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impact of rescanning 
and normalization on convolutional 
neural network performance 
in multi‑center, whole‑slide 
classification of prostate cancer
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Algorithms can improve the objectivity and efficiency of histopathologic slide analysis. In this paper, 
we investigated the impact of scanning systems (scanners) and cycle‑GAn‑based normalization 

on algorithm performance, by comparing different deep learning models to automatically detect 
prostate cancer in whole-slide images. Specifically, we compare U-Net, DenseNet and EfficientNet. 
Models were developed on a multi-center cohort with 582 WSIs and subsequently evaluated on two 
independent test sets including 85 and 50 WSIs, respectively, to show the robustness of the proposed 
method to differing staining protocols and scanner types. We also investigated the application of 
normalization as a pre-processing step by two techniques, the whole-slide image color standardizer 
(WSICS) algorithm, and a cycle-GAN based method. For the two independent datasets we obtained 
an AUC of 0.92 and 0.83 respectively. After rescanning the AUC improves to 0.91/0.88 and after style 
normalization to 0.98/0.97. In the future our algorithm could be used to automatically pre-screen 
prostate biopsies to alleviate the workload of pathologists.

Prostate cancer is the most common cancer in men and the third most common tumor type  worldwide1,2. In 
2018, 1.3 million new cases have been diagnosed (7.1% of all diagnosed cancers), and 28% of these patients died 
as a result of the  disease1. Prostate cancer is typically diagnosed through ultrasound-guided biopsy a�er initial 
suspicion has arisen through, for example, a prostate speci�c antigen (PSA) blood test. During the prostate biopsy 
procedure, 6–12 core samples are taken from a  patient3 resulting worldwide in more than 15 million specimens 
annually, which is expected to increase further with the aging of the population. All these specimens have to be 
evaluated by pathologists. However, in many countries there is a lack of pathologists which is only expected to 
increase in the years to come. Automating (part of) the evaluation of prostate biopsies might help mitigate the 
lack of clinical pathology.

�e histopathological analysis could be streamlined signi�cantly if these negative slides (i.e. slides without 
pathology) could automatically be excluded without expelling any slides containing cancer. Signi�cant progress 
has been made in this respect, revealing the huge potential of deep learning (DL)  methods4–6. In histopathology, 
deep learning based algorithms have been used to solve a variety of tasks, such as mitotic Figure  detection7, lung 
adenocarcinoma  segmentation4, glomeruli  detection8 or tissue analysis in colorectal  cancer9.

However, histological slides from di�erent institutions show heterogeneous appearance as a result of the di�er-
ent preparation and staining procedures (di�erent colors, intensity, saturation) (Fig. 1). As a result, there is a high 
probability that a model trained on data from one medical center may not be applicable to slides from another 
center. �e key challenge is to develop a system robust to a variety of biological, staining or scanning settings.
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In this study, we present work on automatic prostate cancer detection through a method developed on a 
multi-center dataset including 582 manually annotated slides. We investigated the impact of scanning systems 
on deep learning algorithms performance. To this end, we re-scanned two independent sets on the same scan-
ner that was used to digitize the development set. Additionally, we proposed a cycle-GAN style normalization 
as a way to improve method robustness. We compare two di�erent normalization approache (color and style 
normalization) and investigated their impact.

Related work. In last years, we observe a growing interest in the application of DL systems to support pros-
tate cancer evaluation. In literature several related studies on prostate cancer were  published10–14. Two main tasks 
can be distinguished: (a) cancer detection and segmentation, and (b) Gleason grading.

In 2014, Cruz-Roa et al.15 were among the �rst to apply deep learning to whole-slide images in the context 
of breast cancer. In 2015, Litjens et al.16 proposed the application of DL to detect prostate cancer on whole-slide 
images. �e limitation of that work was the use of a training data set from a single medical institution. �is is a 
key issue due to the large stain (color, intensity) variability between centers. Due to this, a neural network trained 
on data from a single center can potentially poorly generalize to data from other centers. �is can partially be 
alleviated with data augmentation, but most likely not fully. A tool to support pathologists’ work should be robust 
on this type of variances. Arvidsson et al.12 proposed an auto-encoder application to prostate cancer detection. 
�ey achieved good results, with accuracy  88% on an independent data set of 39 whole slide images (WSIs). 
However, this method was evaluated only at the patch level. �e transition from patch level classi�cation to a 
whole-slide level classi�cation is challenging. Burlutskiy et al.13 present an innovative approach to detect healthy 
glands in a WSI image, which allows detecting potentially cancerous areas. However, the basic assumption that 
glands not detected as healthy are cancerous does not hold, especially given the wide range of gland in clinical 
practice. Khan et al.14 showed that transfer learning based on the same domain can improve �nal segmentation 
results. �ey present decent results with an area under the curve (AUC) of 0.924 at the patch level. However, 
their test set is small and includes only 6 slides, originating from the same distribution as slides used for network 
�ne-tuning. �e most recent work on automatic prostate cancer detection is work presented by Campanella 
et al.17, which is characterized by using a large dataset includes several thousands of slides collected in one medi-
cal center. �e applied dataset allowed authors to use the scale e�ect and develop a using a multiple-instance-
learning (MIL) approach. In the paper, the authors present very high performance (AUC = 0.99 for the test set 
and AUC = 0.93 for external test set), where the small gap between the internal and external test set AUC shows 
a good generalization performance of the method. However, it should be noted that collecting several thousands 
of slides is not trivial for many tasks and in some cases impossible. In the current study we investigate whether 
we achieve similar results with a much smaller supervised dataset, where both our training and testing data are 
multi-center or digitized on scanners from multiple vendors. Speci�cally, we will assess whether multi-center 
training data results in improved generalization performance. We cannot exactly compare the performance of 
the two methods due to the di�erent datasets. However, given the fact that the data from Campanella et al. is 

Figure 1.  Example of the heterogeneity in appearance in prostate biopsy specimens for slides from the 
development set. �e �gure was created using  ASAP34 so�ware, ver. 1.9.0 https ://githu b.com/compu tatio nalpa 
tholo gygro up/ASAP.

https://github.com/computationalpathologygroup/ASAP
https://github.com/computationalpathologygroup/ASAP
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not publicly available, performing a similar analysis is the best we can do. Automatic Gleason grading, which is 
also a popular area of  research10,11, was not studied in this paper.

Our contribution. �e main goal of this study is to investigate the robustness of convolutional neural net-
works to stain and scanning variability for automatic detection of prostate cancer in WSIs and the e�ect of res-
canning and normalization. �is paper has four main contributions: (I) we developed and compared di�erent 
deep learning approaches that address prostate cancer detection at whole-slide image-level based on a multi-
center dataset, (II) the proposed method was evaluated based on two independent datasets of 85 and 50 whole-
slide images digitized on scanners from two vendors and from a medical center not included in the development 
set, (III) we took into account the in�uence of scanner variability on a deep learning classi�cation results, and 
(IV) we investigated the in�uence of color and style normalization on classi�cation results.

Results
Experimental setup. In this work, four experiments were conducted to evaluate method performance. In 
the �rst experiment, U-Net, DenseNetFCN and E�cientNet performance were compared on development set 
in cross-validation. For all networks, the same training and validation data were used. �e total development set 
consisted of 582 WSIs. 486 WSIs were used in a three-fold cross-validation procedure for network training, and 
96 WSIs were kept separate to optimize post-processing hyperparameters. �e 486 whole-slide images in the 
development set were divided into: training (n = 264), validation (n = 60) and test set (n = 162), were in each of 
group ~ 25% cases contained cancer. During training, the validation loss was monitored to determine when to 
stop training. �e Dice coe�cient metric at the patch-level was monitored for DenseNetFCN and U-Net, and 
the accuracy for E�cientNet. Training was repeated for each fold with test set results merged a�er all folds were 
completed. �is results in a tumor likelihood map for every case in the entire development set.

In the second experiment we retrained the best model on the whole development set (training WSIs: 402, 
validation WSIs: 84) and evaluated it on the two independent test sets, using the hyperparameters for both net-
work training and post-processing as obtained in experiment 1.

In the third experiment, the e�ect of scanning variability was investigated. Slides from both independent test 
sets were re-scanned on the scanner used to digitize the development set (Table 3). �e developed algorithm was 
applied to the re-scanned slides to analyze the e�ect of scanning variation.

�e fourth experiment investigates the in�uence of a normalization procedure on the method performance. 
Slides from the independent test sets were normalized using two di�erent approaches: (a) color normalization 
to the color domain of the development set and (b) color and style normalization using a cycle-GAN network. 
�e developed algorithm was applied on normalized slides to investigate the e�ect of normalization.

For all experiments a slide-level likelihood was obtained for each case which was used to construct a receiver-
operating characteristic (ROC) curve and calculate the area under the curve (AUC) in addition to several sensi-
tivity/speci�city pairs and overall accuracy. Bootstrapping was used to obtain ROC con�dence  intervals18. �e 
bootstrap was performed by sampling with a replacement on the prediction indices, and a number of bootstraps 
was 2000.

Experimental results. In this section, we report the quantitative results of four performed experiments. 
Results for each experiment are presented in independent subsections.

Experiment I: three-fold cross-validation. �e average patch level classi�cation results in terms of Dice 
coe�cients a�er training was 0.80 (the Jaccard index: 0.67) and 0.74 (the Jaccard index: 0.59) for U-Net and 
DenseNetFCN respectively. Next, we analyzed the classi�cation results at the whole-slide level, where each slide 
is labeled as either cancer or normal. In Table 1 and in Fig. 2 we present the detailed results of the ROC analysis 
on the full development set, showing that the AUC for U-Net is higher than for DenseNetFCN and E�cientNet.

Table 1.  �ree-fold cross-validation results on a slide level. Results are presented for three points of the ROC 
curve: P1—speci�city equal 1, P2—sensitivity equal 1, P3—the best accuracy, where: SE—sensitivity, SP—
speci�city, ACC—accuracy.

Model Point

Average: cross validation (CV) IT1 IT2

SE SP ACC AUC SE SP ACC AUC SE SP ACC AUC 

U-Net

P1 1 0.75 0.82

0.98 ± 0.05

1 0.41 0.81

0.92 ± 0.03

1 0.05 0.66

0.83 ± 0.06P2 0.5 1 0.87 0.64 1 0.75 0.33 1 0.57

P3 0.85 0.97 0.94 0.92 0.65 0.83 0.88 0.53 0.75

DenseNetFCN

P1 1 0.41 0.56

0.97 ± 0.08

– – – – – – – –

P2 0.31 1 0.82 – – – – – – – –

P3 0.91 0.93 0.92 – – – – – – – –

E�cientNet

P1 1 0.28 0.47

0.97 ± 0.09

– – – – – – – –

P2 0.36 1 0.84 – – – – – – – –

P3 0.89 0.97 0.95 – – – – – – – –
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Experiment II: independent test sets. Given the better performance, further experiments where con-
ducted with the U-Net architecture. �e U-Net architecture was trained using the full development set (1,246,629 
training patches, and 221,576 validation patches). Next, the method was evaluated using two independent test 
sets. �e results of the ROC analysis of this retrained architecture are shown in Table 2 and in Figs. 3, 5 and 6.

Experiment III: effect of scanner variability. In the following experiment, the independent test sets 
were re-scanned on the Philips Ultrafast scanner. �e re-scanning procedure allows to remove one source of 
variability, allowing us to assess the performance di�erences caused by scanner di�erences. In Fig. 4 we show the 
same slides before and a�er re-scanning, where we can easily observe signi�cant di�erences in color representa-
tion, that are a result of the scanning system. In Table 2B and in Figs. 3, 5 and 6 we presented detailed results 
before and a�er re-scanning.

Experiment IV: color and style normalization. In the last experiment, the in�uence of color normali-
zation (stain normalization) on the �nal classi�cation result was investigated. To do this, the color normalization 
procedure developed by Ehtseshami Bejnordi et al.19 was applied on both independent test sets. An example of 
color normalization is presented in Fig. 4. Detailed results are included in the Table 2C and Figs. 5 and 6 whereas 
graphical results are presented in Figs. 3 and 7.

Discussion
�e results in this work highlight the potential for deep learning systems to be used as a triage tool, where at 
very high sensitivity ( > 0.99 ), a large number of normal slides would not have to be checked by an expert. �is 
even holds when looking at our results on the independent test sets, albeit with slightly lower speci�city than 
on the development set. �is highlights there is still room for future improvements, especially in the case of 
robustness to center variability.

Our results, analog to those presented by Campanella et al.17, show that even with extensive data-augmen-
tation performance of deep learning algorithms deteriorate on data from di�erent institutions and scanning 
systems, even as high as 15%. �us, the strategy used in many papers where data from a single institution is 

Figure 2.  ROC curves for binary whole-slide classi�cation, where: (A) the results for the three-fold cross 
validation for each network, (B) the results for the best model (U-Net), CV—results for the three-fold cross 
validation (green), IT1—results for the independent test set I, IT2—results for the independent test set II, ±—
con�dence interval obtained through bootstrapping.

Table 2.  Performance on the whole-slide level on the independent test sets. Results are presented for three 
points (thresholds) of the ROC curve: P1—speci�city equal 1, P2—sensitivity equal 1, P3—the best accuracy, 
where: A—original slides, B—rescanned slides, C—color normalized slides, D—style normalized slides by 
cycle-GAN method, SE—sensitivity, SP—speci�city, ACC—accuracy

Test set Point

A-Basic B-Rescanned C-Color norm. D-GAN style norm.

SE SP ACC AUC SE SP ACC AUC SE SP ACC AUC SE SP ACC AUC 

IT1

P1 1 0.41 0.81

0.92 ± 0.03

1 0.3 0.78

0.91 ± 0.04

1 0.72 0.9

0.96 ± 0.03

1 0.5 0.84

0.98 ± 0.01P2 0.64 1 0.75 0.42 1 0.60 0.74 1 0.82 0.74 1 0.86

P3 0.92 0.65 0.83 0.93 0.73 0.87 0.93 0.87 0.91 0.96 0.87 0.93

IT2

P1 1 0.05 0.66

0.83 ± 0.06

1 0.11 0.68

0.88 ± 0.05

1 0.05 0.65

0.81 ± 0.07

1 0.75 0.91

0.97 ± 0.03P2 0.33 1 0.57 0.53 1 0.7 0.21 1 0.49 0.69 1 0.80

P3 0.88 0.53 0.75 0.85 0.75 0.81 0.91 0.50 0.76 0.99 0.80 0.92
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used will result in positively biased performance metrics, even in the case of correctly splitting the data in train-
ing, validation and test sets. Ideally, every paper should include results on independent test sets coming from a 
di�erent institution.

A key strength of the presented study is the use of a multi-center cohort, scanned with di�erent scanners. �is 
allowed us to increase method robustness. Annotations used for the training were prepared by multiple experts, 
which includes inter-observer variability in the training set, allowing the method to adapt to di�erent styles of 
annotating. In a case of used annotations prepared by a single expert, the network could over�t to that one expert.

Analysis of the patch level validation performance shows that semantic segmentation methods (U-Net 
and DenseNetFCN) achieved Dice coe�cient metrics in a range of 0.74–0.80 (the Jaccard index in a range 
of 0.59–0.67), whereas E�cientNet achieved an accuracy of 0.70. �is shows that both approaches, semantic 
segmentation and patch classi�cation, are able to detect tumor areas. Analysis of the three-fold cross-validation 
results for all networks shows good results with AUC in range 0.97–0.98, where slightly higher results were 
achieved by the U-Net. One advantage of the E�cientNet architecture is that it is lightweight: the size of a trained 
model is 48 MB, whereas the size of the trained U-Net model is 237 MB.

Analysis of results of Experiment 1 (Fig. 2 and Table 1) present an excellent result for the test set from the 
same institution (AUC in a range 0.97–0.98) and lower results for both independent test sets. As such, extensive 
data augmentation alone is not enough to ensure that algorithm performance generalizes. However, the overall 
performance drop on IT1 is reasonable, with a loss of ∼ 6%, slightly less than reported  in17. For IT2 the drop is 
higher with ∼ 15%, which would be unacceptable for adoption in clinical practice. �ese drops can be caused due 
to a variety of reasons, such as di�erent scanners, tissue preparation and staining procedures at di�erent centers.

We speci�cally investigated the e�ect of scanner variability by re-scanning the test sets. �is shows that the 
performance drop can be partly attributed to scanner variation, as re-scanning the IT2 slides on the Philips 
scanner results in a reduction of the drop from 15 to 10 %. On IT1 the re-scanning has less impact, with slightly 
worse AUC (0.92–0.91), but better accuracy (0.83–0.87) for the re-scanned slides. As far as we know, this is the 
�rst study where the in�uence of the scanning system was explicitly investigated. Overall, our method is relatively 
robust to scanner di�erences.

Normalization is a popular pre-processing step used to transform input data to the domain of training data. 
In this study, we compare color and style normalization methods and their in�uence on the performance of 
deep convolutional neural networks. �e AUC of the color normalization method developed by Ehtseshami 
Bejnordi et al., we can observe an 0.04 results improvement for IT1 and 0.02 results deterioration for IT2. For 
the cycle-GAN normalization, which can correct both color and style (e.g. blurring/sharpening), we can observe 
a large improvement in AUC, in the range of 0.06–0.14 for both test sets. Visual inspection of results, shows 
that cycle-GAN normalization reduces the number of false positive detections. �is is also evidenced by the 
increased speci�city at a sensitivity of 1.0 (Table 2). �ese results highlight the following: (a) data augmentation 
and multi-center training data alone do not address all sources of bias in a trained model, (b) normalization as 
a pre-processing step can signi�cantly improve algorithm output, (c) full style normalization allows for a more 
accurate slide normalization compared to only using color normalization. However, one should always take into 
account that pre-processing steps such as normalization require extra processing time and might not always be 
the best solution.

A�er cycle-GAN normalization the AUC results for both independent sets (0.97 and 0.98) are in line with the 
results for the cross-validation results on the development set (0.98). �is shows that the generalization gap that 
we see, and was also reported  in17, can be closed using appropriate pre-processing. �e bene�t of a cycle-Gan 
style normalization is the possibility to retrain and adjust to the new dataset in a short time equal a few minutes, 
which can be reduced in the future.

In addition, our quantitative results are similar to those reported  in17 although obtained with a smaller, 
supervised dataset vs. a larger unsupervised dataset. Direct comparisons are not possible due to the fact that the 
data is not publicly available.

In this paper we speci�cally focus on the task of whole-slide classi�cation and not on segmentation of indi-
vidual cancerous regions within a slide. We made this decision as our slides were not exhaustively annotated. In 
the future it might be interesting to speci�cally look into this aspect, which will also require a reference standard 
based on immunohistochemistry to deal with observer-variation. In addition, although cancer detection is an 
important �rst step in prostate cancer diagnostics in histopathology, future work should also address Gleason 
grading of biopsies speci�cally.

Conclusion. In this study, the e�ectiveness of deep learning approaches was investigated for automatic can-
cer detection on hematoxylin and eosin (HE)-stained prostate biopsies. We tested three algorithms for the prob-
lem of automatic cancer detection and found that especially the U-Net approach performed better than a fully-
convolutional architecture based on DenseNet and classi�cation approach based on E�cientNet. Moreover, we 
evaluated the impact of the whole-slide scanners on the classi�cation results by re-scanning the independent 
tests sets. Last, we investigated the e�ect of normalization on the output of convolutional neural networks, show-
ing that full style normalization can improve method robustness compared to color normalization alone. Over-
all, the proposed system shows strong potential in pre-screening biopsies before analysis by a pathologist with a 
speci�city ranging from 0.5 to 0.75 at 1.0 sensitivity.

Methods
Figure 8 presents the main steps of the developed method, where we can distinguish: training of deep learning 
models and optimization of post-processing operations.
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Deep Learning Model Training. We investigated a deep learning strategy based on a semantic segmenta-
tion (pixel classi�cation) by evaluating two di�erent models, namely U-Net20 and  DenseNetFCN21,22, and patch 
classi�cation using  E�cientNet23.

�e U-Net model consists of two paths: a contracting path to capture context and a symmetric expanding 
path that enables precise  localization20. �e contraction part is the component that is mainly responsible for 
learning data representation, whereas the expansion part is mostly responsible for producing a �ne-grained 
segmentation. In our study, we adapted the original U-Net20 architecture by increasing network depth to 5 levels 
to increase the context used for segmentation by adding two more blocks with 512 and 1024 �lters, as well as by 
adding spatial dropout layers with factor 0.25 between convolutional layers, with the aim of reducing over�tting.

Figure 4.  Example of re-scanned specimens and color normalized slides for (A) IT1 and (B) IT2.

Figure 5.  ROC curve- Re-scanning and color normalization performance. �e comparison of ROC curve 
results for original, re-scanned, color normalized specimens and GAN normalized specimens for two 
independent test sets, where: (A) results for the independent test set I, (B) results for the independent test set II, 
±—con�dence interval obtained through bootstrapping.
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DenseNet22 is a network architecture where each layer is directly connected to every other layer in a feed-
forward fashion (within each dense block). For each layer, the feature maps of all preceding layers are treated 
as separate inputs whereas its own feature maps are passed on as inputs to all subsequent layers. In this work 
we applied the fully-convolutional version of DenseNet, called DenseNetFCN, to image segmentation tasks as 
described in the  paper21. �e applied network has: 5 dense blocks, 16 �lters added per dense block and 4 layers 
in each dense block.

�e E�cientNet is a model proposed in  201923. It is a lightweight convolutional neural network architecture 
achieving the state-of-the-art accuracy on ImageNet datasets. �is model is based on a novel model scaling 
method that uses a simple yet highly e�ective compound coe�cient to scale up CNNs in a more structured 
manner. �e novelty of this method is uniformly scaling each network dimensions with a �xed set of scaling 
coe�cients, based on recent progress on AutoML. In our study, we used the original E�cientNetB0 model, where 
weights were initialized as “noisy-student”24.

�e presented models were optimized using stochastic gradient descent with a categorical cross entropy loss 
function. �e batch size was set to 3, and the training was performed with a learning rate of 0.0005. �e input 
patch size was 512 × 512 pixels for U-Net model, and it was reduced to 256 × 256 pixels for DenseNet model 
(patches were resized) due to memory constraints. Patches with size 512 × 512 were extracted from images at 
5× magni�cation.

�e segmentation problem was formulated as a pixel level multi-class problem. Due to the sparse annotations, 
for each extracted tile, a target map including a single class was created. Patches were automatically extracted 
from annotated areas, that were prepared by medical experts. Patches were selected such that they �t fully in 
the annotated areas. Due to the lack of reference standard labels for non-annotated areas, patches outside of 
annotation were not used. �e number of patches extracted from a single WSI depends on the size of annotated 
areas. �e �nal number of training and validation patches was equal to 1,246,629 and 221,576 respectively. �e 
prepared target maps are used in the learning procedure of both U-Net and DenseNetFCN models. �e network 
was trained with multiple classes in order help the network deal with di�cult benign mimickers of cancers. For 
example, high-grade PIN areas can be very similar to cancer areas and can be easily confused. In order to reduce 
the risk of misclassi�cation, we decided to use a multi-class training strategy. However, in the �nal validation, 
all non-cancer classes were grouped together.

We used data augmentation to ensure robustness to known variations in histopathology, such as rotations 
and color di�erences. �is improves the robustness and ability of CNN to generalize, and decreases the risk of 
 over�tting25. We applied augmentation based on a modi�cation of brightness, contrast, saturation, and rota-
tion, as well as additive Gaussian noise and Gaussian blur  augmentation25. Augmentation has been applied in 
varying amounts for each class, where classes with fewer samples were more heavily augmented. �is strategy 
reduces class imbalance.

In the case of the test set slides, a whole WSI was divided into patches and all patches that include tissue were 
classi�ed. Patches without tissue were not classi�ed, because they do not include the biological information.

Figure 6.  Precision-Recall curve: Re-scanning and color normalization performance. �e comparison of 
Precision-Recall curve results for original, re-scanned, color normalized specimens and cycle-GAN normalized 
specimens for two independent test sets, where: (A) results for the independent test set I and (B) results for the 
independent test set II.
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Figure 7.  Example of graphical results for GAN-normalized specimens with cancer probability map for positive 
cases (cancer), negative cases (no cancer) and areas with false negative detection, where: Dev.—results for the 
development data set, IT1—independent test set 1, IT2—independent test set 2, blue line—annotations, red 
arrow—not detected areas (false negative areas). �e �gure was created using  ASAP34 so�ware, ver. 1.9.0 https ://
githu b.com/compu tatio nalpa tholo gygro up/ASAP.

https://github.com/computationalpathologygroup/ASAP
https://github.com/computationalpathologygroup/ASAP


10

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:14398  | https://doi.org/10.1038/s41598-020-71420-0

www.nature.com/scientificreports/

F
ig

u
re

 8
. 

 M
ai

n
 s

te
p

s 
o

f 
th

e 
p

ro
p

o
se

d
 m

et
h

o
d

.



11

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:14398  | https://doi.org/10.1038/s41598-020-71420-0

www.nature.com/scientificreports/

Post-processing. A set of features was calculated from the tumor likelihood map generated in the previous 
step, to establish the slide-level prediction. �e following features were calculated: a 10-bin cumulative histo-
gram of the tumor likelihood map, size of the total detected tumor area and �rst-order statistics on the likelihood 
map such as standard deviation, variance and mean. Next, the Minimum Redundancy Maximum Relevance 
(MRMR) feature selection  technique26 was applied to select the most relevant features for the classi�cation task. 
Based on this, the feature tumor07 (T07) was selected as the most expressive feature, where T07 is de�ned as:

where TPM—probability map for the tumor class, where each pixel has a probability of being tumor, TA—tumor 
area—all pixels that got a higher probability for the tumor class, than any other class.

�e slide-level labels for a dataset can then be obtained by thresholding T07 at various levels. �e entire 
post-processing pipeline was optimized on the post-processing tuning set without using any of the slides from 
the development set.

We also investigated using supervised traditional machine learning techniques on top of the extracted fea-
tures, such as support vector machine (SVM), random forests, and the XGB  classi�er27,28. However, they quickly 
over�tted to the post-processing tuning set. �e application of a proposed single feature approach is more robust 
across the di�erent test sets.

Slide normalization. We can observe signi�cant di�erences in the appearance of slides scanned by scan-
ning systems from various vendors. �ere can be visible di�erences in colors and in style, where structures can 
be sharper or blurrier. �is is a direct result of proprietary post-processing steps applied in scanning systems, 
that can include various �ltering operations.

A successful approach to deal with this problem is the application of a pre-processing step to normalize slides. 
�e basic strategy is based on a color normalization, in order to transfer new images to the color domain of a 
development set. In the present study, the Ehteshami et al.19 color normalization method (WSICS) was applied. 
A more recent alternative color normalization can be achieved by an application of a cycle-GAN network, that 
allows for modi�cations of colors and structure look (blurring/sharping)29. �is method was inspired by the 
cycle-GAN application in computer vision to transfer images from one domain to another one (e.g. a photograph 
to a Van Gogh style painting)30,31. In order to apply style normalization, we used a cycle-GAN setup to facilitate 
unpaired image-to-image translation. A key advantage is that the cycle-GAN approach is not limited to color 
variations, but can also address changes such as sharpening or blurring of the image.

Cycle-GAN. Our cycle-GAN setup generally follows the original  paper30. For the generator architecture, 
we changed to a U-Net architecture, as it has been shown to work well with normalizing histopathological 
 data32. �e weights of the cycle-consistency loss and the discriminator loss were set to 10.0 and 1.0, respectively. 
Because the cycle-GAN is only able to transform from a single domain to another, we executed a separate train-
ing run for both independent test sets.

In order to train the Cycle-GAN, we randomly picked �ve slides from the development set and the independ-
ent test sets. In our applications, we used slides from two sets to facilitate the domain transformation. �e algo-
rithm learns to transform the stain from one set to the other and vice versa. �e Cycle-GAN application allows 
us to change not only color intensity but allows for introducing blurring/sharping, resulting of an input image 
more similar to the images in the target set. Patches with size 256 × 256 at 10× magni�cation were randomly 
sampled from the selected slides during training. To accommodate for the low amount of patches, we created 
tissue background masks to allow sampling from all tissue locations in the slide (single WSI has a size in a range 
of 20k × 10k pixels to 85k × 200k pixels). Furthermore, we used rotation, mirroring, and scaling augmentations 
to further increase variety. We trained for 150 epochs, which consisted of 50 iterations with a batch size of 4. 
�e learning rate was initially put at 0.0005 and reduced with a factor of 0.5 each time 20 epochs passed. �e 
trained networks were applied on the whole slide images of the independent test sets using a sliding window 
approach, according  to32.

Materials
Whole-slide images. For this study, we collected 717 WSIs of prostate biopsies from three medical centres 
in the USA (Institution C—�e Penn State Health Department of Pathology, denoted as IC) and in the Nether-
lands (Institution A—PAMM Laboratorium voor Pathologie, denoted as IA, Institution B—Radboud University 
Medical Center, denoted as IB). 582 slides from two institutions (IA and IC) were used for method development, 
whereas 135 slides from IB were used as independent test sets 1 (IT1) and 2 (IT2) dependent on the scanner they 
were scanned with (see Fig. 9 and Table 3). �e slides used for method development include ~25% slides with 
cancer, ~ 25% slides without cancer from patients with cancer and ~ 50% slides from patients without cancer, 
and were divided into four sets: (a) training set (264 WSIs), (b) tuning set (validation set, 60 WSIs), (c) post-pro-
cessing optimization set, that not participated in the model training procedure (96 WSIs), and (c) test set (162 
WSIs). Slides were strati�ed at to the slide-level label (cancer/no cancer) and each subset contains   25% of slides 
with cancer. �e three-cross-validation procedure was used for the DL model training. �e post-processing 

T07 =

∑
(TPM ≥ 0.7)

∑
TA
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optimization procedure was conducted with slides (post-processing optimization set) that not participated in 
the previous steps of method development. We do not use the whole training set for the post-processing optimi-
zation step, because slides that were used in the DL model training can achieve a higher probability (con�dence) 
level that unknown slides. In order to achieve high method robustness for independent (unknown) slides, this 
step was performed with a dedicated set of data. IT1 include 85 WSIs, where 58 WSIs contained cancer and 27 
cases were negative. IT2 includes 50 WSIs, where 32 contained cancer.

All slides were stained with hematoxylin and eosin (HE). In order to keep stain variability, tissue samples were 
stained in the local lab of each participating medical center. Herewith, we covered a range of staining protocols 
(Fig. 1). Glass slides were scanned by three di�erent scanning systems (Table 3): (a) Philips Ultra Fast Scanner 
(Philips, the Netherlands)—method development data, (b) Panoramic 250 Flash II scanner (3DHistech, Hun-
gary)—independent test I (IT1), and (c) Olympus VS120-S5 (Olympus, Japan)—independent test set II (IT2). 
Moreover, slides from both independent test sets were rescanned on the Philips Ultra Fast Scanner.

In digital pathology there is no standard for data digitization. As a result, each scanner includes its own post-
processing methods, such as an application of various �lters and can have slightly di�erent pixel sizes e.g., for a 
objective magni�cation of 20x pixel sizes can be in range 0.16–0.25 µm . Moreover, some scanning parameters 
can be modi�ed by users. �is can cause the same slide scanned on the same scanner type to look di�erent.

Our experiments were conducted with archival tissue materials obtained through standard care. Slides are 
fully anonymized and any patient information was not collated or stored. All necessary permission for obtaining 
either slides or digital images were collected from all institutions.

Annotations and Class Definition. In order to develop the deep learning method, all 582 slides in the 
development set were manually annotated by pathologists. Annotations were made non-exhaustively in an 
adapted version of the open-source QuPath  so�ware33. Five classes were distinguished: (a) cancer (adenocarci-
noma), (b) benign areas, (c) other tissue types (e.g. colon tissue), (d) high-grade PIN areas, and (e) other tissue 
areas. At least one area of cancer was annotated in all cases containing malignancy. Figure 10 presents an exam-
ple of annotations. It should be noted that signi�cant class imbalance occurred (especially for the high-grade 
PIN class, that is less represented than the other classes). Slide level labels were assigned based on the presence 
of cancer.

Figure 9.  Distribution of the data used in the study across the di�erent subsets.

Table 3.  Scanners. Parameters of scanning systems.

Data set Data origin Scanners Spatial resolution Rescanning—scanner

Method development set
Institution A and Institu-
tion C

Philips ultrafast 0.24 µm/px –

Independent test set 1 (IT1) Institution B
Panoramic 250 Flash II 
(3DHistech)

0.24 µm/px Philips ultrafast

Independent test set 2 (IT2) Institution B Olympus VS120-S5 0.16 µm/px Philips ultrafast
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