kroll et al., 2020).

Figure 6 shows the predicted response of changes in con-

centration of primary PM2.5 (PPM) and secondary compo-

nents to the reduced emissions of related precursors in Delhi,

Mumbai, Kolkata, Bengaluru, Hyderabad, Chennai, Ahmed-

abad, and Lucknow. Generally, all species decreased with the

reduced emissions and the great sensitivity of PM2.5 compo-

nent concentrations to emissions showed the important role

of meteorology and the effectiveness of stringent measures

to reduce emissions.

On average, NO−

3 shares the largest reduction of 77 %

mainly driven by the decrease in its gaseous precursor NOx

(71 %). At least a 27 % decrease in SO2−

4 is found in each city

caused by the largest reduction of SO2 (averaged 59 %). An

average reduction of over 70 % in NOx and NO−

3 may still

be related to the reduction of vehicles. And SOAs dropped

by an average of 18 % because of the lack of precursors due

to the emission reduction of VOCs (29 %). Due to the re-

duction of emitting precursors, the concentration reduction

of PM2.5 secondary components is less than that of primary

components. The ratios of PPM reduction in emission (av-

eraged 39 %) are larger than the reduction in concentration

(averaged 43 %) in five selected cities. In particular, a 7 %

reduction in emission of PPM caused a 43 % decline in its

concentration in Hyderabad. Emissions of EC and organic
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Figure 6. Predicted relative changes in concentrations of primary

and secondary components, and emissions of their precursors in

eight cities of India in Case 2 to Case 1.

carbon (OC) have also been reduced by a certain proportion

resulting in a similar or greater reduction in concentrations.

The response of concentration to emissions in all cities

presented a nonlinear change that has been confirmed pre-

viously by Zhao et al. (2017), which is related to various me-

teorological conditions (Wang et al., 2020). For example, in

Lucknow, PPM, EC, OC, SO2, NOx , and VOCs decreased by

14 %, 25 %, 8 %, 39 %, 55 %, and 11 % respectively, while

the concentration of PPM, EC, OC, SO2−

4 , NO−

3 , and SOAs

dropped by 21 %, 32 %, 12 %, 43 %, 78 %, and 18 %. As well

as this, the concentration response to emission reduction is

likely to be more prominent in highly polluted and industri-

alized areas. The highest reductions in PPM and these sec-

ondary components of PM2.5 happened in Ahmedabad (an

industrial city located in western India) with high vehicular

populations. Bengaluru, a major southern Indian city, is con-

sidered as one of the cleaner Indian major cities because of

its low PM2.5 concentrations with no heavy industries (Gut-

tikunda et al., 2019). Consequently, the reduction in PM2.5

and its major components (especially for secondary compo-

Figure 7. Predicted O3, NOx , HCHO, and the changes caused

by nationwide lockdown measures from 24 March to 24 April

2020 in India. The unit is ppb. “Case 2 − Case 1” indicates

(Case 2 − Case 1) / Case 1, reported as %.

nents) in Bengaluru is not as significant as in Ahmedabad

although a similar reduction in emissions is observed.

3.4 Effects of emission reductions on O3 during the

lockdown

We investigated the changes of MDA8 O3 and its major

precursors NOx and HCHO during the lockdown period.

HCHO is one of the major contributors to total VOC reac-

tivity (Zhang et al., 2012; Steiner et al., 2008). It also has a

strong correlation with VOC (R2 up to 0.93) (Fig. S4) and

performs well when validated by comparing with satellite-

observed data. As a result, HCHO is used as a good proxy in

the model for the total VOCs, consistent with previous stud-

ies such as Palmer et al. (2003). Figure 7 shows that MDA8

O3, NOx , and HCHO decreased all over India. The average

reduction rates of MDA8 O3, NOx , and HCHO are approxi-

mately 15 %, 50 %, and 15 %, respectively. For both Case 1

and Case 2, the higher levels of MDA8 O3 are in eastern In-

dia (over 60 ppb, Case 1) in which the higher NOx is also ob-

served (over 12 ppb, Case 1) during the lockdown. Compared

to PM2.5, no significant north–south differences are found in

the change of O3. The NOx concentration has the greatest

reduction that is mostly driven by the large cutting of energy

emission by 26 %, which is consistent with the decline of In-

dia’s electricity consumption (9.2 %) (Reuters, 2020).

Figure S5 shows the O3 production sensitivity (O3 / NOy)

in India during the lockdown, which is considered as an in-

dicator of O3 sensitivity to NOx and VOCs (Sillman, 1995;

Sillman and He, 2002). As well as this, O3 / NOy < 6 indi-

cates that O3 formation is VOC-limited, O3 / NOy > 8 indi-

cates NOx-limited, and intermediate values are transitional.
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In India, NOx-limited regimes are found in vast areas from

both Case 1 and Case 2, which was also reported in previous

studies (Mahajan et al., 2015). As a result, the large reduc-

tion of NOx leads to decreased MDA8 O3 in most Indian

regions. Compared to Case 1, the VOC-limited area expands

mainly in the northwest and south of India from Case 2 dur-

ing the lockdown. Simultaneously, the rise of MDA8 O3 (av-

eraged 5 % and up to 21 %) is found sporadically in these

VOC-limited areas in which more significant decreases in

NOx (compared with VOCs) reduce the O3 consumption

(NO + O3 = NO2 + O2) and enhance HOx concentrations,

resulting in an increase in O3 levels. It may also indicate that

the increase in O3 is amplified regionally by the expansion of

the VOC-limited regimes due to the lockdown.

Figure 8 compares the concentrations of MDA8 O3,

HCHO, and NOx with emissions of VOCs, HCHO, and

NOx in eight major cities of India, Delhi, Mumbai, Kolkata,

Bengaluru, Hyderabad, Chennai, Ahmedabad, and Lucknow.

Generally, the decline in O3 concentration in Delhi (14 %),

Mumbai (23 %), Kolkata (24 %), Bengaluru (20 %), Hyder-

abad (17 %), Chennai (20 %), Ahmedabad (21 %), and Luc-

know (15 %) showed that effectiveness of emission reduc-

tions that play an important role in the control of O3 pollu-

tion, even in these VOC-limited areas.

The changes in emissions and concentrations of MDA8

O3, HCHO, and NOx showed a non-linear response. In

Delhi, a 76 % reduction in NOx emissions resulted in a 77 %

reduction in its concentration, while a 29 % reduction in

HCHO resulted in only an 11 % reduction. In a megacity like

Delhi, about 7 million vehicles and many fossil-fuel-based

plants lead to high NOx emissions, and local restricted trans-

portation and industrial activities during lockdown could lead

to a significant reduction of primary NOx emissions (Sharma

et al., 2016). The concentration of NOx is appreciably highly

sensitive to a primary NOx emission reduction. However, the

VOCs emission reduction resulting from the lockdown is rel-

atively less than NOx in each city. And most of the reduction

of HCHO concentration is less than that of emission reduc-

tion, which is different from NOx , which indicated that the

change of HCHO concentrations is not dominated by primary

HCHO emission reduction.

4 Conclusion

Compared with before the lockdown, observed PM2.5 during

the lockdown in Delhi, Mumbai, Chennai, Hyderabad, and

Bengaluru shows an overall decrease. In contrast, MDA8 O3

increases in three of these cities. The comparison of predicted

air pollutants across India before and during the lockdown

shows distinct regional characteristics. The most significant

reductions of PM2.5 and PM10 (up to 79 %) are observed

in most of northern and western India including all these

megacities. However, increases in MDA8 O3 (up to 29 %)

and other key pollutants are reported in northeastern, east-

Figure 8. Predicted relative changes in concentrations of O3,

HCHO, and NOx and emissions of VOCs, HCHO, and NOx in eight

major cities of India in Case 2 to Case 1.

ern, and parts of southern India covering most of the rural

areas. As well as this, it can be concluded that the syner-

getic impact from the meteorological conditions and anthro-

pogenic emissions plays an important role in those increases

from pre-lockdown to lockdown periods.

The drastic decline in PM2.5 and its major components

during the lockdown period in Case 2 compared with Case 1

shows the positive impacts of emission control measures,

especially for SIAs. During the lockdown, the decrease in

MDA8 O3 (averaged 15 %) occurs in most regions in India,

which is attributed to the lower emissions of NOx (48 %) and

VOCs (6 %) that are precursors of O3. Our results demon-

strate that the strident emission controls due to the lockdown

have mitigated air pollution in India. However, more strin-

gent mitigation measures are needed to achieve effective con-

trol of air pollution from secondary air pollutants and their

components, particularly in rural areas. We also find the scat-

tered increases in MDA8 O3 (up to 21 %) in some urban lo-
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cations in the VOC-limited areas due to the emission reduc-

tion. This indicates that a more localized control policy with

the consideration of the O3 sensitivity regime should be im-

plemented in India to improve the air quality, especially for

secondary pollutants such as O3.
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