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Abstract In this paper, we study the influence of sample geometry on the measurement of pressure-

saturation relationships, by analyzing the drainage of a two-phase flow from a quasi-2-D random porous

medium. The medium is transparent, which allows for the direct visualization of the invasion pattern during

flow, and is initially saturated with a viscous liquid (a dyed glycerol-water mix). As the pressure in the liquid

is gradually reduced, air penetrates from an open inlet, displacing the liquid which leaves the system from

an outlet on the opposite side. Pressure measurements and images of the flow are recorded and the

pressure-saturation relationship is computed. We show that this relationship depends on the system size

and aspect ratio. The effects of the system’s boundaries on this relationship are measured experimentally

and compared with simulations produced using an invasion percolation algorithm. The pressure build up at

the beginning and end of the invasion process are particularly affected by the boundaries of the system

whereas at the central part of the model (when the air front progresses far from these boundaries), the inva-

sion happens at a statistically constant capillary pressure. These observations have led us to propose a

much simplified pressure-saturation relationship, valid for systems that are large enough such that the inva-

sion is not influenced by boundary effects. The properties of this relationship depend on the capillary pres-

sure thresholds distribution, sample dimensions, and average pore connectivity and its applications may be

of particular interest for simulations of two-phase flow in large porous media.

1. Introduction

Fluid flow in porous media is an ubiquitous phenomenon. The subject is important to a broad class of pro-

fessionals, ranging from engineers interested in increasing the recovery rates of oil reservoirs, to environ-

mentalists concerned about the possible damages associated with liquid waste disposal and even to

baristas wishing to make the perfect cup of espresso. Whether intended to improve the economy, protect

nature, or please the senses, the study of fluid dynamics inside a porous medium has received considerable

attention from the scientific community. The practical relevance of the subject was long ago highlighted in

(and motivating to) the fundamental experimental work of Henry Darcy [Darcy, 1856; Brown, 2002], where

the connection between the flow rate inside a porous sample and the imposed pressure head difference

was first described. In addition to its inherent practical importance, interest in the theoretical aspects of

porous media flow phenomena has also led the physics community to extensively analyze (theoretically,

numerically, and experimentally) the morphology of the phenomenon [Måløy et al., 1985; Lenormand and

Zarcone, 1985; Lenormand et al., 1988; Lenormand, 1989] and its dynamics [Furuberg et al., 1988; Måløy et al.,

1992; Furuberg et al., 1996]. Those studies address the problem at various length scales, from the micro-

scopic (pore-level) to the macroscopic (reservoir scale, for example) and different numerical/analytical tools

and experimental techniques are employed in each of them [Løvoll et al., 2005; Toussaint et al., 2012; Erpeld-

ing et al., 2013].

Two-phase flow is encountered widely in the fields of hydrology, among other reasons, because soil and

groundwater pollution by dense nonaqueous phase liquids (DNAPL), such as chlorinated solvents (e.g., tri-

chloroethylene (TCE)) constitute a large and serious environmental problem [Cohen and Mercer, 1993]. Iden-

tification of pollution sources is difficult due to the fact that organic pollutants can rapidly migrate down to

the bottom of the aquifer and/or along flow paths that differ from the water [Jellali et al., 2001; Bohy et al.,

2006; Dridi et al., 2009; Nsir et al., 2012]. In addition, in both soil and groundwater, they are subject to natural

attenuation.
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When a nonwetting low-viscosity fluid displaces a wetting high-viscosity one in a porous medium, the dis-

placing fluid tends to channel through the paths of lower flow resistance, thereby forming pronounced fin-

gers, which evolve in a branching structure inside the porous network leaving a characteristic macroscopic

invasion pattern [Måløy et al., 1985; Chen and Wilkinson, 1985; Lenormand, 1989]. The formation of such pat-

terns in porous media flow is a long-ranged consequence of the random nature of the porous network and

the forces governing the dynamics at the microscopic scale (pore level). Capillary, viscous, and gravitational

forces are typically the main contributors to such dynamics [Birovljev et al., 1991; Løvoll et al., 2005; Toussaint

et al., 2005, 2012], and their interplay is usually characterized by a set of dimensionless parameters such as

the Bond number (ratio of gravitational to capillary forces) and the capillary number (ratio of viscous to cap-

illary forces). Together with some fluid dependent properties, such as the wettability, viscosity, and density

ratios (in the case of two-phase flow), these parameters determine the typical flow regime (stable displace-

ment, capillary fingering, or viscous fingering) [Lenormand, 1989; Lenormand and Zarcone, 1989] with imme-

diate consequences for the macroscopic transport properties.

While the efforts of the physics community have been mostly directed toward characterizing and understand-

ing displacement patterns and local flow properties, hydrogeologists and soil scientists, on the other hand,

have studied such systems with the goal of finding empirical laws relating saturation and capillary pressure at

the Darcy scale, a mesoscale in which the medium and the flow are described by continuous mathematical

fields. The description of multiphase flows at this mesoscopic scale requires the use of two constitutive rela-

tionships: relative permeabilities as function of saturation, kr5 f(S) and capillary pressure as function of satura-

tion, pc5 f(S) (in this paper called a pressure-saturation curve, or P-S curve, but also known as water retention

curve or moisture content curve). The saturation S of a given phase is understood as the ratio between the vol-

ume occupied by that phase in the porous medium and the total pore volume. The capillary pressure pc is

defined as the difference between the pressures of each phase, i.e., for two-phase flow,

pc5pnw2pw ; (1)

where pnw and pw are, respectively, the pressures of the nonwetting and wetting phases.

Direct measurements of the relation kr5 f(S) for unsaturated porous media are challenging to perform and

it is frequently preferred to estimate this quantity using numerical models, such as the van Genuchten-

Mualem model [Mualem, 1976]. This model uses the relation pc5 f(S) as an input and it is known to be par-

ticularly sensitive to the shape of this pressure-saturation curve [Vogel and Cislerova, 1988; Vogel et al.,

2000]. As a consequence, simulations using the van Genuchten-Mualem parameters may have both their

stability and final results affected by differences in the relation pc5 f(S), as shown by [Ippisch et al., 2006].

Additionally, in simulations of fluid flow in porous media, particularly in the ones that require the integra-

tion of the extension of Darcy equations to multiphase flows [Scheidegger, 1974], the relation pc5 f(S) is also

necessary to give closure to the total set of equations governing the dynamics. Because of these and related

aspects, the problem of understanding the functional behavior of the pressure-saturation curve has

attracted a considerable attention over the years (for further aspects regarding finite capillary numbers and

dynamic effects, see [Løvoll et al., 2011]).

The extension of Darcy equations used in multiphase flows form a highly nonlinear system, due to the

nature of the permeability and capillary pressure functions needed to give closure to the equations. Numer-

ical treatment of this system of equations is discussed extensively in the literature [Ewing and Heinemann,

1984; Durlofsky, 1993; Helmig, 1997; Nayagum et al., 2004; di Chiara Roupert et al., 2010]. Alternative forms of

governing flow equations have been investigated, such as the fractional flow formulation, where the immis-

cible displacement of air and water can be expressed in terms of two coupled equations, a mean pressure

(or global pressure) equation, and a saturation equation [Chavent, 1986; Binning and Celia, 1999].

Two models are typically used to describe the capillary pressure-saturation relationship: the Brooks-Corey

model [Brooks and Corey, 1964] and the van Genuchten model [van Genuchten, 1980]. The capillary

pressure-saturation relationship of Brooks-Corey is given by:

pc5pdS
21=k
e ; (2)

where Se �
Sw2Swr

12Snwr2Swr
is the effective saturation of the wetting phase (water), Sw and Swr are, respectively,

the saturation and residual saturation of the wetting phase, Snwr is the residual saturation of the nonwetting
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phase (air), k[–] is the so-called pore size index and pd[Pa] is the entry pressure which corresponds to the

minimum pressure needed by the air phase to displace the water phase. The capillary pressure-saturation

relationship of van Genuchten is expressed by:

pc5
1

a
S

n
12n
e 21

h i1
n

; (3)

for pc> 0, where a½Pa21� and n[–] are the so-called van Genuchten parameters.

In this paper, we will focus on the experimental and numerical quantification of the capillary pressure-

saturation curve, pc5f ðSnwÞ, in a synthetic porous medium. We have decided to measure this quantity as a

function of Snw, the saturation of the nonwetting phase (air) for convenience, as opposed to water retention

curves which are usually measured as function of the saturation of the wetting phase Sw512Snw . We will

report results of experiments and simulations on two-phase flow in a quasi-2-D porous network with

quenched disorder, i.e., having a static random distribution of pore throats. We will focus on the importance

of boundary effects on the flow patterns and on how these effects can lead to changes in the measurement

of pc5f ðSnwÞ. It will be shown that the curvature of the pressure saturation curve toward zero saturation

and toward final saturation are essentially due to boundary effects associated with two main processes:

around the inlet, this curvature reflects how an initially flat air-liquid interface gradually acquires the mor-

phology of the boundary of a capillary invasion cluster. Around the outlet, the curvature is associated to the

gradual pressure buildup in response to the invasion of narrower pores in the vicinity of an outlet filter (a

semipermeable membrane).

We want to stress out here that the aforementioned boundary effects may bring unphysical features to the

P-S curves (due to the so-called ‘‘end effects’’ or ‘‘capillary end effects,’’ mentioned on [Bear, 1972, p. 453])

and, more importantly, that similar effects may also be present in the results of core sample tests (with 3-D

natural porous media) widely employed in the field, such as the ones produced using the ‘‘porous dia-

phragm method’’ [Bear, 1972; Dullien, 1979]. In this technique, the core sample is placed in contact with a

porous diaphragm, a semipermeable membrane that plays a similar role to the filter at the outlet of our

experiments, letting the liquid (wetting phase) to pass through but not the air (nonwetting phase). The use

of such outlet membranes may artificially induce the invasion of narrower pores in its vicinity that would

not be reached in an unbounded porous medium. The water-retention curves resulting from such tests

(analog to the P-S curves in the current work) are usually fitted to parametric equations such as the Brooks-

Corey and van Genuchten models equations (2) and (3) [Brooks and Corey, 1964; van Genuchten, 1980]. We

make the claim that the result of these data fits may be considerably affected by the unphysical boundary

effects discussed, very particularly in the initial and final phases of the porous medium invasion (where the

invasion front is close to the inlet and outlet boundaries). Since the P-S curve is used as a closure relation

for the integration of two-phase flow equations to model situations where each REV is directly connected

to its neighbors (and not separated from them by semipermeable membranes), care must be taken into

assuring that the features of such curves are realistic and not influenced by the experimental apparatus

employed to obtain them.

Significant deviations in the measurements of capillary pressures in 3-D systems with and without filters

have been reported previously [Oung and Bezuije, 2003; Bottero et al., 2011]. The exact shape of the P-S

curve at the entire system scale is dependent on the relative sizes of the inlet and outlet boundaries with

respect to the system size. However, in real underground systems in a reservoir simulation, no semiperme-

able membranes are present between adjacent representative elementary volumes (REV), and the interface

between the two fluids does not particularly adopt a planar shape when it reaches the virtual boundaries

between these REV. For the purpose of obtaining relationships valid in large-scale reservoir simulations, and

not relationships characteristic of finite size artifacts in the measurement tests, we will thus focus on extract-

ing from the experimental and numerical results, a behavior representative of flow in natural conditions,

without such semipermeable or straight faces boundary conditions. By analyzing the P-S curves away from

the boundaries (a situation representative of flow in the bulk of a porous medium), we show that the P-S

curve reduces to a simplified step-like function, characterized by a single entrance threshold (a statistically

constant macroscopic capillary pressure), and a final saturation. These two characteristic values are entirely

determined analytically: the macroscopic capillary pressure at nonzero saturation is computed directly from

the capillary pressure thresholds distribution of the pore-throats and the average pore connectivity, and the
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final saturation is shown to

depend only on the REV scale

chosen, in direct consequence

of the fractal nature of the capil-

lary invasion air cluster.

2. Methodology

2.1. Description of the

Experiment

2.1.1. Experimental Setup

Real-time 3-D experiments of

flow in porous media are chal-

lenging to perform due to the

natural difficulty involved in the

visualization of the flow. Only very recently real-time pore-scale events in a porous rock were directly

imaged, using high-speed microtomography [Berg et al., 2013]. The use of quasi-2-D porous networks allows

for a simplified experimental setup with the benefit of immediate visualization of the flow structures and

real-time dynamics. A series of experimental studies has been performed in such systems using Hele-Shaw

cells [Hele-Shaw, 1898] and variants to ensure the quasi-2-D geometry of the flow [Måløy et al., 1985;

M�eheust et al., 2002; Løvoll et al., 2005; Toussaint et al., 2005].

Figure 1 shows a diagram of the experimental setup. The porous matrix employed is composed by a single

layer of glass beads having diameters 1 in the range 1mm <1 < 1:18 mm that are placed onto the

sticky side of a contact paper sheet. Silicon glue is used to define the in-plane boundaries of the model and

another contact paper sheet is placed on top of it (with the sticky side facing the beads). The essential

geometry of the model is thus defined by the silicon boundary (around it) and the contact paper sheets

(above and below). In order to give robustness to the system and ensure that the quasi-2-D geometry will

be kept during the experiment, the porous matrix formed is pushed from below by a pressure cushion

against a rigid Plexiglas plate placed on the top. The cushion ensures that the beads will be kept in place,

despite the fluctuations in bead diameters. The Plexiglas plate has been previously milled to define chan-

nels for the inlets and outlets. Cuts were made in the upper contact paper sheet such that the liquid can be

injected into and withdrawn from the porous network through the channels in the Plexiglas plate. In the

experiments performed, the porous matrix was initially filled with a wetting viscous liquid composed of a

mixture of glycerol (80% in weight) and water (20% in weight) whose kinematic viscosity and density were

measured to be, respectively, m54:25 1025m2=s and q51:205 g=cm3. The tabulated value for the surface

tension at 258C is c50:064N:m21 [Glycerine Producers’ Association, 1963]. Since the medium is initially com-

pletely wet by the liquid, the contact angle is always found to assume low values, although its exact value

varies during a pore invasion due to dynamical effects.

The system also includes a filter placed in between the glass beads and the liquid outlet, at the end of the

porous network. The filter is made of a sponge with pores much smaller than the typical pore size of the

network itself and is intended to mimic the function of similar filters present in the apparatus typically used

in the determination of P-S curves for core rock and soil samples (e.g., in the so-called ‘‘porous diaphragm

method’’) [Bear, 1972; Dullien, 1979].

The cell is positioned horizontally. Two pressure sensors (Honeywell 26PCAFG6G) were positioned at the

outlet of the model and images were recorded from the top by a digital camera (NIKON D7100). A thermis-

tor was placed in the liquid phase, in order to monitor its temperature. The air saturation is obtained from

the analysis of the images. The outlet of the model is connected via tubing to a liquid reservoir which is

placed on a translation stage (see Figure 1). The stage is controlled by a step motor which allows for precise

changes in the height of the liquid reservoir. Since the liquid in the reservoir is connected to the liquid in

the porous medium, by changing the height of the reservoir one can effectively control the pressure in the

liquid phase inside the porous network. During the course of an experimental run the position of the reser-

voir is lowered, which reduces the pressure in the liquid initially saturating the porous medium. The model

inlets are open to the atmosphere and, once the pressure in the liquid phase is low enough, the capillary

Figure 1. Diagram of the experimental setup. Additional details in Appendix A.
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pressure (see equation (1)) becomes sufficiently large to overcome the minimum threshold value that is

needed to invade the largest pore-throat available to the air-liquid interface. The air phase then starts to dis-

place the liquid phase, initiating the invasion process. The capillary pressure threshold value is defined by

the local pore geometry and the fluids wetting properties. It corresponds to the minimum difference in

pressure between the phases necessary to drive the invasion of a given pore-throat. In accordance with

Young-Laplace law [Bear, 1972], larger pore-throats have lower values of capillary pressure thresholds and

are, therefore, invaded earlier.

We are interested in studying flow in the capillary regime, in which the capillary forces dominate over vis-

cous ones. Therefore, the fluid invasion must happen very slowly in order to avoid viscous effects. The typi-

cal duration of each experiment is more than 3 days, and, for such long experiments, evaporation effects

may play an important role and they had to be taken into account in the design of the experiment. Very

particularly, the evaporation of liquid from the external reservoir had to be considered, since that could

change the imposed pressure difference in the long-run (evaporation increases the height difference h

between the porous model and the liquid level in the reservoir, thus increasing the imposed pressure differ-

ence). Another effect that had to be taken into account was the fact that the displaced liquid volume that

leaves the porous medium also goes into the liquid reservoir (decreasing the height difference h and thus

decreasing the imposed pressure difference). This second effect could possibly have been easily solved by

using a reservoir large enough to make the change in the liquid level negligible during the course of an

experiment. Nevertheless increasing the cross-sectional area of the reservoir does not solve the first issue

because the evaporation rate also increases with this area. The solution that best suited us to handle both

issues was to construct an overflowing mechanism into a specially designed liquid reservoir, which we

describe in details in Appendix A.

Figure 2 shows a typical invasion process. The time difference between the first and last images is about

82 h. The air inlet is on the left and the filter is the black stripe on the right. The time and instantaneous cap-

illary pressure corresponding to each snapshot are shown under each image. Figure 3 shows a spatiotem-

poral evolution of the whole invasion process. The colormap indicates the time in hours.

2.1.2. Control of the Experiments

A computer running a Python code controls the experiment. A Keythley 2000 multimeter connected to the

computer reads the signals from the pressure sensors and thermistor. One of the objectives in mind in

designing the current experiment was to probe a response as quasistatic as possible, i.e., to be able to con-

trol the imposed pressure (by lowering the liquid reservoir) in such a manner that the capillary pressure

(pressure difference between the air and liquid phases) would be just slightly above the lowest capillary

pressure threshold defined by the geometry of the largest pore-throat available to the air-liquid interface.

Figure 2. Images from the drainage process. The time t of each image is shown in hours and the instantaneous capillary pressure pc in

pascals. The porous medium is positioned horizontally to avoid gravitational effects. It is initially saturated with the liquid phase (blue)

which is then gradually displaced by the invading air phase (white).
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By doing so, one reduces the interference of dynamical viscous effects in the measurements (the P-S curves

are known to be influenced by these effects [Løvoll et al., 2011]). In order to achieve this, a feedback control

loop was designed in which the imposed pressure in the liquid phase is decreased (thus increasing the cap-

illary pressure) only when the system reaches an equilibrium configuration, i.e., when no pore is invaded for

a certain amount of time in the whole model. Therefore, the code employed not only sends commands to

the multimeter (to read pressure and temperature), step motor (to lower the liquid reservoir position), and

camera (to capture images) but does so in an integrated manner, in which the current state of the experi-

ment is used as an input to decide the next action. The procedure is as follows: pressure and temperature

measurements are taken continuously and pictures are taken at fixed time intervals (�15 s). At each fifth

picture taken (5th, 10th, 15th. . .) the computer performs the image analysis to check whether the system is

in equilibrium or not, i.e., to check if air is invading new pores or not. If the invasion process is still going on,

the area of the air phase in, say, picture number 15 will be larger than the area in picture number 10, and

the imposed pressure is left unchanged (no action is taken with respect to lowering the liquid reservoir).

Conversely, if the area does not increase, the system is assumed to be in equilibrium and the imposed pres-

sure difference is increased by a small amount (the liquid reservoir is lowered), see Figure 4. The amount dh

by which the reservoir is lowered is one of our control parameters. During the initial phase of the experi-

ment, the liquid level in the reservoir is at the same height as the porous medium and the system needs to

build up a considerable pressure until the invasion starts, therefore, we have chosen a larger dh5 dhmax for

this initial process and a smaller dh5 dhmin to be used after the invasion has started (after the invading

phase area reaches a certain small threshold). The values used were dhmax5 0.01 cm and dhmin5 0.001 cm

corresponding to respective increments in the imposed capillary pressure of approximately dpmax5 1.2 Pa

and dpmin5 0.12 Pa.

Figure 3. Experimentally measured spatiotemporal evolution of the drainage process for the same sample and experimental run as shown

in Figure 2. The colormap corresponds to the invasion time in hours.

Figure 4. Feedback loop used to control the imposed capillary pressure in the experiments. The figure shows a detail from the black and

white thresholded image, where the air phase is white and the liquid phase together with the porous medium are black. From I to II, the

area of the air phase has grown from A0 to A01 dA, so the capillary pressure is kept constant at p0 (no change in the liquid reservoir posi-

tion). From II to III, the area of the air phase does not change, which means the capillary pressure must be increased from p0 to p01 dp (by

lowering the liquid reservoir and thus decreasing the pressure in the liquid phase by a positive amount dp). This analysis is done ‘‘on the

fly’’ as the experiment is performed.
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2.2. Image-Based Estimation

of the Capillary Pressure

Thresholds Distribution

The use of a high-resolution

camera allows us to analyze the

images down to the pore scale.

We have used the first image (in

which the porous network is

completely saturated with the

liquid) to experimentally access

the pore-throat size distribution.

Initially we have identified the

position and average radius of

each bead in the network, next

we employed a Delaunay trian-

gulation algorithm [Lee and

Schachter, 1980] to find the dis-

tance between the centers of

consecutive beads. By excluding the radius of each of the beads from the vector with all the pairwise distan-

ces between consecutive bead centers, we can directly access the size distribution of pore-throats. Figure 5

shows a zoomed in image of the procedure employed. The Voronoi lattice, (dual graph of the Delaunay tri-

angulation) [Voronoi, 1908] is also shown. Each cell in the Voronoi lattice identifies the set of points in space

that are the closest to the point in the center of the cell. Those central points are, by construction, the cen-

ter of the glass beads. The vertices of the Voronoi lattice can be understood as the centers of the pores and

the points at which the lines from the Delaunay triangulation and Voronoi lattice intersect are the centers

of the pore-throats.

Figure 6 shows the image-based estimation of the capillary pressure thresholds distribution. In the inset, it

is also shown the distribution of pore-throat sizes d, i.e., the in-plane throat diameters (the out-of-plane

throat diameter is assumed to be constant and equal to 1 mm, the gap or height of the model). The capil-

lary pressure thresholds distribution was estimated by considering the normalized histogram of the inverse

of the pore-throat sizes 1/d. In order to get to the actual capillary pressure distribution, it would be neces-

sary to multiply 1/d by the surface tension c of the liquid-air interface (according to the Young-Laplace law)

and correct it by (i) a multiplicative geometrical factor, to account for the angle of contact between the air-

liquid interface and the solid, dynamical wetting properties and local pore geometry and (ii) an additive fac-

tor to account for the (constant) contribution of the out-of-plane curvature to the capillary pressure. As a

first-order approximation, we neglect such corrections here. They would lead to a rescaling and a translation

of the horizontal axis in Figure 6, but

would not significantly change the

shape of the distribution.

2.3. Description of the Simulation

Procedure

2.3.1. Invasion Percolation Model

The simulation procedure is based on

the invasion percolation model devel-

oped in Wilkinson and Willemsen

[1983]. The idealized porous medium is

a network of pores connected by

throats. We work on a square lattice of

sites oriented at 458 from the main

flow direction: each site alternately rep-

resenting the pore spaces or the rock,

like in a chessboard. The length and

width of the grid will be called,

Figure 5. Pore-scale analysis used in the experimental determination of the capillary pres-

sure thresholds distribution. Blue dots indicate the center of the beads, solid red lines

show the Delaunay triangulation, and the dashed green lines are the Voronoi lattice (dual

graph to the Delaunay triangulation). The vertices of the Voronoi lattice mark the centers

of the pores and the points at which the lines from the Delaunay triangulation and Voro-

noi lattice intersect are the centers of the pore-throats. The bead diameter is �1 mm.
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in the inset.
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respectively, l and w, and those will be expressed in number of lines and columns. To make the connection

with the experiments clear, notice that the length is measured between the inlet and the filter at the outlet,

whereas the width is measured in the direction perpendicular to this one.

Each pore is connected to its four closest neighboring pores by throats (also called necks, in other works, or

bonds, in the percolation theory literature). The throat diameter fixes the capillary pressure threshold that is

needed to make the injected fluid (air) jump from one site to the following through that connecting throat.

Each time a site is invaded, its neighbors become available to the invading fluid. The capillary pressure

threshold of a throat is randomly drawn from a uniform distribution inside the interval [pmin pmax]. We chose

pmin5 200 Pa and pmax5 608 Pa, giving rmax5 0.64 mm and rmin5 0.21 mm by the Young-Laplace law:

pc5
2c

rm
(4)

where c50:064N:m21 is the surface tension of the air-liquid interface [Glycerine Producers’ Association,

1963] and rm the curvature radius of the duct.

Viscous forces are assumed to be negligible in comparison to capillary forces in the regime studied (low

capillary numbers). At the initial state, the medium is completely filled with liquid, with the exception of

the first row of pores that is filled with air. The displaced volume of liquid exits the network from one side

of the lattice (opposite to the side where air enters the medium). A selection rule at this exit side mimics

the effect of the filter in the experiments, blocking the passage of air but allowing the liquid to flow

through.

Narrower pore-throats have larger capillary pressure thresholds and are, therefore, harder to invade.

Since the invasion is governed by the values of capillary pressure thresholds associated to the throats (or

bonds), this problem is partially similar to bond percolation [Stauffer, 1994], although in that case, differently

from the invasion percolation model, all throats with associated capillary pressure thresholds smaller than a

given value would be invaded at once. In order to define which pore-throat will be invaded in the invasion

percolation model, one has to perform a search in the available set of pore-throats (the ones that are at the

liquid-air interface) and look for the throat with the lowest capillary pressure threshold pct. The pressure

increment with respect to the instantaneous capillary pressure pc that is needed to invade this pore-throat

is Dp5pct2pc . Then, pc is incremented by Dp and the pore connected through this throat is turned from

the liquid state into the air state, making its neighboring pores available for the next step.

The choice of the invaded pore is also constrained by the incompressibility of the displaced liquid. When

regions of the liquid happen to be completely surrounded by air or stuck between air and a wall, they

become trapped, disconnected from the outlet, and these surrounded sites must be removed from the list

of potential invasion candidates. Not incorporating this feature would lead, in the long-term, to thoroughly

filling the medium with air. The simulations stop when all the sites that are on the edge of the filter (exit

side) contain air, blocking the flow of liquid outside of the model. The liquid left inside the porous network

is found to be broken into a set of clusters that are disconnected from the exit side.

In the simulations, the two fluids are incompressible, so that the regular changes of pressure difference

between the two phases equally represent a situation where air pressure is kept constant and water pres-

sure is changed, or the contrary. In the experiments, in order to avoid effects due to air compressibility, the

choice was made to reduce the pressure in the liquid instead of rising the air pressure.

2.3.2. Capillary Pressure Thresholds: Mapping Between Different Distributions

We have chosen to work with a uniform distribution for the capillary pressure thresholds, but, due to the

nature of the simulation procedure involved, we will show that drawing the pressure thresholds from

another type of distribution would not change the geometry of invasion pattern—although it would affect

the P-S curve of the system. We will compare the outcome of the simulations that use a uniform distribution

to the one produced by a distribution that was estimated empirically from the direct experimental measure-

ment of the pore-throat sizes, as described in section 2.2. In order to do so, we must first produce a map-

ping linking the capillary pressure thresholds withdrawn from the uniform distribution to the ones

following the experimentally estimated distribution, as explained next.

In probability theory, the cumulative distribution function (CDF) F(x) associated with a random variable X is

defined as the probability that X< x, i.e.,
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FðxÞ5

ðx

21

f ðx0Þdx0 ; (5)

where the random variable X follows a distribution given by the probability density function (PDF) f(x). In

the context of percolation theory [Stauffer, 1994], the CDF F(x) is also known as the occupancy probability.

Let us call Funif(punif) the CDF of the capillary pressure thresholds following a uniform distribution and

Femp(pemp) the CDF of the capillary pressure thresholds following the empirically measured distribution. The

set of capillary pressure thresholds uniformly distributed is generated using a standard random number

generator, its PDF and CDF being given, respectively, by

funif ðpunif Þ5
1

pmax2pmin

and (6)

Funif ðpunif Þ5
punif2pmin

pmax2pmin

; (7)

where pmin and pmax are the minimum and maximum values attainable by the pressure. The capillary pres-

sure thresholds distributed according to the empirically measured distribution are generated using a rejec-

tion sampling method, which is well described in the literature [see Press, 1992, for instance]. Since we do

not have access to analytical forms for the empirical PDF femp(pemp), we infer this quantity experimentally, as

described in section 2.2 and shown in Figure 6, by normalization of the measured histogram of entry pres-

sures (determined from the pore-throat geometries). The calculation of the empirical CDF Femp(pemp) is

done, via numerical integration using equation (5).

As stated, the change in distribution of the capillary pressure thresholds does not affect the invasion pattern

in the simulations. This happens because air follows the path of least resistance, which does not depend on

the particular values of the pressure thresholds themselves, but only on their rank in the ordering from

the smallest to the largest capillary pressure threshold. Such a rank remains unchanged by a change

in the distribution. This property is used to define a correspondence between pressure values in the

uniform and empirical distributions: since the rank is unchanged, Funif ðpunif Þ5FempðpempÞ, therefore

pemp5F21
empðFunif ðpunif ÞÞ.

3 Results and Discussion

3.1. Measurements of P-S Curves

3.1.1. Experiments

Figure 7 shows an experimentally measured P-S curve for the model depicted in Figures 2 and 3. Two kinds

of pressure measurements are seen in this figure. The thick red line represents the capillary pressure head

imposed to the model obtained by multiplying the liquid’s specific weight qg511:83 kN=m3 by the height

difference h between the porous network and the liquid reservoir (see Figure 1). The thin green line corre-

sponds to the pressure measured at the model’s outlet using an electronic pressure sensor. In a static situa-

tion, the two curves coincide. The difference seen between those curves is due to viscous pressure drops

arising from dynamical effects during the pore invasion events: once the capillary pressure is large enough

to overcome the capillary pressure threshold imposed by the largest pore-neck in contact with the front,

the invasion of that pore takes place, with air displacing the filling fluid. The motion of the fluid sets in vis-

cous stresses which lead to the pressure drops seen in the green curve. This dynamics happens in an ava-

lanche manner during which the invasion of one pore may trigger the invasion of other pores in the

neighborhood and it has been extensively studied in the literature [Haines, 1930; Måløy et al., 1992; Furuberg

et al., 1996]. In the current paper, we neglect these dynamical effects and focus only on the quasistatic situa-

tion. For the experiments reported next, we have decided to employ pressure measurements obtained

from the height difference between the model and the liquid reservoir, like the one in the thick red curve in

Figure 7. One of the reasons that has led us to chose this approach is the fact that this method seems to be

more closely related to the kind of procedure employed in the field tests, for example in the ‘‘porous dia-

phragm method’’ using core rock or soil samples [Bear, 1972; Dullien, 1979].

The properties of such pressure-saturation curves are certainly influenced by the characteristics of the

porous medium, such as its porosity and local connectivity, but are in no sense uniquely determined by
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them. In fact, some features of the

curves can be highly influenced by the

effects of the boundaries of the model.

The extent to which these boundary

effects influence the overall P-S curve

depends on the size and dimensional-

ity of the porous medium itself. We

have observed that the invasion close

to the inlet and outlet of the model are

particularly subjected to boundary

effects. For the sake of clarity, we have

decided to divide the flow into three

parts: building regime (close to the

inlet), propagation regime (central part

of the model), and clogging regime

(close to the outlet). In order to scruti-

nize in details the impact of the bound-

ary effects in each regime, we have

performed the analysis to produce P-S

curves using measuring subwindows

located inside the model in a set of

regions either very close or very far

from the boundaries. Figure 8 shows

the resulting P-S curves for three of those subwindows each one corresponding to a particular invasion

regime.

1. Building regime: in the subwindow close to the inlet, one can see the pressure building up phase as the

invading front evolves from the initial flat interface to the ramified fractal profile characteristic of slow

drainage processes in porous media [Lenormand and Zarcone, 1989; Måløy et al., 1992], see Figure 2. Ini-

tially the easiest (largest) pores are invaded and then, as the front progresses inside this subwindow, it is

Figure 8. Experimental P-S curves obtained for three different measuring subwindows inside the model. The subwindows were chosen in

order to emphasize the distinct effects caused by the boundaries on the curves. From bottom to top, they correspond to the building

regime (subwindow 1), propagation regime (subwindow 2), and clogging regime (subwindow 3).

Figure 7. Experimental P-S curve obtained for the model depicted in Figures 2

and 3. The thick red curve is the imposed capillary pressure obtained by multiply-

ing the height difference h between the model and the liquid reservoir by the

liquid’s specific weight qg511:83 kN=m3 . The thin green curve shows direct pres-

sure measurements at the outlet of the system made with a pressure sensor. The

inset is a zoomed in section showing the viscous pressure drops that follow each

pore invasion event. The dashed blue line indicates the breakthrough saturation

SB5 0.395, i.e., the saturation at which the air phase first percolates through the

model, reaching the filter at the outlet.
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necessary to increase the capillary pressure to give access to harder (narrower) pores, since all the easy

ones available to the front were already filled. This evolution progresses and is seen in the left part of the

lower P-S curve (Figure 8, bottom curve, subwindow 1—inlet).

2. Propagation regime: after the invading front has progressed a certain characteristic distance inside the

model, the imposed pressure becomes large enough, such that only minor increments from this value

are necessary to keep driving the invasion through most of the central part of the model. By measuring

the P-S curve using a subwindow in the middle of the porous network, one can thus see a much flatter

profile (Figure 8, middle curve, subwindow 2—center). The regions of pressure building up are con-

strained to the extreme left and right of the curve, as vertical lines, which means they happen, respec-

tively, before and after the invasion front has reached this subwindow. In the central portion of the

model, where boundary effects are negligible, the air-liquid interface propagates steadily at a statistically

constant capillary pressure pcrit. We will later characterize this critical value of the pressure and show how

it depends on the medium and fluids’ properties.

3. Clogging regime: for the subwindow close to the outlet, the presence of the filter forces the air phase to

spread sideways, leading to an increase in the final air saturation inside this subwindow as can be seen

in the upper P-S curve in the figure (Figure 8, top curve, subwindow 3—outlet). This happens because

the typical pore sizes of the filter are much smaller than the pore sizes of the matrix, constraining the air

invasion to remain inside the matrix. As the capillary pressure is increased, smaller pores become avail-

able and are invaded thus leading to the higher final saturation in this subwindow and the upward cur-

vature in the P-S curve. The invasion of these narrower pores in the vicinity of the filter is, therefore, a

direct consequence of the presence of the filter itself and would not occur in an unbounded system.

Once all the pores connected to the filter are invaded by air, the filter is said to be clogged and the liquid

within it is disconnected from the porous medium. Increasing the pressure even further does not lead to

any additional invasion as can be seen by the final vertical line in the P-S curve.

In the following section, we will make use of computer simulations to stress these boundary effects more

clearly.

3.1.2. Simulations

We have used the Invasion Percolation algorithm described in section 2.3.1 to simulate the invasion process.

Assuming that a numerical site represents a 0.5 mm size pore, we perform simulations with sizes similar to

those of the experimental cell in Figure 2 by defining a grid with dimensions l5 546 lines and w5 220 col-

umns, representing, respectively, its length and width. The resulting P-S curve is shown in Figure 9a (left).

The black curve shows the successive values of capillary pressure thresholds of the invaded pores, drawn

from a uniform distribution. Notice that this curve goes up and down intermittently, reflecting the fact that

there is no imposed spatial correlation between the threshold values: after invading a given pore, the fol-

lowing pore may have a larger or lower capillary threshold. In the experimental situation, since the capillary

pressure is set externally by the level of the liquid reservoir (see Figure 1), the invasion of an easier pore

(larger, with lower pressure threshold) that immediately follows a harder one (narrower, with higher pres-

sure threshold) happens in a sudden burst fashion, leaving the signature pressure drops depicted in the

green curve in Figure 7. As explained in section 3.1.1, in the experiments, we use the measurements from

the imposed pressure, a strictly nondecreasing function. In order to simulate this quantity numerically, we

define a pressure envelope curve, shown in red in Figure 9a, which marks the value of the highest capillary

pressure threshold reached so far, thus mimicking the behavior of the imposed pressure in the experiments.

The continuous increase of this pressure envelope indicates the necessity of invading harder pores as air

propagates through the medium. We have noticed in our simulations that the breakthrough marker (Figure

9a, dashed blue line) coincides with the inflexion point of the pressure envelope. This indicates that the

presence of the external filter is responsible for the curvature inversion, i.e., that in an open medium, in the

absence of any outside filter, there should be no upward increase of slope of this envelope. We remind that

the breakthrough is defined as the moment in which the air phase first reaches the filter, forming a sample-

spanning cluster of invaded pores [Stauffer, 1994].

Next, we have made use of the mapping technique discussed in section 2.3.2 to visually analyze the effects

of the underlying capillary pressure thresholds distribution in the simulation of the P-S curves. Figure 10

shows the P-S curve (green line) associated with the empirically measured distribution from section 2.2,

together with the underlying pressure thresholds (black line). We compare this curve with another one

Water Resources Research 10.1002/2015WR017196

MOURA ET AL. BOUNDARY EFFECTS ON PRESSURE-SATURATION CURVES 8910



Figure 9. (a) P-S curve for the simulation of a system of size w5 220 columns and l5 546 lines. The capillary pressure thresholds values

(drawn from a uniform distribution) are shown in black and the pressure envelope (P-S curve) in red. The breakthrough saturation SB is

marked by the dashed blue line. The network image to the right shows air in white, liquid in brown, and the subwindows positions in

blue. (b) P-S curves measured inside the subwindows.
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where a uniform capillary pressure

threshold distribution was used (red

curve). We notice that, although the

invasion pattern is left unchanged by

the change in the distribution (due to

the nature of the invasion percolation

algorithm, as described in section

2.3.2), the P-S curves are sensitive to

this change (as they should in a realis-

tic scenario). The amount by which

they differ depends on how unequal

the distributions used are. In producing

the P-S curve for the empirically meas-

ured distribution, we have tuned the

minimum and maximum values of the

pressure, pmin and pmax, to get results

in the same order of magnitude as in

the uniform case.

In order to emphasize the boundary

effects to the P-S curves, we select a set

of subwindows, as shown in Figure 9a

(right), and measure the P-S curves

inside of them, leading to Figure 9b (in

a similar fashion to what was done

experimentally in Figure 8). From the

analysis of Figure 9b, we see that the

results from our simulations reinforce the experimental observations of the previous section. We can directly

observe that the phases of initial pressure build up are restricted to the region close to the inlet, as shown by

the rise in the pressure envelope in subwindow 1, where the air front evolves from the initial straight line to

the capillary fingering ramified pattern, characterizing the building regime. The clogging regime, with the final

rise in pressure due to the invasion of narrower pores in the vicinity of the filter at the outlet is shown in sub-

window 5. For the subwindows placed far from the boundaries, we see the much flatter pressure envelope

from the propagation regime, also in accordance with what was observed in the experiments, see for exam-

ple, subwindow 3. The phases of pressure building up appear as vertical lines in the extreme left and right of

the curve, meaning, as stated earlier, that they occur before and after the invading front has reached the sub-

window area. In the interior of the subwindow, the invasion happens at an essentially constant capillary pres-

sure, thus producing a flat plateau in the P-S curves for these areas. Our numerical results, supported by

experimental confirmation, yield the conclusion that when boundary effects are negligible, the invasion hap-

pens at a statistically constant capillary pressure pcrit. In this region (that for a large enough sample would

correspond to the majority of the flow), the P-S curve is reduced to a very simple function, needing only two

values for its characterization: the critical value of the pressure pcrit and the final saturation SF. We proceed to

a deeper numerical analysis of these quantities, starting from the latter.

3.2. Analysis of the Final Air Saturation

Let SF denote the final air saturation, corresponding to the air saturation at the end of the experiment, i.e.,

when all the sites connected to the exit side are invaded by air and no additional displacement is possible.

Due to the fractal nature of the capillary invasion process [Mandelbrot, 1982; Feder, 1988; Lenormand and

Zarcone, 1989], the final saturation is expected to be a function of the system’s geometry. In order to ana-

lyze this dependency, an extensive numerical study was performed in which the dimensions (length l and

width w, expressed, respectively, in number of lines and columns) were separately changed.

Let us initially analyze the evolution of the P-S curves for different values of l and w. In Figure 11a, P-S curves

are produced for systems with different lengths l and same width w5 60 (for the sake of clarity, we omit

here the actual pressure threshold values and show only the pressure envelopes). We observe that for sys-

tems in which the length l (distance between inlet and outlet) is too small, boundary effects dominate the
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Figure 10. P-S curve (green line) simulated for a system of size w5 220 columns

and l5 273 lines, having capillary pressure thresholds (black line) following the

empirically measured distribution. The P-S curve obtained for a uniform distribu-

tion (red line) is shown for comparison. The amount by which these curves differ

depends on how unequal the underlying distributions are. The breakthrough

marker (blue-dashed line) is the same for both curves, since the invasion order is

not affected by the mapping between the distributions.
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whole invasion process: there is a tend-

ency toward larger final saturations

and the P-S curves do not reach a flat

plateau. The initial curvature (related to

the flow close to the inlet) seems to

extend longer in the P-S curves than

the final curvature (related to the flow

close to the outlet). This is particularly

noticeable in the systems with shorter

lengths in Figure 11a. Therefore, when

it comes to the influence on the overall

shape of the P-S curve, the boundary

effects coming from the flow close to

the inlet (building regime) are more

important than those coming from the

flow close to the outlet (clogging

regime), and require a longer system

length l to fade out. As l is increased,

the final saturation is reduced, and the

phases of pressure building up are

restricted to the regions close to the

inlet and outlet. For long enough sys-

tems, most of the invasion happens at

an essentially constant capillary pres-

sure (the propagation regime domi-

nates), which is reflected as the plateau

observed in the P-S curves for large l.

Notice that for those long systems, the

fraction of pores in the vicinity of the

boundaries is small therefore their P-S

curves resemble the ones in sub-

window 3 in Figure 9 where the meas-

urements are taken at the center of the

model (far from the boundaries).

In Figure 11b, P-S curves are produced

for systems with different widths w and

same length l5 100. One can observe in this figure the convergence of the final air saturation as the width

is increased but, for small widths, the dispersion in the saturation does not seem to be as pronounced as

in the case of small lengths (compare with Figure 11a). Putting it in a different way: samples with small

distance l between inlet and outlet seem to have their final air saturation more affected by boundary effects

than samples with small distance w between the lateral boundaries. One possible explanation for such

result lies in the fact that the final saturation is increased in the vicinity of the outlet boundary, due to the

invasion of narrower pores induced by the filter in that region. When the sample length is reduced, the rela-

tive importance of this region close to the outlet is increased, thus increasing the overall saturation as

described previously. Taking these observations into account, we shall next analyze the behavior of the final

saturation as the length l of the system is gradually changed for a given set of fixed system’s widths w. Addi-

tional analysis for the air saturation are included in Appendix B: the variation of the final saturation as the

width w of the system is gradually changed, for a given set of fixed system’s lengths l, can be found in sec-

tion B1 and similar considerations regarding the dependence of the breakthrough saturation on the system

geometry can be found in sections B2 and B3.

3.2.1. Variation of the Final Air Saturation With the System’s Length

Figure 12a shows an extensive numerical study produced to analyze the dependency of the final saturation

on the system’s length l. Each point in this figure is obtained by (1) fixing a geometry for the grid (length

and width); (2) letting the invasion take place according to the invasion percolation algorithm described in

Figure 11. Simulations of P-S curves for various system sizes. (a) Curves for sev-

eral lengths l with width fixed to w5 60 columns. (b) Curves for several widths

w with length fixed to l5 100 lines.
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section 2.3.1; and (3) computing the

final air saturation. For several widths w

(shown in the legend in the figure), the

length l of the grid is chosen in the

interval from l5 5 to l5 5000, with a

step of 5 from 5 to 100, 10 from 100 to

1000, and 50 from 1000 to 5000. For

each fixed width, the final saturation as

a function of the ratio r5 l=w is plotted

in Figure 12a, different colors and sym-

bols being used for different widths.

We observe evidence of scaling behav-

ior up to a certain crossover region

after which the final saturation seems

to remain constant. This observation

leads us to postulate the scaling law

SFðr;wÞ5rðDc2DÞf ðrÞS1ðwÞ ; (8)

where Dc is the fractal dimension [Man-

delbrot, 1982] of the invasion pattern,

D5 2 is the Euclidean geometrical

dimension, f(r) is a crossover function,

and S1(w) is the final saturation for a

model with width w and length l ! 1.

The crossover function is defined as

f ðrÞ5
C for small r

r2ðDc2DÞ for large r

(

(9)

where C is a dimensionless constant,

numerically determined as C ’ 1:56 by

a linear regression in the bilogarithmic

plot shown in Figure 12a, over the

ensemble of simulations at r< 5. In

order to test our assumption for the

functional dependency of SF, we divide

the data in Figure 12a by the corre-

sponding value of S1(w), determined

by averaging simulation values of

SF(r,w) at large r. The result is shown in Figure 12b. The data collapse shown in this figure indicates that

SF/S1 is indeed a function of r only and, therefore, equations (8) and (9) seem to provide a reasonable

description. The exponent Dc in equation (8) was measured from Figure 12b as the slope of the dashed lin-

ear regression at r< 5, and found to be Dc ’ 1:7560:10. The dependency of S1 with w was also studied

and we estimate that S1 / wðD1
c 2DÞ with D1

c ’ 1:6860:10 and D5 2, see the inset in Figure 12b. From

Figure 12b, we can also give a more reasonable definition for the terms ‘‘small r’’ and ‘‘large r’’ used in equa-

tion (9): from the collapsed data, we can say that r ’ 5 marks the approximate turning point for the cross-

over function (corresponding to the crossing point of the two asymptotic regimes shown in blue-dashed

lines). Therefore, we can say that in the case of our 2-D model, the system’s final saturation becomes

roughly independent of its length when this length is more than 5 times larger than the system’s width.

There is an intuitive reasoning behind such kind of behavior for the final saturation: far enough from the

boundaries, the system becomes, in a statistical sense, translationally invariant along the inlet-outlet direc-

tion. That is to say, there is no reason to believe that one portion of the system would present a saturation

pattern different from another portion located a bit further (as long as these areas are far from the inlet and

outlet boundaries). As the length l of the system is increased, this translationally invariant area also increases

Figure 12. Simulations. (a) Final air saturations as a function of l/w for several

widths with l varying from 5 to 5000. The blue points are from the experimental

data in Figure 13. (b) Same curves divided by S1, the average value of SF at

large l/w. The dashed blue line corresponds to the linear regression giving

the exponent Dc ’ 1:7560:10. The inset corresponds to S1 / wðD1
c 2DÞ with

D1
c ’ 1:6860:10 and D5 2.
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and becomes dominant for l larger

than a given value (5 times the width

in our case). Although the experiments

and simulations presented here are

performed in a 2-D model, the intuitive

reasoning just presented is also valid in

3-D. The numerical value for the cross-

over might be different, but the overall

behavior for the saturation must be

similar, and its scaling with the sam-

ple’s length must follow a rule like

equation (8).

3.2.2. Direct Comparison Between

Simulations and Experiments

Figure 13 shows the experimentally

measured P-S curves for three different

models (with dimensions shown in the

legend of the figure). The number of

model geometries tested experimen-

tally is much lesser than the amount of

numerical tests, due to the natural diffi-

culties in having to physically reconstruct the models for each different geometry. Therefore, we cannot

extract the functional dependency of the saturation with the model’s dimensions from the experiments

(our data set is not large enough). Nevertheless, from the analysis of this figure, one can at least say that

experiments and simulations show similar trends: the residual saturation is influenced by the system size

and, in particular, the model with smaller length presents a residual saturation in air much higher than the

others, i.e., proportionally less liquid is left trapped inside the porous medium at the end of the experiment.

The experimental values corresponding to the measurements in Figure 13 are shown in Figure 12a as thick

blue points.

We notice also that there are differences between the values of capillary pressures driving the invasion of

the different systems shown in Figure 13. These differences arise from the fact that the distribution of pore-

throat sizes may vary from one sample to another, since the porous medium is rebuilt for each experiment.

The continuous red curve in Figure 13 is the measured P-S curve corresponding to the longest model used,

whose flow images are shown in Figure 2 and having the pore-throat sizes distribution shown in the inset

of Figure 6. Differences in pore-throat sizes are reflected in the respective capillary pressure thresholds and

further translated into the critical value pcrit of the capillary pressure necessary to drive the invasion, as will

be discussed in section 3.3. Additional details on the different capillary pressure thresholds distributions for

the models in Figure 13 are given in Appendix C.

3.2.3. Final Air Saturation in Square Subwindows

Due to the fractal nature of the capillary invasion process, the air saturation depends on the size of the sam-

ple, as observed in section 3.2. We can also notice a similar size dependency by measuring the saturation

using subwindows of different sizes inside a given sample. In this section, we perform a numerical study

considering square subwindows centered in the middle of the network, with sizes s being a fraction q of

the system’s width w: s5 qw, where q will take the values: 0.1, 0.25, 0.5, 0.75, and 1 (the latter corresponding

to having a square subwindow spanning the whole width of the grid). Figure 14 shows the outcome of

these simulations for two different grid dimensions, the one on the left having width and length, respec-

tively, w5 220 and l5 273 and the one on the right having w5 220 and l5 1330. The final saturations are

represented by the black points, which are scattered around an average value Save marked by a red circle

for each subwindow size. This scattering is expected: it originates from the fact that the capillary pressure

thresholds are drawn randomly at the beginning of each numerical experiment and, therefore, the invasion

pattern differs from one realization to another. It is possible, for example, to have a measurement in which

the saturation inside the subwindow is SF5 0, meaning simply that the invasion front has bypassed the

area of that subwindow. The probability of this happening is of course higher for smaller subwindows. The

blue squares represent the typical maximum saturation Smax that can be expected for a system of size s, i.e.,
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l = 2.3cm x w = 4.0cm / ratio = 0.57

Figure 13. Experimental P-S curves for three different models (the models’ geo-

metries are stated in the legend). The lower curve extends longer to the right,

indicating that for this model the residual saturation in air is much higher. This is

due to the fact that the boundary effects are enhanced by the smaller height of

the model, see text. Additionally, we notice that the values of capillary pressures

driving the invasion are different for each model. This difference arises from the

fact that the distribution of pore-throat sizes is not exactly the same for every

model, since the porous medium is rebuilt for each case.
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Smax5asðDc2DÞ. If the actual dimension of the square subwindow is L (in, say, centimeters) and the typical

distance between adjacent pores is d (measured in the same length unit as L), Smax is given by

Smax5a
L

d

� �ðDc2DÞ

; (10)

with Dc5 1.82, the value of the fractal dimension of a capillary fingering pattern as inWilkinson and Willemsen

[1983], and a5 1.0 for the data in Figure 14. The green horizontal line corresponds to the average of the

macroscopic final saturation SF in the whole system. We expect the average final saturation Save inside a sub-

window of a given size s (red circles) to coincide with the average of the macroscopic final saturation SF (green

line) in the limit of a very long system. This is expected, since the average saturation in the subwindows is an

intensive quantity, i.e., not dependent on the system size. Considering that the macroscopic saturation is

governed by the smallest dimension between the width and the length, we have

Save5a;
minðw; lÞ

d

� �ðDc2DÞ

: (11)

In the case of our simulations, we see that the final saturation SF (green line) is generally higher than the

average final saturation Save inside the subwindows (red circles) because of the more compact air invasion

close to the boundaries of the model (which lie outside the subwindows).

3.3. Analysis of the Capillary Pressure

As stated earlier, for a system that is long enough such that the influences of the boundaries to the flow are

negligible, two parameters are essential to define the pressure-saturation relationship: the final saturation

SF and the critical capillary pressure pcrit. We have analyzed the behavior of SF in the previous section and

now we turn our attention to pcrit.

We start by defining a set of useful quantities. Let y denote the distance from the inlet of the most

advanced tip of the air front inside the model. If we think of the pressure as a function of this position, i.e.,
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Figure 14. Final air saturation in the square subwindows of size s as function of its relative size q5 s/w for 40 simulation processes in two

different systems with width w and length l given in the legend. The blue line is the expected maximum air saturation in the subwindow,

the red line is the mean final air saturation over all the processes in each subwindow, and the green horizontal line is the average of the

final air saturation in the whole system.
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pc5pcðyÞ ; (12)

then, if the system’s length is l, pc(l) is the pressure at breakthrough and pc(l=2) is the pressure when the

invasion front is halfway through the model’s length. Next, let

F�5FðpcÞ (13)

be the value of the cumulative distribution function F associated with a given distribution of capillary pres-

sure thresholds, calculated at the pressure pc. We remind that F* varies in the interval 0 � F� � 1 and its

numerical value corresponds to the probability of having a capillary pressure smaller than or equal to pc in

the given distribution, see section 2.3.2.

Let us focus now on the inverse of equation (12), y5 y(pc). This function gives the distance to the inlet of

the most advanced tip of the air phase, as a function of the imposed capillary pressure. The plateau in the

P-S curve is reflected in the curve y5 y(pc) as a vertical asymptote at a given pressure, the critical pressure

pcrit. When this pressure is reached the invasion of the air phase happens continuously making the tip posi-

tion y to advance inside the model. One could plot such function and evaluate pcrit but such numerical value

would be particular to the distribution of capillary pressure thresholds in use, and, therefore, uninteresting

from a more general perspective. In order to overcome this, we have decided to consider instead the func-

tional composition

y5yðpcðF
�ÞÞ ; (14)

where we make use of the inverse of equation (13), to obtain the capillary pressure as a function of the CDF

value, i.e., pc5F21ðF�Þ. Due to the nature of the invasion percolation model, in which the invasion depends

on the ranking of the capillary pressure threshold values and not on the values per se (see section 2.3.2),

the dependency of y on F� is robust, in the sense that, apart from statistical fluctuations (that can be

removed by averaging over several simulations), the curve yðF�Þ is independent of the particular capillary

pressure thresholds distribution used and depends only on the connectivity of the underlying grid.

In Figure 15, we have plotted in blue (left) the curve yðF�Þ obtained by averaging the results from 10 numeri-

cal simulations in a system of width w5 220 and length l5 546 to keep the same proportions of the model

shown in Figure 2. As anticipated, this curve presents the vertical asymptotic behavior at a given value F�crit ,

measured to be F�crit50:52. In order to verify this divergence more explicitly, we have also plotted the func-

tion yðF�Þ for a longer system having width w5 220 and length l5 1330. The resulting curve is shown as an

Figure 15. Maximum position y of the air-liquid interface as function of the imposed capillary pressure pc expressed in terms of the CDF

value via F�5FðpcÞ (for universality regarding the type of pore-throat distribution). Results for simulations (blue, left) and experiments

(green, right). The experimental measurements were made in the system shown in Figure 2. In the simulations, for each distance y the cor-

responding applied pressure is obtained by averaging the result over 10 realizations. The dimensions of the simulations were w5 220 col-

umns and l5 546 lines in order to keep the same proportions of the experimental cell, having w5 11.0 cm and l5 27.3 cm. We observe in

both cases the diverging behavior of maximum air front position y as the pressure CDF approaches the critical value F�crit , measured to be

F�crit50:52 in the simulations (connectivity 4) and F�crit50:605 in the experiments (average connectivity between 3 and 4). In the inset we

show simulations made in order to point the diverging behavior more clearly. The dashed and dotted lines locate the pressure CDF when

air arrives at the middle of the model and at the filter (breakthrough) for two different system sizes: w5 220, l5 150 (dotted red lines) and

w5 220, l5 1330 (dashed blue lines). As the length of the model increases, the values of F�ðl=2Þ and F�ðlÞ tend to converge approaching

the critical value F�crit .
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inset in Figure 15, where the divergence at F�crit5

0:52 can be more clearly seen. We notice that

this value is very close to 0.50, the bond percola-

tion threshold for an infinite square network

[Stauffer, 1994], the difference being possibly due

to the fact that the system’s width w5 220 is not

too large. We raise the claim that for large

enough systems (such that the boundary effects

can be neglected), the invasion far from the sys-

tem’s boundaries happens at a statistically con-

stant capillary pressure, whose value can be

estimated by

pcrit5F21ðF�critÞ ; (15)

in which F�crit is the bond percolation threshold [Stauffer, 1994] associated with a network having the same

average connectivity as the sample, and F is the cumulative distribution function associated with the values

of the capillary pressure thresholds in the sample. Values of the bond percolation threshold are tabulated

for several different types of lattices and we present some of them in Table 1.

Equation (15) condenses, in a single simplified form, the influence to the critical capillary pressure from sev-

eral material properties of the porous medium and fluids involved. The pore-size distribution of the

medium, wetting properties of the fluids and surface tension between the phases are encoded in the func-

tion F and the average pore connectivity is used in the computation of F�crit . This means that knowledge of

the fluids’ wetting properties and the medium’s geometry are sufficient to produce an estimation of the

critical pressure pcrit prior to any empirical test. Such information could be of much value, for example, for

professionals interested in the modeling of two-phase flows in the bulk of large reservoirs (where the influ-

ence of the boundaries may be neglected). Additionally, a priori knowledge of the numerical value of pcrit
could also be of interest for oil recovery, specifically in the so-called secondary recovery stage in which a

fluid is injected into the reservoir in order to increase its pressure and drive the oil flow. Overpressurizing a

porous medium during drainage may lead to faster flows, with the appearance of viscous effects which can

considerably increase the residual saturation of the wetting phase [Løvoll et al., 2011] and reduce the oil

recovery. Beforehand estimation of the value of pcrit may, therefore, be useful in avoiding such

overpressurizing.

To characterize the importance of the system’s dimensions in the current analysis, we have used the inverse

of equation (14) to plot on the inset of Figure 15 lines corresponding to the values of F�ðlÞ and F�ðl=2Þ in

which the invasion front maximum position is y5 l (breakthrough) and y5 l=2 (halfway through the mod-

el’s length). Two model dimensions were considered: w5 220, l5 150 (dotted red lines) and w5 220,

l5 1330 (dashed blue lines). One can see that, as the length of the model increases, the values of F�ðl=2Þ

and F�ðlÞ tend to converge approaching the critical value F�crit . It is in this limit that the capillary pressure is

essentially constant during the invasion and well estimated by equation (15).

In order to verify experimentally our results, we have decided to produce the experimental curve yðF�Þ for

the invasion shown in Figure 2. To obtain this curve, we have measured the distance y from the images of

the flow and used the inverse of equation (13) to relate the imposed capillary pressure pc to the experimen-

tal CDF value F�. Notice that this requires the experimental determination of the actual capillary pressure

thresholds distribution (from which the cumulative distribution F used in equation (13) is then calculated).

Since our image-based method from section 2.2 allows us to find only the distribution of 1/d, the inverse of

pore-throat sizes (see Figure 6), we needed to produce a calibration curve to relate pc and 1/d. In an ideal

scenario, one would expect from the Young-Laplace law [Bear, 1972] a linear relationship between pc and

1/d. In a more realistic case, dynamical effects such as contact angle hysteresis can make such a relationship

more complicated. We have estimated this relationship using a separate experiment in which we have

employed the same porous medium shown in Figure 2, but this time driven under a constant (slow) with-

drawal rate. The choice of this boundary condition was motivated by the fact that, in this case, the oscilla-

tions in the measured pressure signal are not as pronounced as in the system driven with the constant

imposed pressure, thus yielding a more accurate measurement of the pressure. A linear fit to our data in

Table 1. Bond Percolation Thresholds for Different Lattice Types

in 2 and 3 Dimensionsa

Lattice Type Connectivity F�crit

2-D honeycomb 3 122sin p=18ð Þ � 0:6527

2-D square 4 1=250:50

2-D triangular 6 2sin p=18ð Þ � 0:3473

3-D diamond 4 0.3880

3-D cubic (simple) 6 0.2488

3-D cubic (BCC) 8 0.1803

3-D cubic (FCC) 12 0.1190

aThe connectivity is understood as the number of nearest

neighbors to each pore in the lattice (adapted from Stauffer,

[1994]).
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the region close to critical pressure gives pc54:0 101Pa:mm ð1=dÞ13:1 102Pa. Since the majority of the inva-

sion happens at pressures close to this value (in the propagation regime defined previously), this lineariza-

tion procedure is justifiable in this context.

By using this relationship, we have been able to produce the experimental curve yðF�Þ, shown in green in

Figure 15 (right). We notice that the divergence of y at a given value of F�crit is also observed in the experi-

mental case, the critical value measured being F�crit50:605. The diverging nature of yðF�Þ was expected

from the plateau in the experimental P-S curve in Figure 7. The value of F�crit presented here can only be

given up to a precision of 60.060, due to limitations in both our method of estimating the distribution of

1/d (described in section 2.2) and in the determination of the calibration curve linking 1/d and pc. Neverthe-

less, the difference between the experimental and numerical values of F�crit is expected because the connec-

tivity of the grid in the simulations is 4 (square lattice) whereas in the experiments, it assumes an average

value between 3 and 4, as can be seen from Figure 5. From Table 1, we therefore expect a critical value in

the interval 0:5 < F�crit < 0:6527, i.e., bounded by the values of F�crit corresponding to the square lattice (con-

nectivity 4) and the honeycomb lattice (connectivity 3).

4. Conclusions

In the current work, we have analyzed, both numerically and experimentally, the first drainage in a two-

phase flow inside a porous medium. We have focused our attention on the influence of boundary effects to

the measurement of pressure-saturation curves in such systems and our results indicate that some features

of the P-S curves can indeed be highly influenced by these effects. The invasion can be divided into three

regimes that, for convenience, we call here building, propagation, and clogging regimes.

In the building regime, the air-liquid front evolves from the flat profile (in which the invasion within the

porous network starts) to the ramified fractal structure characteristic of flows in the capillary regime. This

evolution in the front morphology is responsible for the initial pressure build up in the P-S curve and it hap-

pens through a certain distance near the inlet of the system. This distance increases with the size of the

inlet boundary itself (the width w in our analysis).

Once the invasion front has attained its ramified fractal structure (typical of slow invasion governed by

capillary forces), the front propagates at a capillary pressure fluctuating around a statistically constant

value pcrit. This characterizes the propagation regime, which dominates the dynamics in the limit of large

systems, in which the boundary effects are negligible. The particular value of the critical capillary pressure

pcrit is dependent on material properties of the fluids (such as wettability and surface tension), and the

geometry and topology of the medium (via its pore-size distribution and average pore connectivity). Our

work establishes a method for directly estimating the value of pcrit. This is done via equation (15) and

such estimation may be useful for a wide range of practical applications. We particularly stress its possible

use in the simulations of two-phase flows in the bulk of large porous networks. As described earlier, P-S

curves are used to give closure to the extension of Darcy equations to multiphase flows employed in such

simulations.

The clogging regime takes place once the air-liquid interface percolates through the model reaching the fil-

ter at the outlet (breakthrough). In the clogging regime, narrower pores in the vicinity of the filter are

invaded, leading to the rise of the capillary pressure from the critical level pcrit of the propagation regime.

This process happens until the clogging of the filter, the moment in which air completely fills the outlet

boundary and the liquid in the filter gets disconnected from the porous medium. The invasion of narrower

pores in this regime is induced by the presence of the filter itself: since its typical pore-sizes are much

smaller than the pore sizes in the model, the air front is constrained to remain inside the porous medium.

The final pressure build up is, therefore, a direct result of the artificial placement of a filter at the outlet

boundary.

We emphasize that the boundary effects observed here can also happen in actual measurements of P-S curves

(or, alternatively, water-retention curves) in real soil and rock samples. Since the measurements are typically per-

formed inside closed setups, commonly with a filter at the outlet (such as in the porous diaphragm method),

boundary effects are reflected in the resulting curves and an analyst using the experimental data must take

into consideration the extent to which these effects might influence the resulting analysis. In a realistic invasion
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pattern inside a sample large enough,

none of these boundary effects would

be present. In 2-D, we believe our much

simplified description in terms of two

values only, a critical pressure pcrit and a

final saturation SF, holds a more reliable

picture for such scenarios, see Figure 16.

The critical pressure is pcrit5F21ðF�critÞ,

equation (15), and the final saturation SF
is a random variable with an average

value Save5aðw=dÞðDc2DÞ
, equation (11),

and a maximum value Smax5

aðL=dÞðDc2DÞ
, equation (10), for a system

of REV of linear size L, and (smallest)

macroscopic size w, where d is the typi-

cal distance between adjacent pores.

In 3-D systems both phases can percolate simultaneously, contrarily to the two dimensional case [Stauffer,

1994; Sahimi, 2011] where either one or the other percolates. This will result in emptying progressively

portions of the defending fluid connected to the outlet after the first one percolates, and even in a large

system, make the invasion happen not only at first percolation pressure, but also above—something

closer to the upwards ramps seen in the Brooks-Corey and Van Genuchten models. Nonetheless, this can

only happen as long as the defending spanning cluster is present. Once it gets disconnected, only finite

size clusters are present, close to the outlet region in a semipermeable system. The invasion of these clus-

ters would lead to a final increase in the capillary pressure—a finite size effect absent in an open system

in 3-D. This precise point is interesting to study per se in future research. In a closed 3-D system with a fil-

ter (still neglecting gravitational effects), we expect that the difference in connectivity properties in perco-

lation (as compared to the 2-D case) will yield for the P-S curve a plateau at pcrit15F21ðF�crit1Þ,

corresponding to the growth of the percolating invasion cluster, followed by a rising function of satura-

tion, going from pcrit15F21ðF�crit1Þ to pcrit25F21ðF�crit2Þ, where F�crit1 is the percolation threshold for the

invading phase coming in, and F�crit2 (that should be 12F�crit1) is the percolation threshold of the defending

phase at residual saturation. Once pcrit2 is overcome, the large size defending cluster disconnects, and for

large systems the saturation does not change significantly anymore if the pressure difference is increased

beyond pcrit2. Hence, the modification from the 2-D behavior, for large open system, is the addition of a

rising ramp for the P-S curve from pcrit1 to pcrit2 between the horizontal and final vertical asymptotes of

Figure 16.

Additional effects that were not studied in the present work can also play an important role in the determi-

nation of P-S curves. For example, flow through corners in the porous medium [Lenormand and Zarcone,

1984; Tuller and Or, 2001] may increase the hydraulic continuity of the wetting phase, providing a pathway

for the long-term drainage of clusters that would be otherwise completely trapped in the middle of the

nonwetting phase. The extent of the region connected by corner flow depends on specific properties of the

porous medium and fluids involved and this effect is particularly important in the case of angular pore

spaces [Tuller et al., 1999]. For the system studied in the present work, corner flow is not so relevant due to

the fact that the ‘‘corners’’ in which the wetting phase can accumulate correspond to the isolated points

where the glass beads touch the upper and lower contact paper surfaces. Since these points are spatially

localized, the formation of long pathways of regions hydraulically connected via corner flow is unlikely. In

the case of tests to determine the P-S curves using real porous media, corner flow may be important

depending on the particular porous medium and fluids employed. Nevertheless, if the sample is long

enough, these corners or films could rupture/disconnect over large length and time (depending on the spe-

cific porous material and fluid pairs, for the many cases where none of the fluids is completely wetting the

solid components). Therefore, the extent of the region of pores hydraulically connected to the outlet via

corner flow could become negligible in comparison to the sample size and such effects can then also be

seen as boundary effects associated to the flow close to the outlet. In this limit of a large enough sample,

the results derived in this paper should remain applicable.
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Figure 16. The pressure-saturation relationship for a system unaffected by

boundary effects is specified simply by two parameters: a critical capillary pres-

sure pcrit and a final air saturation SF.
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Appendix A: Description of
the Overflowing Mechanism

Figure A1 shows a detailed diagram of

the overflowing mechanism built into

the fluid reservoir used to control the

imposed pressure in the experiments.

A siphon-like tube is built with one

inclined end going out from the side

of the reservoir and a vertical end

hanging inside of it. As the reservoir is

filled with liquid, the vertical part of

the tube is also filled while the

inclined one remains with air. When

the liquid level reaches a certain

height, a thin liquid layer is formed on

the top of the curved part of the tube

and is guided through the inclined

side to finally drip slowly outside of

the reservoir. A hole is cut from the

extreme top of the tube (dashed line

in the diagram) in order to avoid the

meniscus inside of it (on the right side

of the hole in the diagram) to reach

the other side, which could eventually

lead to completely flushing out the

liquid from the bottle (like an actual

siphon). A small vertical barrier is built

around the hole to avoid liquid from

the reservoir to go into it. One tube

connects the reservoir to the porous

medium while another one connects

it to an external syringe pump. Apart

from the tubing, the whole structure

is made of glass. Liquid is constantly

pumped into this reservoir from the

external syringe pump at a very low

rate. The purpose of this inflow is two-

folded: on one hand it overcomes the

losses due to evaporation, on the

other it ensures the stability and conti-

nuity of the thin liquid layer inside the

siphon-like tube, avoiding any sort of

intermittency effect in the meniscus

inside of it. The intermittency men-

tioned is of the same kind as the one

observed when one tries to slowly fill

a glass with water up to the top.

Before spilling, a meniscus is formed

on the top of the glass, which grows

up to a maximum size and then

bursts, spilling the water out of the

glass. This sudden behavior could

cause abrupt changes in the height

level of the order of 1 mm introducing

thin continuous

liquid layer

open to air

open to air

slow dripping

tubing to 

porous network

tubing to 

syringe pump

} constant liquid level

barriers

Figure A1. Diagram of the overflowing mechanism with the siphon-like tube con-

structed in the liquid reservoir. The width of the continuous liquid layer inside the

inclined tube and the size of the droplet dripping from the left are both exagger-

ated for better visualization.

Figure B1. Simulations. (a) Final air saturations as a function of w/l for several

lengths with w varying from 10 to 6000. (b) Same curves divided by S1, the average

value of of SF at large w/l. The dashed blue line corresponds to the linear regression

giving the exponent Dc ’ 1:7960:10. The inset corresponds to S1 / lðD
1
c 2DÞ with

D1
c ’ 1:7460:10 and D5 2.
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an error larger than 10 Pa in the imposed pressure. By guaranteeing the existence of the continuous liquid

layer inside the curved tube, this problem is also avoided. The design of this reservoir is based on a modifica-

tion of a very curious object called a Tantalus cup (or Pythagorean cup), which we highly recommend the

interested reader to search for.

Appendix B: Further Analysis of the Air Saturation

B1. Variation of the Final Air Saturation With the System’s Width

In this appendix section, we extend the analysis initiated in section 3.2 by considering the variation of the

final air saturation as the width of the system is gradually changed. Figure B1a shows the evolution of SF
with r05w=l (inverse of r5 l=w used in section 3.2) when increasing w from w5 10 to 6000 with a step of

10 from 10 to 200, 20 from 200 to 2000, and 100 from 2000 to 6000. The procedure is repeated for several

different lengths l (shown in the legend in the figure). After rescaling the data by dividing it by S1(l), i.e., the

value of the final saturation for a system with given length l in the limit of very large width, we obtain the

data shown in Figure B1b. Once again we postulate the scaling

SFðr
0; lÞ5r0ðDc2DÞhðr0ÞS1ðlÞ ; (B1)

where hðr0Þ is a crossover function, being defined similarly to equation (9):

hðr0Þ5
C0 for small r0

r02ðDc2DÞ for large r0;

(

(B2)

where C0 is again a dimensionless

constant, numerically determined as

C0 ’ 0:83 by a linear regression in

the bilogarithmic plot shown on Fig-

ure B1b, over the ensemble of simu-

lations at r0 < 0:4. From the slope of

the curve fitting the small r0 data in

Figure B1b, we estimate the fractal

dimension to be again

Dc ’ 1:7960:10. Additionally, S1(l) is

found to scale as S1 / lðD
1
c 2DÞ with

D1
c ’ 1:7460:10 and D5 2 as

before, see the inset in Figure B1b.

The turning point for the crossover

function happens approximately at

r050:4, i.e., when the length is about

2.5 times larger than the width. We

would like to remark that the conver-

gence to a flat plateau is expected,

once again, due to the same symme-

try arguments presented before. The

only difference in the present case,

being the fact that the statistical sym-

metry for the final saturation arises in

the direction perpendicular to the

inlet-outlet direction. If we consider

two subwindows one next to the

other in this direction, for large

enough systems (large w), there is no

reason to believe that the final satu-

ration measured in one of these sub-

windows would be different than the

Figure B2. Simulations. (a) Breakthrough air saturations. (b) Difference between the

final and the breakthrough air saturations. The dashed blue line shows the scaling

DS / l=wð Þ21
.
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same quantity measured in the other (which is also the same as the saturation measured in a subwindow

formed by the union of the two). This kind of statistical symmetry holds for the central region of the system,

in which the effects from the side boundaries are negligible. As the width of the system is increased, this

region grows and becomes dominant for large enough systems.

B2. Variation of the Breakthrough Saturation With the System’s Length

We recall that the breakthrough saturation SB is defined as the saturation at the moment when

air percolates for the first time, reaching the exit side and forming a connected sample-spanning clus-

ter of invaded pores (SB< SF). We have plotted the breakthrough saturation SB (Figure B2a) and the

difference DS5SF2SB (Figure B2b) as functions of the ratio r5 l=w, where again different colors and

symbols are used for different values of w. The values of SB at fixed w in Figure B2a are essentially

constant, with some dispersion for systems with very small lengths. Yet again, the existence of the

plateau is due to the translational invariance along the inlet-outlet direction described in section 3.2.1.

In Figure B2b, the decrease of DS indicates that final and breakthrough saturation are only significantly

different for small systems. This is also intuitively expected. The breakthrough saturation is measured

at the moment in which air first percolates through the medium, reaching the filter at the outlet.

After this instant, the pores in the vicinity of the filter start to be invaded, until the moment in which

the filter gets clogged (which in the simulations corresponds to the moment in which the last line

of pores is completely filled with

air). Therefore, the difference DS

between the values of SF and SB is

due to the invasion of those last

pores in the vicinity of the filter.

The number of pores in this

region scales as nfilt / w2 while

the total number of pores in

the system is proportional to the

area of the porous matrix, i.e.,

ntot / wl. In the limit of long sys-

tems, DS scales as the ratio

nfilt=ntot , therefore, DS / l=wð Þ21
.

This scaling is shown in Figure

B2b by the dashed blue line. As

the system’s length gets longer,

the fraction of pores in the region

close to the filter becomes smaller

as compared to the total number

of pores, thus giving a minor

contribution to the saturation. For

such large systems, SF is still

larger than SB, but not much. Con-

versely, for small l, the number

of pores in the vicinity of the filter

becomes relatively large in com-

parison to the total number of

pores, thus the larger values for

DS.

B3. Variation of the Breakthrough

Saturation With the System’s

Width

Figure B3a shows that the value of

SB is reduced as the system gets

wider. There is an intuitive reason-

ing behind this behavior: the larger

Figure B3. Simulations. (a) Breakthrough air saturations. (b) Difference between the

final and the breakthrough air saturations. The dashed blue line shows the scaling

DS / w=lð Þ1 .
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the system gets, the more probable it is for an easy path to exist (consisting of pores with low capillary

threshold values) connecting the inlet to the outlet. The breakthrough can thus be reached at an earlier

stage of invasion, leading to a lower value of SB. Figure B3b shows the behavior of the difference DS5SF2

SB with the ratio r05w=l. The dashed blue line corresponds to the same scaling discussed in the previous

section. Since the abscissa here is w/l, the exponent changes sign and DS / w=lð Þ1. The increase in this

quantity as the system gets wider is due to the decrease in SB with the width, as discussed.

Appendix C: Comparison Between the Image-Based Estimation of the Capillary
Pressure Thresholds Distribution for Different Models

In Figure 13, we have noticed that the capillary pressure driving the invasion for the three models studied

differed a bit from one model to another. We have argued that this difference came from the fact that the

models were rebuilt for each experiment and therefore the pore-size distribution varied from one to

another, which could then result in

the observed differences. In order

to clarify this point, we have per-

formed the image-based estimation

of the capillary pressure thresholds

distribution for the other models, in

a similar manner to what had been

done previously for the longest

model (see section 2.2).

Figure C1 shows the resulting distri-

butions of 1/d, the inverse of the

pore-throat size, which gives an esti-

mation of the capillary pressure

according to Young-Laplace law as

described in section 2.2. The colors

in Figure C1 were chosen as to

match the ones in Figure 13, differ-

ent colors for different models. The

models’ geometries are given in the

legend of the figure. The distribution

shown for the longest model (red crosses data) is the same as the one in Figure 6. We see that the smallest

model (blue triangles data) has lower values of 1/d (wider pore-throats), which in its turn is reflected in the

lower capillary pressure needed to drive the invasion, as observed in Figure 13. The model having intermedi-

ate size (green stars data) has a distribution lying in between the smallest and longest ones as shown in Figure

C1. Notice that, the fact that the critical pressure pcrit seems to be increasing with model size in Figure C1 is a

coincidence: the difference in the values of capillary pressure thresholds (and consequently pcrit) depend on

the pore-throat size distribution but not necessarily on the sample dimensions.
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Figure C1. Image-based estimation of the capillary pressure thresholds distribution for

the three models studied experimentally. The model’s geometries are given in the

legend. We observe that the longest model has narrower pores (higher values of 1/d),

which is reflected in the higher value of the entrance pressure seen in Figure 13.
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