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The performance of a storage policy in a warehouse is usually evaluated on the basis of the average one-way travel
distance/time needed to store/retrieve a load. Dividing the storage space into zones based on item turnover frequency
can reduce the travel distance. However, for a given number of stored items, a larger number of storage zones also
requires more storage space, because of reduced space sharing between the items, which increases travel time. This study
considers the required space consumption by storage zoning in comparing the performance of random, full turnover-
based and class-based storage policies for a unit-load warehouse operated by a forklift in single-command mode. A
generalised travel distance model that considers the required space consumption is developed to compare the perfor-
mance of these policies. Results show that the one-way travel distance of a random policy decreases with the increase in
skewness of the demand curve. By considering the required space consumption, a class-based storage policy performs
generally better than a full turnover-based policy. In addition, the optimal warehouse shape factor (ratio of warehouse
width to depth) appears to decrease with the skewness of the demand curve. Warehouse managers are advised to adopt a
wide-shallow warehouse layout when the item demands are approximately equal, whereas a narrow-deep layout is
preferred when the demand curves are steep.

Keywords: warehousing systems; logistics; class-based storage; required storage space; unit-load warehouse

1. Introduction

Warehouses play an important role in order fulfillment. They are the main point of contact with customers, responsible
for meeting customer expectations set in the sales process. According to Handfield et al. (2013), warehouses are
responsible for about 15% of the total logistics cost in developed countries such as Germany (other components such as
packaging, inventory, value addition, managing flows and returns handling are activities that also typically take place in
the warehouse). Mayer et al. (2009) estimate the warehousing and inventory carrying costs to be more than 40% of total
logistics costs in Europe. Companies therefore focus on making warehouse operations efficient. Among these operations,
retrieving items from their storage locations typically accounts for a high proportion of operational costs (Frazelle and
Frazelle 2002; Tompkins et al. 2010), taking up to half of the total warehouse operating expense (De Koster et al.
2007).

Class-based storage, which divides the stored items of a warehouse into different classes according to the ABC
demand curve (the ranked turnover of the items), is commonly applied in practice and is widely studied in the literature
(Rosenblatt and Eynan 1989; Eynan and Rosenblatt 1994; Kouvelis and Papanicolaou 1995; Gu, Goetschalckx, and
McGinnis 2007). Two special cases are random storage, with only one storage class exists, and full turnover-based stor-
age, where the number of classes equals the number of items. That is, under a random storage policy, all items share a
common class, whereas with full turnover-based storage, each item has its own, dedicated, class.

The required storage space (RSS) of items is important in warehouse management, particularly for warehouse
design, storage policy selection and one-way travel distance evaluation. Existing research on class-based storage
assumes that the RSS of an item equals its average inventory level (expressed in pallet quantities). Some well-known
findings are based on this assumption. For example, the average one-way travel time for the storage and retrieval (S/R)
machine to retrieve a unit-load in an automated storage and retrieval (AS/R) system with a normalised (to 1) square-
in-time (SIT) rack, under a random storage policy equals 2/3 (Hausman, Schwarz, and Graves 1976). This value is not
affected by the demand frequency curve of the stored items (i.e. the skewness of the demand curve; Hausman, Schwarz,
and Graves 1976). Another well-known result is that the full turnover-based storage policy minimises the expected
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one-way travel time in a warehouse. This policy is widely used as a benchmark to evaluate the performance of
class-based policies (Rosenblatt and Eynan 1989; Teunter et al. 2010).

However, as demonstrated in this study, the real RSS of an item is higher than its average inventory level, and it
decreases with the number of items sharing the storage space in the same storage class (Bartholdi and Hackman 2011;
Yu, De Koster, and Guo 2015). For example, when full turnover-based storage is applied, each item has a dedicated stor-
age region, and its RSS equals its order quantity. However, if the number of items sharing a common storage zone is very
large, items within the zone can share space much better and the RSS for each item is close to its average inventory level,
which is only half of its order quantity (with deterministic demand). Thus, the possibility of sharing space among differ-
ent items in the same storage class affects the RSS. As a result, by dividing the items into different classes according to
their turnover, a class-based storage policy reduces the average one-way travel distance, and simultaneously increases the
travel distance as the RSS grows. Consequently, a tradeoff exists between the space-sharing effect and the effect of turn-
over ranking according to item demands, when class-based storage is adopted. However, by making an (often implicit)
assumption that ‘the required storage space of an item equals its average inventory level’, conventional research only
considers the retrieval-time reduction effect of ranking the items based on their turnover, but neglects the effect of space
sharing among different items in the same class. The RSS measured in number of locations of an item is influenced by
several factors, such as the number of items sharing the item class, its annual demand and the replenishment policy
(Yu, De Koster, and Guo 2015). Different ABC demand curves therefore yield a different cumulative RSS of the items in
the warehouse. The present paper aims to determine the size of the RSS, which depends on item demand and item space-
sharing, as well as its effect on storage policy performance and on warehouse layout in a traditional warehouse.

A generalised travel distance model (TDM) is developed, based on the RSS measured in the number of locations, to
find the optimal travel times for the random, full turnover-based and class-based storage policies. The travel distance
performances are compared for different shapes of the ABC demand curve.

Computational results show that with the increase in skewness of the demand curve, the average one-way travel dis-
tance does not remain constant, but decreases for all three storage policies because the RSS decreases for a given total
demand. Even for the random storage policy, a significant gap exists in travel time (almost 40%) between the 20%/20%
and 20%/90% demand curves. For class-based storage, with the optimal number of classes and class boundaries, results
show that less than five classes can yield the global minimum average one-way travel distance for a unit-load ware-
house. This result reflects that a class-based policy outperforms the full turnover-based policy which is considered as a
perfect benchmark in the literature. We also find that, under a class-based policy with optimal item classification, the
optimal warehouse shape factor (the ratio of warehouse width to depth) decreases with the increase in skewness of the
demand curve. This finding suggests that warehouse managers should adopt a wide-shallow warehouse layout with a
large number of short storage aisles when items have similar demand volumes (i.e. a flat- or non-skewed ABC-demand
curve), and a narrow-deep layout with a small number of long storage aisles when the ABC-demand curve is skewed.

The remainder of this paper is organised as follows. After reviewing the related literature in the next section, we
describe the studied unit-load warehouse and provide the related notations in Section 3. In Section 4, the RSS and
TDM are developed for a unit-load warehouse with n storage classes. Optimal travel solutions are then derived for the
studied storage policies. A solution methodology (SM) based on dynamic programming is provided in Section 5.
Section 6 presents the numerical results. Finally, Section 7 concludes this paper by summarising the findings and provid-
ing future research directions.

2. Literature review

The effect of storage policies on retrieval time is widely studied in scientific research papers (Hausman, Schwarz, and
Graves 1976; Graves, Hausman, and Schwarz 1977; Eynan and Rosenblatt 1994; Kouvelis and Papanicolaou 1995;
Thonemann and Brandeau 1998; De Koster et al. 2007; Gu, Goetschalckx, and McGinnis 2007; Roodbergen and Vis
2009), and some well-known operations management textbooks (e.g. Adams et al. 1996; Tompkins et al. 2010). A com-
mon assumption in this stream of literature is that the RSS of an item equals its average inventory level. Hausman,
Schwarz, and Graves (1976) seem to be the first to study the effect of random storage, full turnover-based and class-
based storage on travel time in an AS/RS with a SIT storage rack. The optimal class boundaries for the two- and three-
class-based storage policies are obtained through numerical studies, and the optimal retrieval travel time is calculated.
Results show that under a random storage policy and for a normalised rack (i.e. the size equals 1), the average travel
time is 2/3, for any ABC demand curve. Furthermore, full turnover-based policy performs best, i.e. it yields the mini-
mum expected travel time. Rosenblatt and Eynan (1989) derive a recursive function for the travel time to determine the
optimal-class boundaries for any number of classes. Thereafter, numerous researchers studied class-based storage for
AS/RSs (e.g. Goetschalckx and Ratliff 1990; Van den Berg 1996; Ashayeri et al. 2002; Koh, Kim, and Kim 2002;
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Sari, Saygin, and Ghouali 2005; Lerher 2006; Lerher et al. 2006; Park 2006; Yu and De Koster 2009; Lerher, Šraml,
and Potrč 2011; Bessenouci, Sari, and Ghomri 2012; Cardin et al. 2012; Zaerpour, De Koster, and Yu 2013).

Storage policies have also been studied in traditional, aisle-based warehouses, which have yielded similar results for
the comparison of random, full-turnover- and class-based storage policies (Jarvis and McDowell 1991; Petersen 1999;
Petersen and Aase 2004; Petersen, Aase, and Heiser 2004; De Koster, Le-Duc, and Zaerpour 2012; Roodbergen 2012).
Le-Duc and De Koster (2005) optimise the shape of the storage classes based on a closed-form travel time estimation
for a 2-block discrete warehouse. Petersen, Aase, and Heiser (2004) compare order-picking performance between class-
based storage and random storage. Their numerical results show that class-based storage allows savings in picker travel
over random storage. Rao and Adil (2013) study the travel distance for two- to four-class-based low-level order picking
systems, for a traditional warehouse with a 2-block layout. Petersen and Schmenner (1999) compare three variations of
the class-based storage policy: diagonal storage, within-aisle storage and across-aisle storage, in an order-picking opera-
tion. Petersen (1999) discusses the impact on order-picking warehouse efficiency of the diagonal and within-aisle storage
policies. Glock and Grosse (2012) study the storage policies and order picking strategies in a U-shaped order picking
system, and propose different storage location assignment policies. Based on a systematic literature review, Grosse et al.
(2015) propose a conceptual framework for integrating human factors into planning models of order picking. Such
factors may have a considerable impact on performance. Roodbergen, Vis, and Taylor (2015) integrate the warehouse
layout and control policies in a model and show through simulation how this can help to improve warehouse
performance. Çelk and Süral (2014) investigate retrieval strategies under random, full-turnover-based storage policies in
a fishbone-aisle-layout warehouse, storing unit loads. They find that a fishbone design can obtain a 20 to 30% improve-
ment over parallel-aisle based warehouses. Previous literature only considers storage assignment or travel distance
estimation, but Dekker et al. (2004) and Battini et al. (2015) propose a joint model for optimising product allocation
and travel distance reduction.

Yu, De Koster, and Guo (2015) was the only paper which calculates retrieval travel times while considering the
RSS for an AS/RS warehouse with a finite number of items. They explicitly consider the space-sharing effect. They nor-
malise the RSS by the total average inventory level of the system. Thus, the effect of RSS on retrieval time for tradi-
tional unit load warehouses has not been investigated. In order to fill this research gap, the present paper examines the
performance of various storage policies while considering a realistic RSS in a unit-load warehouse operated by a forklift
in single-command mode with a given annual demand.

3. Problem description and related notations

This section first describes the system studied in this paper. The research problem is then introduced. We consider a
unit-load warehouse operated by a unit-capacity forklift to store/retrieve items operating in single-command mode.
Storage racks are arranged in a parallel-aisle layout, with one front aisle in which the forklift can switch between aisles,
and with one depot located at the middle of the front aisle. All items leave and enter the warehouse via the depot. The
details are shown in Figure 1.

All storage locations in the warehouse are assumed to have the same unit-load size and each unit-load location stores
only one item (De Koster, Le-Duc, and Roodbergen 2007). Furthermore, because every retrieval command needs a constant
travel distance to cross the front aisle, we neglect it in the model (i.e. the width of the front aisle is assumed to be 0).

Figure 1. The warehouse system and class-based storage.
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To facilitate the presentation of the problem at hand, the storage aisle opposite the depot is indexed as Aisle 0, and the aisle
index number increases in both right and left directions. We therefore assume an odd number of aisles (as shown in
Figure 1). The width of a storage aisle (or the centre to centre distance between two adjacent aisles) is denoted by w. As a
result and as shown in Figure 1, the warehouse has x aisles on both sides of Aisle 0 and y sections of equal length along the
aisles. Consequently, the travel distance for a command to visit location (a, b) takes aw in the horizontal direction to reach
the target aisle, and b distance units in the depth direction to reach the target location.

Suppose that N items are stored in the warehouse and the turnover frequency (demand per unit-time) of each item is
constant and known beforehand, as described by an ABC-demand curve. We assume that the classic economic-order
quantity (EOQ) model is used as replenishment policy for the items (Hausman, Schwarz, and Graves 1976; Yu,
De Koster, and Guo 2015).

The aim of this paper is to evaluate the performance of random, class-based and full turnover-based storage policies.
Hence, the problem is to find the average one-way travel distance for a command under the three policies. A generalised
TDM is developed to solve this problem. The model is based on an n-class based storage system, from which the solu-
tions for the random and full turnover-based policies can be obtained, when n = 1 and n = N, respectively. In addition,
an across-aisle storage policy (Petersen 2002) is adopted to describe the class boundaries for class-based and full turn-
over-based policies (as shown in Figure 1). The layout sketched in Figure 1 in combination with an across-aisle storage
strategy is quite common in many industries. Examples include retail warehouses supplying stores (food and non-food),
and wholesale warehouses (e.g. appliances, installation equipment). De Koster and Neuteboom (2001) and Matusiak
et al. (2014) provide several examples.

The notations related to the problem include:

With the notations given so far and in accordance with previous studies (e.g. Hausman, Schwarz, and Graves 1976;
Rosenblatt and Eynan 1989) the average travel distance for an n-class-based storage system can be written as,

Tn ¼
Xn
k¼1

tk
K kð ÞPn
k¼1 K kð Þ

� �
; k ¼ 1; 2; . . .; n; (1)

where K kð Þ�Pn
k¼1 K kð Þ is the weighted turnover frequency of class k in the warehouse. Now the problem is to find the

relationship between the average one-way travel time in each class and the corresponding total turnover, considering the
RSS. The next section provides the detailed model.

4. Travel distance model considering RSS

This section gives the detailed TDM for an n-class based system in the unit-load warehouse. An ABC-demand curve is
a plot of ranked cumulative percentage of expected demand per unit time. According to the well-known ABC-demand
curve used in the literature (Hausman, Schwarz, and Graves 1976), the ABC curve for discrete items can be expressed
as follows (also see Yu, De Koster, and Guo 2015),

G ið Þ ¼ i=Nð Þs¼
Xi
j¼1

D jð Þ
,XN

j¼1

D jð Þ for 0\s� 1 i ¼ 1; 2; . . .;N ; (2)

where N is the total number of items in the warehouse, D ið Þ is the annual demand for item i, and s is the shape factor
of the ABC-demand curve. Let A be the annual demand of all items stored in the warehouse, i.e. A ¼PN

j¼1 D jð Þ. The
demand for item i can be expressed as,

D ið Þ ¼ A i=Nð Þs� i� 1ð Þ=Nð Þsð Þ; i ¼ 1; 2; . . .;N : (3)

i 2 1; 2; . . .;Nf g Index of the ith item. The smaller the index is, the larger turnover the item has.
b ∈ N+ Index of the bth section, numbered from the depot (front aisle).
ik Item index with the lowest turnover in class k (classes are ordered from fast to slow moving). It therefore also

represents the total number of items in the first k classes, k ¼ 1; 2; . . .; nf g.
bk Section index farthest from the depot in class k, the farthest boundary of class k.
tk Average one-way travel distance for storing/retrieving a unit load of class k.
D ið Þ Annual demand for item i.
K kð Þ Total turnover frequency of class k, in number of unit loads per unit-time period of all items stored in class k.
Tn Average one-way travel distance of a unit load for an n-class-based warehouse.
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On the basis of Equation (3), the weighted turnover of class k in the total turnover of all items in the warehouse,
K kð Þ�Pn

k¼1 K kð Þ can be obtained as,

K kð ÞPn
k¼1 K kð Þ ¼

Pik
j¼ik�1þ1 D jð ÞPN

j¼1 D jð Þ ¼ ik=Nð Þs� ik�1=Nð Þs; k ¼ 1; 2; . . .; n; (4)

where i0 = 0.
Furthermore, based on Equation (3) and the EOQ replenishment policy, the order quantity (in unit loads) of item i

can be obtained as,

Q ið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KD ið Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KA i=Nð Þs� i� 1ð Þ=Nð Þsð Þ

q
; (5)

where K is the ratio of reorder cost to holding cost, which is assumed to be the same for all items as in previous studies
(e.g. Hausman, Schwarz, and Graves 1976; Yu, De Koster, and Guo 2015).

Following Yu, De Koster, and Guo (2015), the required space for storing item i in class k, in which Nk = ik − ik−1
items share the same region, can be established as,

ai Nkð Þ ¼ 0:5 1þ N�e
k

� �
Q ið Þ; 0\e� 1: (6)

ɛ is the space sharing factor, which may be influenced by the initial inventory levels of the items, the replenishment pol-
icy, the ABC-demand curve shape and the inventory cost. Fortunately, according to Yu, De Koster, and Guo (2015), the
value of ɛ is quite insensitive to these parameters and appears to be between 0.17 and 0.25. As a result, we adopt
ɛ = 0.22, for our numerical results in Section 6, which is the average value obtained through a large number of
simulations by Yu, De Koster, and Guo (2015).

Therefore, under an ABC demand curve with shape factor s, the RSS for class k to store Nk items is,

Rk ¼
Xik

i¼ik�1þ1

ai Nkð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5KA

p
1þ N�e

k

� � Xik
i¼ik�1þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i=Nð Þs� i� 1ð Þ=Nð Þsð Þ

q
: (7)

Further, the cumulative RSS for the first k classes is the sum of the required space of each class equals,

Lk ¼
Xk
l¼1

Rl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5KA

p Xk
l¼1

1þ N�e
l

� � Xil
i¼il�1þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i=Nð Þs� i� 1ð Þ=Nð Þsð Þ

q !
: (8)

Since the warehouse applies an across-aisle policy for class-based storage, the number of sections needed by the first
k classes, yk (this is also the theoretical farthest boundary of class k in the continuous space model), can be obtained
from Equation (8) and the number of aisles in the warehouse as follows,

yk ¼ Lk= 4xþ 2ð Þ: (9)

where x is the maximum aisle index in the warehouse. According to the properties described in Section 3, the ware-
house has a total of 2x + 1 aisles, each with 2 storage racks.

Note also that in practice-class boundaries should be an integer, so we find the practical-class boundary for class k,
bk, as the minimum integer that is no less than yk, i.e.

bk ¼ ykd e ¼ Lk= 4xþ 2ð Þd e: (10)

Therefore, the storage locations in Section bk may be allocated not only to class k, but also partly to class k + 1 (k < n),
if yk is not an integer. Here, we further assume that, within Section bk, yk þ 1� bkð Þ 4xþ 2ð Þ storage locations are allo-
cated to class k, and the other bk � ykð Þ 4xþ 2ð Þ are assigned to class k + 1.

Because 2x + 1 storage aisles exist in the warehouse and the aisles farthest from the depot with index x are located
on both the right and left sides of the depot, the average one-way travel distance from the depot to a location of
Section b is,

db ¼ bþ x xþ 1ð Þw
2xþ 1

: (11)

The average one-way travel distance for storing/retrieving a unit-load in class k can be then obtained as follows,
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tk ¼
bk�1 � yk�1ð Þbk�1 þ

Pbk
b¼bk�1þ1 b� bk � ykð Þbk

yk � yk�1
þ x xþ 1ð Þw

2xþ 1

¼ 2 ykbk � yk�1bk�1ð Þ � bk � bk�1ð Þ bk þ bk�1 � 1ð Þ
2 yk � yk�1ð Þ þ x xþ 1ð Þw

2xþ 1
; (12)

where b0 = y0 = 0. The first part of Equation (12) is the average one-way travel distance in the depth direction and the
second part is that in horizontal direction.

Consequently, according to Equations (1), (4), (8–10) and (12), the TDM of the n-class-based storage system can be
obtained as follows,

Model TDM

Min Tn ¼ x xþ 1ð Þw
2xþ 1

þ
Xn
k¼1

2 ykbk � yk�1bk�1ð Þ � bk � bk�1ð Þ bk þ bk�1 � 1ð Þ
2 yk � yk�1ð Þ

ik
N

� �s

� ik�1

N

� �s� �
; (13)

s.t. Lk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5KA

p Xk
l¼1

1þ N�e
l

� � Xil
i¼il�1þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i=Nð Þs� i� 1ð Þ=Nð Þsð Þ

q !
; k ¼ 1; 2; . . .; n; (14)

yk ¼ Lk= 4xþ 2ð Þ; and bk ¼ ykd e; k ¼ 1; 2; . . .; n: (15)

d.v. x; ik ; k ¼ 1; 2; . . .; n� 1; i0 ¼ 0; y0 ¼ 0 and in ¼ N are known:

Note that yk and bk both depend on ik, through Equations (8–10). For a given number of storage aisles per side of
the depot, x, the average one-way travel distance for a random storage policy can be obtained by substituting n = 1, and
for the full turnover-based policy by substituting n = N, i.e. with only one item in each class. For the general case, the
SM to obtain the optimal number of classes and the corresponding class boundaries is given in Section 5. Based on
the solutions for the three policies with different values of x, the optimal layout of the warehouse can be obtained and
the performance of the policies can be compared.

5. Solution methodology for class-based storage policy

We have x as a decision variable in Model TDM. Because x can be any natural number and the total number of sections
in a warehouse can be quite large, full enumeration is not an efficient method to find an optimal solution for Model
TDM. In order to find an efficient method to obtain the optimal solution for the class-based policy, we first focus on the
continuous model with a continuous section index (i.e. bk = yk for all classes). Thereafter, we decide the optimal number
of classes, optimal-class boundaries and minimum average travel time for the discrete case. The continuous TDM can
be written as follows,

Model CTM: (Continuous Travel Model)

Min Tn ¼ x xþ 1ð Þw
2xþ 1

þ
Xn
k¼1

yk þ yk�1

2

ik
N

� �s

� ik�1

N

� �s� �� �
;

s.t. Equation ð14Þ and yk ¼ Lk= 4xþ 2ð Þ for k ¼ 1; 2; . . .; n;

where i0 = 0, y0 = 0.
For Model CTM, we offer the following theorem. The proof can be found in Appendix A.

Theorem 1: Let Mn ¼
Pn

k¼1
LkþLk�1

2
ik
N

� �s� ik�1
N

� �s� �� �
. Then for any given number of classes and any ABC-demand

curve, Mn\
ffiffiffiffiffiffiffiffiffiffiffiffi
2NKA

p
. Consequently, the optimal value of x to minimise the travel distance is

x� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mn � wð Þ= 4wð Þp � 0:5, and x* satisfies x�\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NKA

p �
2wð Þ

q
. The optimal warehouse shape factor (the ratio of

warehouse width, W, to warehouse depth, D) is r�n ¼ 2 2Mn � wð Þ=Ln, and satisfies r�n\4.
In this theorem, the optimal number of aisles is bounded. In practice, the bound is appears to be relatively small,

e.g. smaller than 50 when N = 1,000, A = 100,000, K = 2 and w = 4. Furthermore, the total number of aisles is an odd
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integer. Hence, we can find all the optimal classifications of the warehouse for every possible value of x via the solution
methodology (SM) provided blew.

We now turn to the practical (i.e. integer)-class boundaries and TDM for the discrete case. For a given value of x,
Model TDM can be modified as,

Model SM

Min T 0
n ¼

Xn

k¼1

2 ykbk � yk�1bk�1ð Þ � bk � bk�1ð Þ bk þ bk�1 � 1ð Þ
2 yk � yk�1ð Þ

ik
N

� �s

� ik�1

N

� �s� �
; (16)

s.t. Equations ð14Þ and ð15Þ;

d.v. ik ; k ¼ 1; 2; . . .; n� 1; i0 ¼ 0 and in ¼ N are known:

For Model SM, the solution of an n-class-based storage system can be found through a dynamic programming algorithm
described in the following and summarised in Figure 2.

We define k as the index of the stage corresponding to the kth class. The item with the lowest demand in class k, ik,
denotes the total number of items in the first k classes. ik is bounded by k and N � n� kð Þ since there is at least one
item in each class. The number of items for class k, Nk, is the decision variable at stage k, and 1 ≤ Nk ≤ ik − k + 1
because at least k − 1 items have been assigned to the previous k − 1 classes. The state-transfer function of the model is
ik = Nk + ik−1 and the evaluation function at stage k for given ik is fk ikð Þ, where the recursive function can be written as
follows, according to Equation (16),

Figure 2. Flowchart of the dynamic programming algorithm.

International Journal of Production Research 2411



fk ikð Þ ¼ fk�1 ik�1ð Þ þ 2 ykbk � yk�1bk�1ð Þ � bk � bk�1ð Þ bk þ bk�1 � 1ð Þ
2 yk � yk�1ð Þ

ik
N

� �s

� ik�1

N

� �s� �
; (17)

with initialisation f0 0ð Þ ¼ i0 ¼ N0 ¼ 0, and f0 ið Þ ¼ 1 for any 1 ≤ i ≤ N.
Then the minimum objective value at stage k > 1 based on a known optimal solution at stage k − 1 can be obtained

by,

f �k ikð Þ ¼ Min
1�Nk � ik�kþ1

f �k�1 ik � Nkð Þ þ 2 ykbk � yk�1bk�1ð Þ � bk � bk�1ð Þ bk þ bk�1 � 1ð Þ
2 yk � yk�1ð Þ

ik
N

� �s

� ik � Nk

N

� �s� �� 	
; (18)

where yk and bk are determined according to Equations (14) and (15).
For any given n, T 0

n ¼ f �n in ¼ Nð Þ gives the minimum objective value by optimising the number of items in each
class (the optimal class boundaries can be found according to the state-transfer function ik = Nk + ik−1 and i0 = 0). The
optimal number of classes (and optimal-class boundaries) for a given value of x can be obtained from
n� xð Þ ¼ argmin1� n�N f �n Nð Þ
 �

. Finally, the optimal item classification and corresponding shortest travel distance for
class-based storage policy can be identified according to Equation (13).

By applying the dynamic programming algorithm for other possible values of x, the optimal number of storage aisles
can be found by comparing their corresponding minimum travel distances. From this, the optimal warehouse parameters
can be obtained.

6. Performance evaluation

In this section, we numerically evaluate the performance for random, class-based and full turnover-based storage policies
based on the proposed TDM. We use basic layout parameters (shown in Table 1) based on a wholesale warehouse in
the Netherlands. Similar parameters were used by Matusiak et al. (2014) and Yu, De Koster, and Guo (2015).

Furthermore, eight cases with different ABC-demand curves are considered, where the first 20% items contribute 20,
30, 40, 50, 60, 70, 80 and 90% to the warehouse demand, respectively. Among the curves, the 20%/90% curve has the
highest skewness and the 20%/20% curve has the lowest skewness, as all items have the same demand volume. The
shape of the curves is shown in Figure 3.

Through the SM provided in Section 5, the optimal solutions for class-based policies can be obtained quickly.
The optimal item classification under various demand curves is shown in Table 2. The one-way travel distances for
the three polices (random, full turnover and class-based with optimum number of classes) under the eight demand
curves are presented in Figure 4 as a function of different ABC demand curves, and the corresponding RSS is pre-
sented in Figure 5. Table 3 summarises the optimal warehouse parameters (optimal number of storage aisles horizon-
tally and optimal number of sections in depth) under different storage policies and various demand structures, while
the corresponding warehouse shape factors are shown in Figure 6. Finally, Table 4 shows the comparison of different
warehouse shapes with different numbers of aisles based on two demand curves (the 20%/30% and 20%/90%
curves).

Table 1. Basic parameters used in the numerical experiments.

Parameters Values Description

Unit-load deep 1.4 m-gross From a wholesale warehouse in the Netherlands.
1.2 m-net

Unit-load wide 1.2 m-gross
1 m-net

Basic aisle width (slot-to-slot distance) 3.6 m
(3 unit-loads width)

Number of items in the warehouse (N) 100 Yu, De Koster, and Guo (2015)
Total demand in an experiment period (A) 10,000
The ratio of reorder cost to holding cost (K) 2
The space sharing factor (ε) 0.22
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The results in Figure 4 show that the one-way travel distance decreases with the increase in skewness of the demand
curve (or the decrease in shape factor s) under all three storage policies. An ABC-demand curve with high skewness,
has a small portion of items contributing to a large part of demand. Therefore, the total RSS is smaller than the RSS for
the case with less skewed demand (see also Figure 5). As a result, the average one-way travel distance becomes shorter
when a larger portion of the demand is caused by a small percentage of the stored items. For the random policy, con-
ventional research (e.g. Hausman, Schwarz, and Graves 1976; Rosenblatt and Eynan 1989; Eynan and Rosenblatt 1994)
assumes that the average one-way travel time (or distance) is independent from the demand curve because the storage
space of the warehouse is assumed to be equal to the total average inventory level. However, when we consider the
realistic RSS, more space is needed, leading to a difference in travel times of about 38% for a 20%/90% curve
compared with the 20%/20% curve.
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Figure 3. ABC-demand curves.

Table 2. Optimal item classification for class-based storage under different demand curves (N = 100).

Shape factor of demand curve s Optimal number of classes

Optimal number of items in each class (also
can be considered as class boundaries)

Total number of itemsClass 1 Class 2 Class 3 Class 4 Class 5

1 (20%/20%) 1 100 100
0.748 (20%/30%) 2 73 27 100
0.569 (20%/40%) 3 26 68 6 100
0.431 (20%/50%) 4 9 40 50 1 100
0.317 (20%/60%) 4 4 26 51 19 100
0.222 (20%/70%) 4 2 19 45 34 100
0.139 (20%/80%) 5 1 11 38 36 14 100
0.065 (20%/90%) 5 1 9 27 33 30 100

51.8   37.5
38%

37.5

Figure 4. One-way travel distance as a function of demand curves under different storage policies with optimal item classification
and optimal warehouse factor.
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The results in Figure 4 also indicate that the full turnover-based policy performs worse than the optimal class-based
policy for all eight demand curves, and even worse than random storage for the first four cases with a low demand
curve skewness. That is to say, if the items in the warehouse have approximately similar demand volumes, warehouse
managers should not apply the full turnover-based policy, because it is even outperformed by random storage. This
result is caused by the tradeoff between the space-sharing effect among the items stored in an identical class and the
turnover ranking according to item demand. A full turnover-based policy takes advantage of the turnover ranking:
shortening the travel distance by increasing the frequency of retrievals close to the depot, but it loses the possibility of
space sharing because each class contains only one item. Consequently, a class-based policy is preferred, because it bal-
ances this tradeoff and takes advantage of both the turnover ranking and the space sharing effect. The results in Table 2
show that a small number of classes are optimal for the class-based policy. Even for a 20%/90% curve with s = 0.065,

Figure 5. RSS as a function of demand curves under different storage policies with optimal item classification and optimal ware-
house shape factor.

Table 3. Optimal warehouse parameters for different storage policies under various demand curves.

Shape
factor of
demand
curve s

Random policy Full turnover policy Class-based policy

No. of
required
locations

No.
of

aisles
No. of
sections

Location
utilisation

(%)

No. of
required
locations

No.
of

aisles
No. of
sections

Location
utilisation

(%)

No. of
required
locations

No.
of

aisles
No. of
sections

Location
utilisation

(%)

1 (20%/
20%)

1364 15 46 98.84 2000 19 53 99.30 1364 15 46 98.84

0.748
(20%/
30%)

1350 15 45 100 1980 19 53 98.31 1362 15 46 98.70

0.569
(20%/
40%)

1311 15 44 99.32 1923 17 57 99.23 1342 15 45 99.41

0.431
(20%/
50%)

1256 15 42 99.68 1842 17 55 98.53 1308 15 44 99.09

0.317
(20%/
60%)

1175 15 40 97.92 1724 15 58 99.08 1236 13 48 99.04

0.222
(20%/
70%)

1073 15 36 99.35 1574 13 61 99.24 1141 11 52 99.74

0.139
(20%/
80%)

929 13 36 99.25 1363 11 62 99.93 1014 11 47 98.07

0.065
(20%/
90%)

713 11 33 98.21 1046 9 59 98.49 798 7 57 100

2414 X. Guo et al.



the optimal number of classes is only five. Thus, a small number of classes (n* ≤ 5) provides the minimum expected
one-way travel distance for a unit-load warehouse with parallel aisle configuration and across-aisle storage policy. This
result is in accordance with the findings in the literature (Yu, De Koster, and Guo 2015) and in practical operations
(Petersen, Aase, and Heiser 2004; De Koster, Le-Duc, and Roodbergen 2007; Roodbergen and Vis 2009). Although
more storage space is required for a warehouse using a class-based storage policy compared with the random policy, the
space gap is quite small, as shown in Figure 5.

Figure 6 shows that the optimal warehouse shape factor (r ¼ W=D) is influenced by the demand structure of the
stored items, which seems to be a decreasing function of the skewness of the ABC curve under class-based and full
turnover-based storage policies (the latter can be considered as a special case of class-based storage with n = N). The
optimal warehouse shape depends on the size of the warehouse (see also Roodbergen 2001) and, for a given storage
policy, the RSS decreases with the increase in skewness. For flat ABC-demand curves (i.e. with a large s) a wide-shal-
low warehouse layout with a large number of short storage aisles leads to short travel times. For skewed ABC-demand
curves a narrow-deep warehouse layout with a small number of long storage aisles performs best. Table 3 illustrates that
the optimal layout of the warehouse for the 20%/20% and 20%/30% demand curves is 15 aisles horizontally and 46 sec-
tions in depth whereas for the 20%/90% curve, the optimal layout is only 7 aisles horizontally but 57 sections in depth
for each storage aisle. The required number of locations is obtained from Equation (8). Comparison of the one-way tra-
vel distance based on different warehouse layouts shown in Table 4 shows that a 34.43% efficiency loss occurs for the
20%/30% curve within a 7-aisle warehouse compared with that when 15 aisles are adopted. Similarly, a 19.74% effi-
ciency loss occurs for the 20%/90% curve when a warehouse with 15 aisles is implemented, compared with the optimal
layout with 7 aisles.

7. Conclusions and future research

This paper studies the travel time performance of different storage policies in a unit-load warehouse, with consideration
of the required storage space. A generalised TDM for an n-class-based storage policy is developed, leading to some
interesting findings. First, the average one-way travel distance for the random policy is not constant, but decreases with
the increase in skewness of the ABC demand curve. In fact, a significant gap (nearly 40%) exists between the 20%/20%
and 20%/90% curves. This result shows that the random storage policy performs better with more skewed demand
curves, as the warehouse can become smaller.

Figure 6. Optimal warehouse shape factor as a function of demand curves under different storage policies.

Table 4. Travel distance comparison for two ABC curves with different numbers of storage aisles.

Shape factor of demand curve s

x = 3 (7 aisles) x = 5 (11 aisles) x = 7 (15 aisles)

Tn xð Þ Tn xð Þ�T�
n

T �
n

� 100% Tn xð Þ Tn xð Þ�T �
n

T�
n

� 100% Tn xð Þ Tn xð Þ�T�
n

T �
n

� 100%

0.748 (20%/30%) 68.88 34.43% 54.53 6.4% 51.24 0%
0.065 (20%/90%) 26.14 0% 27.33 4.6% 31.30 19.74%
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Second, results show that the full turnover-based policy (a special case of the class-based policy with only one item
in each class) does not lead to the global minimum average one-way travel distance for the warehouse. This result
contradicts conventional studies that consider the travel time with the full turnover-based policy as a lower bound for
class-based policies (Hausman, Schwarz, and Graves 1976; Thonemann and Brandeau 1998; Yu and De Koster 2013).
This result is caused by the fact that the full turnover-based policy needs nearly 50% more storage space than the ran-
dom policy, since items cannot share space in the same class. Consequently, a tradeoff exists between the effects of item
ranking and space sharing, depending on the number of classes and on the number of items in each class. In other
words, ranking the items according to their turnover reduces the average travel distance by increasing the system effi-
ciency, while also increasing the average travel distance because of the need for expanded storage space. The result
shows that, as a result of balancing this tradeoff, a class-based policy with a small number of classes (no more than 5),
is optimal. This finding is consistent with that of Yu, De Koster, and Guo (2015) on class-based storage for a square in
time AS/RS with a finite number of items.

In addition, this paper offers the optimal warehouse shape factor (the ratio of warehouse width to depth) for different
storage policies under various demand curves. The optimal shape factor depends on the size of the warehouse. For a
given storage policy, the RSS decreases with the increase in the demand curve skewness. A wide and shallow layout
(characterised by a large number of short storage aisles) is preferred if the stored items have similar demand volumes
per unit time (i.e. with a flat ABC-demand curve and a large RSS). A narrow and deep layout (characterised by a small
number of long storage aisles) is preferred if the stored items have significant different demand volumes (i.e. with a
highly skewed ABC-demand curve and a small RSS). For instance, for the 20%/40% demand curve, the optimal ware-
house shape factor is 1.78 with 15 storage aisles, whereas for the 20%/90% demand curve, the optimal shape factor is
0.65 with only 7 storage aisles.

This research can be extended in several directions. First, we only considered the across-aisle storage policy
although within-aisle and diagonal policies are also widely applied in practice. Thus, studying the warehouse layout and
optimal classification for these policies would also be useful. Second, research on the optimal warehouse layout based
on flying-V or fishbone aisle configurations that consider space-sharing effect would be welcome. Third, this research
focuses on a unit-load warehouse operating under single command, while similar research on dual-command operations
or in an order-picking system could also be interesting. Finally, our results are based on the assumption of one depot,
located at the middle of the front aisle. Relaxing this assumption may also be useful in practice.
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Appendix A: Proof of Theorem 1
Considering that yk ¼ Lk= 4xþ 2ð Þ and Mn ¼

Pn
k¼1

LkþLk�1
2

ik
N

� �s� ik�1
N

� �s� �� �
, the objective function of Tn can be rewritten as,

Tn ¼ x xþ1ð Þw
2xþ1 þ Pn

k¼1

ykþyk�1

2
ik
N

� �s� ik�1
N

� �s� �� �
¼ x xþ1ð Þw

2xþ1 þ 1
4xþ2

Pn
k¼1

LkþLk�1
2

ik
N

� �s� ik�1
N

� �s� �� �
¼ x xþ1ð Þw

2xþ1 þ Mn
4xþ2

¼ w 2xþ1ð Þ
4 þ 2Mn�w

4 2xþ1ð Þ :

Since x ≥ 0 and 2Mn > w in practice, and u2 þ v2 � 2uv; 8u; v, we have Tn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w 2Mn � wð Þp �

2, and Tn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w 2Mn � wð Þp �

2 if and
only if x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Mn � wð Þ= 4wð Þp � 0:5.
Next, we give the proof of Mn\

ffiffiffiffiffiffiffiffiffiffiffiffi
2NKA

p
and x�\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NKA

p �
2wð Þ

q
.

Mn ¼ Pn
k¼1

LkþLk�1
2

ik
N

� �s� ik�1
N

� �s� �� �
\
Pn
k¼1

Lk
ik
N

� �s� ik�1
N

� �s� �� �
\
Pn
k¼1

Ln
ik
N

� �s� ik�1
N

� �s� �� �
\Ln

According to Equation (8), Mn < Ln ≤ LN, where LN is the RSS for the warehouse with N classes each with only one item in the class
and,

LN ¼
ffiffiffiffiffiffiffiffiffi
2KA

p XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i=Nð Þs� i� 1ð Þ=Nð Þs

q
:

Since G ið Þ ¼ i=Nð Þs is a concave function of i, and
PN

i¼1 i=Nð Þs� i� 1ð Þ=Nð Þsð Þ ¼ 1, we find,
LN � ffiffiffiffiffiffiffiffiffi

2KA
p PN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i=N � i� 1ð Þ=Np ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2NKA
p

. That is to say, the maximum RSS is achieved only if the warehouse stores N items
with identical demand (a 20%/20% ABC-demand curve). Therefore, Mn\Ln � LN � ffiffiffiffiffiffiffiffiffiffiffiffi

2NKA
p

. Using x� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mn � wð Þ= 4wð Þp � 0:5,

we find x�\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NKA

p �
2wð Þ

q
.

Finally, since Ln is the total RSS for an n-class-based storage warehouse with 2x + 1 storage aisles, the required storage sections
in depth can be obtained as Ln= 4xþ 2ð Þ. Consequently, the optimal warehouse shape factor (the ratio of warehouse width to depth)
can be obtained as r�n ¼ w 2x� þ 1ð Þ= Ln= 4x� þ 2ð Þð Þ. Considering x� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Mn � wð Þ= 4wð Þp � 0:5, it follows r�n ¼ 2 2Mn � wð Þ=Ln.
Furthermore, by considering Mn < Ln for any number of classes under any ABC-demand curve, it follows r�n\4.
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