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Abstract—Studying structural and functional characteristics
of large scale graphs (or networks) has been a challenging task
due to the related computational overhead. Hence, most studies
consult to sampling to gather necessary information to estimate
various features of these big networks. On the other hand, using
a best effort approach to graph sampling within the constraints
of an application domain may not always produce accurate
estimates. In fact, the mismatch between the characteristics of
interest and the utilized network sampling methodology may
result in incorrect inferences about the studied characteristics
of the underlying system. In this study we empirically investigate
the sources of information loss in a sampling process; identify
the fundamental factors that need to be carefully considered in a
sampling design; and use several synthetic and real world graphs
to elaborately demonstrate the mismatch between the sampling
design and graph characteristics of interest.

I. INTRODUCTION

Recently, there has been a significant interest in modeling
the real world complex systems as large scale graphs. The re-
sulting graphs, in general, lack a simple structure and consist of
numerous interconnected or interacting entities. These graphs
are then studied to understand the structural and functional
characteristics of the underlying real world systems as well as
the interactions among the entities appearing in these systems.

World Wide Web graph, Internet topology maps at various
levels, protein interaction networks, online social networks,
and actor collaboration networks are among the examples to
the complex systems that are represented as large graphs. Note
that in complex systems context the terms graph and network
are used interchangeably to refer to a graph data structure and
we follow the same convention in this paper.

Studying these complex systems might allow us to model
the evolution of the Internet; predict the damage of an epi-
demic; reveal various characteristics of online social cliques;
or identify the hub sites in World Wide Web. However, repre-
senting these systems as graphs on computers and analyzing
their characteristics is usually uneconomical, impractical, or
impossible due to the size and/or inherent limitations of
these systems. To illustrate, capturing and studying the entire
World Wide Web as a graph is extremely challenging if not
beyond the capabilities of current computers [4]; discovering
the complete router level topology of an Internet Service
Provider (ISP) network is rather difficult unless it is provided
by the ISP which is typically not the case due to security
and privacy concerns [26], [27]; and mapping all interactions

in protein interaction networks is experimentally difficult and
time consuming [12].

Given that many of these systems are difficult to capture
and/or impractical to analyze in their entirety, most studies
consult to sampling to gather necessary information for the
analysis. In general, the objective of network sampling can
be divided into two: (1) designing sampling schemes that are
compliant with the process that generates the population graph,
i.e., the sampling design should produce sample graphs from
the probability distribution over graphs given by the underlying
graph generation process and (2) designing sampling schemes
that will help us study the characteristics of a given population
graph rather than the characteristics of the process generating
that graph. The second objective above can be further divided
into two: (2a) estimating characteristics of population graphs
such as degree distribution, average clustering coefficient, or
variation in path length, and (2b) obtaining a subgraph that pre-
serves important topological characteristics of the population
graph, i.e., representative subgraph sampling. Note that the
objective (1) above is different from the objective (2b). Note
also that it is difficult to come up with a sampling scheme that
would satisfy both objectives (2a) and (2b) simultaneously [2].

Another practical issue that may impact network sampling
in the context of the second objective above is the available
querying mechanisms. In a given application domain, we
may have two types of querying mechanisms available as
backend querying and frontend querying. We say that backend
querying is available if one can obtain the value of an entity
characteristic from the population graph, e.g., degree of a
sampled node refers to its degree in the population graph. We
say that frontend querying is available if one can obtain the
value of an entity characteristic from the sample graph, e.g.,
degree of a sampled node refers to its degree in the sample
graph. Note that in the context of representative subgraph
sampling, we are mainly using frontend querying as the goal
in this case is to build a representative subgraph.

Given that graph sampling may have various different types
of objectives as mentioned above, it is important to know
how to carefully design a sampling method. We believe that
the effectiveness of a given graph sampling design depends
on the following design considerations: (a) the characteristic
of interest under study, (b) topology of the population graph
(e.g., whether it follows scale free, small world, random, or
semi-hierarchical graph models), and (c) available querying
type (frontend vs backend). Note that design considerations



that we address is comprehensive, but may not be exhaustive.
As an example, a given graph sampling method may perform
good for one characteristic of interest but may not perform
well for some other characteristic under frontend querying [2].
Similarly, a given graph sampling method may preserve a
given characteristic (e.g., type of degree distribution) of a
random population graph in the sample graph but may not
preserve the same characteristic of a scale-free population
graph in the sample graph [24]. Finally, as we demonstrate in
our evaluations, the available querying type may significantly
impact the performance of a given sampling design in studying
various characteristics of the population graph.

Based on our prior work in Internet topology mapping and
our familiarity with studies in online social network (OSN)
analysis, we realize that the above mentioned design consider-
ations are not necessarily utilized in many studies that involve
sampling from a population graph. In other words, in many
studies in Internet topology measurement and OSN analysis
(and possibly many others), there is a tendency to use readily
available sampling schemes to quickly put together a sample
subgraph and use it for analysis. The potential problems with
such an approach include (1) use of a sampling method that
is not inline with proper design considerations for the analysis
study at hand and (2) misuse of the data obtained during the
sampling process. An example for the first problem would be
the direct use of metropolized random walk with frontend
querying, i.e, without carefully designing an estimator, to
study shortest path length distribution of the population graph.
An example for the second problem is to use a sampling
design that is effective in producing samples for studying a
particular characteristic (e.g., path length distribution) but use
the resulting samples for studying some other characteristic
(e.g., degree distribution) without ensuring the suitability of the
sampling method for studying those additional characteristics.

In this paper, we conduct a large scale experimental
study to empirically demonstrate the relation between various
sampling designs and the accuracy of resulting samples in
estimating various characteristics of population graphs. We
specifically employ the common practice of utilizing a readily
available sampling design to generate a sample graph and use
that subgraph with available querying to study various charac-
teristics of the population graph. We then use a divergence
metric to compare the similarity between the characteristic
of interest obtained by the sampling process and the corre-
sponding population characteristic. For the experiments, we
use several types of synthetic graphs and several real world
graphs as population graphs. Therefore, the knowledge of the
population graph enables us compute the divergence scores as
a metric to measure the accuracy of using various sampling
methods in studying various graph characteristics. Note that if
this were possible in practice, obviously there would not be a
need for sampling at all.

Based on the conducted experiments, we observed that
the performance of a sampling method significantly depends
on the above design considerations. Therefore, while making
inferences about a population graph using a sample graph
within the application constraints, these design considerations
should not be ignored. This study calls for further research in
understanding the theory behind the ability to make inferences
about population graphs using sample graphs obtained by a

given sampling design.

The rest of the paper is organized as follows. Section II
presents the related work. Section III discusses our sampling
framework. Section IV demonstrates the experimental results
motivating this study. Finally, Section V concludes the paper.

II. RELATED WORK

Early work in network sampling proposed statistical es-
timation techniques to accurately capture some fundamental
characteristics of the underlying networks such as population
size [8]. More recently, network sampling is utilized in sev-
eral popular networking application domains such as Internet
topology measurements (ITM), online social networks (OSN),
and peer-to-peer networks (P2P) domains.

In ITM domain, sampling is used to estimate the size of
the Internet [28]. Various studies also looked at the statistical
properties of the sample networks obtained by traceroute-based
path samples [1], [6]. In OSN domain, sampling is used in
obtaining nodal or topological characteristics of the underlying
social network. Most of the studies have focused on obtaining
an unbiased sample or removing sampling bias in the collected
sample network [16]–[19], [22]. Other work demonstrated
that certain biases can be exploited to increase the inclusion
probability of desired properties during sampling [20]. In P2P
domain, sampling has been studied with the goal of eliminating
sampling bias due to skewed node degree distribution in
overlay networks [11], [21], [25].

Another goal in network sampling has been to collect
representative subnetworks from a population graph [10], [13],
[15]. In this context, a subnetwork that matches many popular
topological characteristics of the population graph is consid-
ered representative. Some of the most popular characteristics
considered include degree distribution, clustering coefficient
and betweenness characteristics. On the other hand, there
has been concerns that building a subnetwork that matches
an arbitrary set of popular topological characteristics of the
population network may not always be feasible [2], [20].

In our work, we experimentally show that the utilized sam-
pling strategy has an important effect on the representativeness
of the resulting subnetwork even when we consider a single
topological characteristic to match. We consider both backend
and frontend querying and utilize a small but diverse set of
sampling schemes including (1) simple node and link sam-
pling, (2) walk based sampling, and (3) path based sampling
to demonstrate our points.

III. SAMPLING IN COMPLEX SYSTEMS

In the context of complex networks, sampling is typically
used to collect a subgraph from the underlying system so as to
estimate topological and functional properties of the population
graph. As we argued in the introduction section, the accuracy
of the obtained results in such a sampling scheme depends
on various elements that we refer as design considerations
that contribute to the sampling process. In this section, we
present several examples for each design consideration as well
as the sampling methods that were considered in this paper.
The examples presented below are commonly used in various
sampling studies in sampling of complex systems.



A. Topological Characteristics of Graphs

A graph G(V,E) is an ordered pair of a vertex set
V = {v1, v2, . . .} and an edge set E = {e1, e2, . . .} such
that ek = (vi, vj) and vi, vj ∈ V . In reality V is the set
of objects that are meaningful in a particular domain and E
is the set representing interactions or relations among these
objects. Topological characteristics of graphs are those features
that are related to the structural layout of the graph, e.g.,
degree distribution, clustering coefficient, betweenness, path
length distribution, and diameter. In this study we focus on the
topological characteristics of simple undirected graphs where
ek = (vi, vj) ⇒ ek = (vj , vi) without self edges. Below,
we formally define the graph characteristics that we used in
our experiments namely degree, clustering coefficient, and path
length distributions.

Degree of a vertex vi, also called the number of neigh-
bors, denotes the number of edges incident to vi and it is
represented by di. Degree distribution of a graph G(V,E),
is the probability distribution of degrees of vertices in V . In
many networks, degree of a vertex shows the popularity or
importance of that vertex. For example, high degree vertices
in OSN are those people having many friends, in AS level
Internet topology networks they, most of the time, correspond
to Internet Exchange Points (IXPs).

Clustering coefficient is a measure of closed connections
appearing among vertex groups in a graph. Clustering coef-

ficient ci of a vertex vi is defined as
2|Ri|

di(di−1) , where Ri is

the number of connected pairs between all neighbors of vi.
Clustering coefficient distribution of a graph G(V,E) is the
probability distribution of clustering coefficients of vertices in
V . High clustering coefficient indicates existence of tightly
associated cliques in OSN and alternative bypassing paths
around a particular router in router level Internet topology
graphs. In our experiments, we assumed that vertices with
degree ≤ 1, have clustering coefficient of 0.

A path between vi and vj is a sequence of consecutive
edges starting from vi and ending at vj . Given that each edge
in a graph is assigned a weight, a shortest path between vi
and vj is one of the paths having the minimum total weight.
In the most common case edges in a simple undirected graph
are equally weighted which we also adopt in this paper. Note
that, there might be more than one shortest path between
any two vertices. Path length , li,j , between vi and vj is
the number of edges appearing on a shortest path between
vi and vj . Path length distribution of a graph G(V,E) is the
probability distribution of path lengths of vertex pairs in V .
Path length between any two vertices in OSN is a measure
indicating how easy to reach from one person to another via the
intermediate people. Maximum path length in the router level
Internet topology maps is called the diameter of the Internet
and used as an indication of the maximum number of times
that a packet can be enqueued/dequeued between two hosts.

Note that degree of a vertex involves 1-hop information
around the vertex in the graph. Clustering coefficient of a
vertex involves 2-hop information. Path length distribution is
a characteristic that depends on the global structure of the
network. As a result, we believe that the selected characteristics
correspond to a small but diverse set for analysis purposes.

B. Graph Models

Many types of graphs with different distinguishing char-
acteristics have appeared in the literature. Some graph types,
however, occur so frequently in natural and man-made systems
that they have been studied and used widely. In this part we
introduce three popular graph types which frequently appear in
the literarure namely random, scale free, small world networks.

Random graphs are type of graphs that are obtained
through a random process. Gilbert/Erdos-Renyi [7] (ER) is a
widely used model for generating random graphs. ER model,
G(|V |, p), builds a random graph G(V,E) by first creating |V |
isolated vertices and then, independently connecting each pair
of vertices with probability p. All graphs having |V | vertices
and |E| edges have the same probability of being generated,

p|E|(1 − p)(
|V |
2 )−|E|, in ER model. However, as parameter

p ∈ (0 − 1) increases dense graphs are more likely to be
generated over sparse graphs. At p = 0.5 the model generates
any possible graph of |V | vertices with the same probability,

(0.5)(
|V |
2 ).

A graph, G(V,E), having a power law degree distribution
is called a scale free graph. Power law degree indicates the
existence of a few vertices with very high degrees along with
many vertices with less degrees. Degree distribution is said to
conform power law if it is in the form of P{di = d} ∝ d−α

where α is the scaling parameter [5]. Barabasi-Albert [3]
(BA) model is a widely used method for generating scale
free networks. BA model is based on two principles (i) in-
cremental growth and (ii) preferential attachment. Incremental
growth assumes that the final graph, G(V,E), is generated
by introducing vertices one by one. Preferential attachment
implies that the more connected a vertex is, the more likely
it is to grab new links to be added to the network. In BA
model, each new vertex is connected to m existing vertices
with a probability proportional to the number of edges that
the existing vertices already have.

A graph, G(V,E), having a large average clustering coeffi-
cient and a small average shortest path is called a small-world
network. Large clustering coefficient implies the existence of
highly clustered cliques in the graph. Small shortest paths
refers to the existence of hub vertices or hub cliques within
the graph. Small shortest paths denote that the average shortest
path grows with respect to the logarithm of the number of
vertices, i.e., µP ∝ log(|V |) where µP is the average path
length and |V | is the vertex set size. Watts-Strogatz [30]
(WS) is the most widely used model for generating small-
world networks. Given the number of vertices |V | and the
mean vertex degree µD, the model creates a circular lattice
where each vertex is linked to µD/2 closest neighbor vertices
on clockwise and counter clockwise. Then, with probability
β each edge of each vertex vi is rewired to a randomly
selected vertex vk such that i 6= k. WS model guarantees
high clustering coefficients by the initial circular lattice and
decreases the shortest path length by randomly rewiring edges.
The parameter β controls the properties of the final graph. As
β = 0 the graph would remain as a lattice with high clustering
coefficient and high average shortest path. As β → 1 the final
graph resembles to ER graphs with p = µD/(|V | − 1).

Each of these graphs are used as underlying population
graph and we use different sampling techniques to collect



network samples from each of these graphs.

C. Sampling Methods

A sampling method refers to a systematic approach that is
used to observe a set of sampling units from the population
graph, where sampling unit refers to the entities in the pop-
ulation graph that is selected at each step during a sampling
process. Typically, vertices and edges are used as observation
units but other structural units such as end-to-end paths, star
structures, triangle structures, etc., can also be considered as
sampling units. In this paper, we use vertices, edges, and end-
to-end shortest paths as observation units.

In practice, the available observation units may be decided
by the practical and operational limitations in the underlying
application domain. As an example, in OSN analysis domain,
implementing a random vertex sampling may be extremely
costly if the underlying OSN system has a sparsely populated
identifier space. Most OSN applications, on the other hand,
allow a random walk starting from a chosen vertex in the
system allowing us to sample vertices and edges. On the other
hand, in ITM domain directly observing a router or a subnet
from a remote location is prohibited due to security and privacy
concerns.

In network sampling applications, sampling methods are
mainly determined based on the data collection mechanisms
supported by the underlying application domain. It is often the
case that a supported sampling method may not be an ideal one
and may often result in sampling bias or high variance for the
estimation process of the graph characteristic under study. In
this paper, we consider several sampling methods as discussed
below.

Random vertex (RV) sampling selects a number of vertices
from a population graph with equal probability. Although
the technique is simple and effective in estimating the direct
properties of vertices, e.g., degree distribution, with backend
querying, it may not be readily supported by some complex
systems such as the Internet or may be extremely costly to
implement in some complex systems such as an OSN. We
also use a version of RV sampling, called Induced RV (IRV)
sampling which includes the existing edges from the popula-
tion graph among the selected vertices into the sample graph.
IRV sampling is also known as induced subgraph sampling.
Random edge (RE) sampling selects a number of edges from
the population graph with equal probability and also selects
the incident vertices. This sampling method is also known
as incident subgraph sampling. Induced random edge (IRE)
sampling first performs RE sampling, then includes the existing
edges from the population graph among the selected vertices
if not selected during RE sampling. In general, RV, IRV, RE,
and IRE sampling schemes may produce disconnected sample
graphs.

Random walk (RW) sampling [19] initially designates a
random vertex as the current vertex. At each step, it selects
a new vertex among the immediate neighbors of the current
vertex and designates it as the new current vertex. Random
walk sampling process is governed by the stochastic process
{Xn, n ≥ 0} with transition probability

PRW {Xk+1 = vj |Xk = vi} =

{

1/di if (vi, vj) ∈ E
0 otherwise

(1)

where Xk is the random variable denoting the vertex selected
at step k. For connected graphs with enough many steps
the process converges to the stationary distribution π(vi) =
di/2|E|. That is, the process introduces bias by selecting
larger degree vertices with higher probabilities compared to
the smaller degree ones.

Metropolized random walk (MRW) removes the bias in-
troduced by naive RW by rearranging the one step transition
probability matrix of the RW stochastic process. Specifically,
the transition matrix for MRW would be

PMRW {Xk+1 = vj |Xk = vi}

=

{

PRW {Xk+1 = vj |Xk = vi}min{ di
dj
, 1} if vi 6= vj

1−
∑

vi 6=vj
PMRW {Xk+1 = vj |Xk = vi} otherwise

Thereby, MRW sampling reduces the probability of transi-
tioning to high degree vertices to remove the bias introduced
by the RW sampling.

Random shortest path (RSP) sampling selects paths among
all possible shortest paths with equal probability. The total
number of shortest paths on a simple graph G(V,E) is at
least |V |(|V | − 1). Usually shortest path algorithms picks one
path over the others in case there are multiple shortest paths
between two vertices. Hence, the number of shortest paths
is exactly |V |(|V | − 1) in practice. Since enumerating all
shortest paths in a graph is costly, RSP can be approximated by
using shortest paths of randomly selected (source,destination)
pairs uniformly without replacement. The sample graph in this
scheme is constructed by carefully merging the shortest paths
among the pairs of vertices. Variations of this approach in
the ITM domain include sampling among K vantage points,
i.e., (K,K) sampling, or sampling between K sources and M
destinations, i.e., (K,M) sampling where (K≪M).

D. Query Types

Query type is another important aspect of network sam-
pling. One can analyze the topological properties of the sam-
pled components in two ways: backend querying and frontend
querying. In backend querying, a topological characteristic of
a sampled unit is queried (or extracted) from the underlying
population graph though, the entity appears in the sample
graph.

In frontend querying, a topological characteristic of an
entity is queried (or extracted) directly from the sample graph.

Since sample graphs do not preserve all information related
to the population graph, frontend querying introduces another
source of bias as opposed to backend querying. Therefore,
the bias quantification and elimination should be handled
differently in frontend and backend querying cases.

IV. EXPERIMENTAL RESULTS

In this section, we conduct experiments to observe the
impact of the issues listed in the previous section on network
sampling. Our goal is to present instances or evidence that



sampling bias may emerge from various directions including
the mismatch between sampling method and the characteristic
under study; mismatch between the sampling method and the
graph model; mismatch between the characteristic of interest
and the utilized sampling unit, or frontend vs backend query-
ing capabilities in sampling. The recent sampling literature
includes studies that develop estimators for removing sampling
bias for certain types of sampling methods and for certain types
of topological characteristics [9], [16], [22]. Given that not all
sampling schemes have proper estimators defined, in this work,
we do not consider the use of such estimators.

We use the graph models listed in Section III-B as popu-
lation graphs and take samples from them using the sampling
methods described in Section III-C. Then, using each query
type described in Section III-D, we compute the distribution
of characteristic (among the ones listed in Section III-A) under
study for each sample. Finally, to measure the difference
between the sample and the population distributions, we use
Jensen-Shannon (JS) divergence, a modification of Kullback-
Leibler (KL) divergence, that is symmetric and robust with
respect to noise and the size of histogram bins [23]. JS
divergence is defined as

d(H||K) =
1

2

∑

i

(

hilog2(
hi

mi

) + kilog2(
ki
mi

)

)

(2)

where mi = (hi + ki)/2.

In Equation 2, H and K are population and sample
distributions defined over the same sample space. hi and ki
are the relative outcome frequencies for discrete distributions
and relative histogram bin frequencies for continuous distribu-
tions belonging to H and K. Note that the Jensen-Shannon
divergence takes values between 0 and 1 since we use the
base 2 logarithm. In the experiments, we take samples of size
10% from each population graph by using sampling methods
described in Section III. Each divergence score presented in
this study is the average of 30 experiments. In general as the
sample size increases the estimation gets closer and closer to
its true population values and 10% is a commonly used sample
size in the literature.

A. Results on Synthetic Networks

In this section, we generate random, scale-free, and small-
world population graphs by using Erdos-Renyi (ER), Barabasi-
Albert (BA), and Watts-Strogatz (WS) models, respectively.
These models generate graphs with different topological char-
acteristics which enable us to observe the effects of the graph
models on the results. Unless otherwise stated, for each model,
we generate synthetic graphs of size 50,000 with average
vertex degree 20 to compare the graph models properly. To
get the desired average degree, we set the model parameters
as BA(m = 10), ER(p = 0.0004), WS(µD = 20, β = 0.5). We
set the number of vantage points to 3% of the population size in
K-K sampling method. In K-M sampling, we set the number of
source and destination vertices to 3% and 7% of the population
size, respectively. Since K-K and K-M sampling methods are
mostly utilized in Internet measurement studies and the number
of available ‘vantage points’ is often very limited, we selected

parameters so as to reflect the real-world usage better as well
as to sample 10% of the population graph.

Figure 1 presents the Jensen-Shannon divergence values of
our experiment results for the three characteristics. We omit
random vertex (RV) sampling results in the figure because
it is not applicable for the frontend querying (FE) since no
edges are sampled and it gives same results as IRV sampling
for the backend querying (BE). Note that random walk based
sampling methods require the information on the neighboring
vertices be available to the sampling process in order to sample
the next step vertex. Hence, one might question the use of
FE querying for such cases. However, companies in various
domains use a random walk based method to sample their
proprietary networks and publicize the resulting sample graph
for analysis purposes without providing any further access to
their population networks.

Based on the results in Figure 1, we can conclude that for
any sampling method, BE querying outperforms FE querying
when it is applicable to the synthetic graph models. Although
this is an expected result, the difference can be attributed to
the fact that the vertex based sampling methods tend to under-
sample the edges of a population graph. On the other hand,
computation of many graph characteristics including degree,
clustering coefficient, and path length involves edge informa-
tion as well. The edge related information of the population
graphs is available to BE querying while FE querying can
only rely on the edge information provided by the sample
graph. Because RV, IRV, and MRW sampling methods select
vertices uniformly at random, they generally perform well
when used with BE querying. On the other hand, RE, IRE,
and RW sampling with BE querying does not produce similar
results because they tend to over sample high degree vertices
compared to low degree ones. RSP and K-M methods perform
better than the K-K method though, RSP is slightly better
than K-M for most of the cases. Path based sampling bias
mostly occurs around the source and destination vertices. That
is, the probability of a vertex being sampled is higher for those
vertices which are located closer to the source and destination
vertex sets in terms of hop count. In our experiments both
the source and destination sets are constructed uniformly at
random. On the other hand, K-M and RSP possess more
diversity in terms of the destination set compared to the K-K
method. The bias due to the diversity around the destination
sets is reflected in Figure 1.

Note that quite often real world systems do not support
(or provide service for) RV and IRV sampling, e.g., WWW
and OSN. Hence, Figure 1 suggests that MRW sampling
with BE querying is a practical and well-performing method
for clustering coefficient, degree, and path length distribution
estimation.

1) Degree Distribution: Figures 1-b and 1-e show the
degree distribution divergence scores of different sampling
methods on our graph models for BE and FE querying,
respectively. Figure 1-b shows that RV and MRW with BE
querying outperform all other methods. This observation is not
surprising because RV with BE querying is always the best
sampling method to estimate any local vertex characteristic.
Unfortunately, RV sampling with BE querying is not available
in many domains including OSN, ITM, and WWW. MRW
with BE querying also performs well because it could be



0.0

0.2

0.4

0.6

0.8

1.0
D
iv
e
rg
e
n
ce

clustering coefficient

(a)

degree

(b)

path length

B
a
ck
e
n
d
 Q
u
e
ry(c)

BA ER WS
0.0

0.2

0.4

0.6

0.8

1.0

D
iv
e
rg
e
n
ce

(d)

BA ER WS

(e)

BA ER WS

Fr
o
n
te
n
d
 Q
u
e
ry(f)

BA
0

0.15

BA
0

0.15

BA
0

0.15

IRV

RE

IRE

RW

MRW

RSP

K,K

K,M

Fig. 1. Jensen-Shannon divergence scores for synthetic graphs. Backend querying results (top) outperform Frontend querying results (bottom).

considered as an approximation of RV with BE querying
for degree distribution. MRW sampling with BE querying is
supported in WWW domain, but it is not directly supported in
OSN and ITM domains due to privacy concerns and technical
limitations, respectively.

Interestingly, all sampling methods with BE querying per-
formed worse on BA population graphs compared to ER
and WS models. Analyzing the probability mass functions
(Figure 2) of those population graphs shows that ER and WS
models produce almost symmetric degree distributions while
BA model naturally produces a power law graph. That is, BA
graphs have a small number of high degree vertices along
with high number of small degree vertices. RE and IRE tend
to sample the high degree vertices with higher probability.
Similarly, naive RW tend to visit high degree vertices with
high probability. As shown in Figure 3, in BA graphs, those
high degree vertices also have high betweenness centrality
values. That is, the number of shortest paths passing over
those high degree vertices is significantly larger than the paths
passing through the vertices having small degree. Hence, path
based sampling methods (RSP, K-K, and K-M) sample high
degree nodes with higher probabilities as in the other sampling
methods. This analysis clearly shows that the underlying graph
models have significant impacts on sampling where all other
parameters are held fixed.

Figure 1-e demonstrates that all sampling methods almost
equally perform bad with frontend querying on all graph mod-
els for degree distribution. The divergence can be attributed to
the fact that not all edges of a vertex could be sampled and
included into the sample graph. As a result, in all cases degrees
of vertices are under-sampled and this artifact is reflected in the
divergence results. On the other hand, the sampling methods
perform marginally better on BA graphs. The reason is simply
BA graphs have many small degree vertices and their edges
are sampled better compared to those having large degrees. As
a special case in Figure 1-e IRE sampling performs better on
BA graphs. In addition to the existence of many small degree
vertices in BA graphs, IRE adds additional edges into the
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Fig. 3. Barabasi-Albert population graph. Degree vs. betweenness centrality.

sample graph if any two vertices are already sampled. Hence,
the degree of a vertex is closer to the population value with
IRE sampling.

2) Clustering Coefficient Distribution: Figures 1-a and 1-d
show the clustering coefficient distribution divergence scores
of different sampling methods on our graph models for back-
end and frontend querying, respectively. Both figures strongly
articulate the underlying graph models’ impact on performance
of the utilized sampling methods.

Figure 1-a demonstrates that all sampling methods perform
acceptably well with BE querying on ER and WS graphs.
On the other hand, all methods but IRV and MRW relatively
perform worse on BA graphs. Our further analysis shows that
the difference between BA graph model and ER and WS
graph models can be attributed to the relation between the
degree and clustering coefficient distributions of these models.
Specifically, BA graphs consist of small number of of high
degree vertices and high number of small degree vertices.
Furthermore, as shown in Figure 4, low degree vertices in BA
graphs have higher clustering coefficient values. In fact, this
outcome is quite natural because of the preferential attachment
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Fig. 4. Barabasi-Albert population graph. Degree vs. clustering coefficient.

concept incorporated into the BA graph generation algorithm.
That is, a newly introduced vertex tends to get connected
to a higher degree vertex rather than its relatively lower
degree first hop neighbors. RE and IRE methods tend to
under-sample lower degree vertices because they have less
edges. RSP, K-K, and K-M sampling methods also tend to
under-sample low degree vertices because those vertices have
lower betweenness centrality (see Figure 3). As a result, the
divergence score increases for these methods because they
cannot fairly sample vertices having high clustering coefficient.
Note that the arguments do not apply to IRV and MRW on
BA graphs because IRV samples vertices uniformly at random
and MRW removes the degree bias which indirectly reduces
the clustering coefficient bias.

Figure 1-d shows that FE querying performs worse than
BE querying for clustering coefficient as well. This behavior
may again be attributed to the vertex based sampling methods
under-sampling the edges hence underestimating the clustering
coefficient values in many FE querying cases as shown in
Figure 5. Further analysis shows that we can explain the
differences of the divergence scores among different popula-
tion graph models by the existence of many vertices having
clustering coefficient zero. The vertices with degree one have
zero clustering coefficient by definition. Hence, if a vertex with
degree one is sampled and added into the sample graph, it
is sampled with all of its edges (one) and its true clustering
coefficient value (zero). Moreover, since all sampling methods
under-sample the edges in the population graphs, the number
of vertices having zero clustering coefficient values increases
in the sample graph. As a result, sampling schemes introduce

vertices having artificial zero clustering coefficient. As shown
in Figure 5, around 70% of the vertices in the population BA
graph and 93% of the vertices in the population ER graph
have zero clustering coefficient values. Because of edge under-
sampling, those vertices with zero clustering coefficient values
in the population graph are compensated in the sample graph
hence resulting in less divergence. On the other hand, the same
argument is not applicable to WS model because the clustering
coefficient distribution has a larger range and variance.

3) Path Length Distribution: Figures 1-c and 1-f show the
path length divergence scores of different sampling methods
on our graph models for BE and FE querying, respectively.

Figure 1-c shows that all sampling methods perform well
with BE querying on ER and WS graphs. On the other hand,
all methods but IRV and MRW relatively perform worse on BA
graphs. Further analysis shows that the difference between BA
graph model and ER and WS graph models can be attributed to
the vertex degrees. Since BA graphs consist of small number
of of high degree vertices and high number of small degree
vertices; RE, IRE, and RW sampling methods tend to under-
sample low degree vertices occurring at the periphery of the
graph. A similar argument is applicable to RSP, K,K, and K,M
sampling methods because these methods favor vertices having
high betweenness centrality which in turn have high degrees.
As a result, the sampled vertices are the ones mostly appearing
in the core of the graph rather than periphery and they have
comparably shorter path lengths in the population graph.

The divergence scores conveyed in Figure 1-e are es-
pecially surprising. All methods except RSP with frontend
querying perform bad on ER and WS graphs. Figure 6 shows
the cumulative densities of the population graphs as well as the
sample graphs obtained by all sampling methods. One counter
intuitive observation is that the lengths of observed sample
paths as well as the diameter of the sample graph are much
higher than the population graph except for RE sampling. The
artifact simply occurs due to vertex based sampling methods
under-sampling edges in the population graphs. Many of the
shortest paths appearing in a population graph are not sampled
because of one or more unsampled edges. As a result, path
lengths between many sampled vertices in sample graphs get
increased. On the other hand, further analysis shows that
the reason that RE sampling behaves differently is that this
sampling scheme generates highly disconnected graphs having
smaller shortest paths. Finally, RSP performs better than K-
K and K-M schemes because it does not have the bias due
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to sampling vertices closer to the preselected source and
destination vertices.

BA graphs have core vertices with high degrees and high
betweenness centrality. These vertices are, in general, sampled
into the sample graph as well. Specific to IRE sampling
method, all edges induced to the neighboring sample vertices
of the core vertices are also sampled. Since these vertices
carry most of the shortest paths between other vertices, the
path length distribution is preserved in the sample graph. As a
result, IRE with FE querying performs very well on BA graphs
(see Figure 1-f).

B. Results on Real-World Networks

In this section, we present our experimental results
on real world graphs shown in Table I. CAIDA, COAU-
THOR, ENRON, and EPINIONS graphs can be obtained at
http://snap.stanford.edu. The overall results are presented in
Figure 8 where the rows correspond to BE and FE query types
and columns correspond to degree distribution, clustering coef-
ficient distribution, and path length distribution characteristics,
respectively. The top row is for BE querying and the bottom
row is for FE querying cases. Similar to the synthetic topology
based experiments, our results for path length distribution with
BE querying assumes that selected nodes know their path
length distribution in the topology graph. In practice, this
information is rather difficult to collect and therefore the results
here show the best case scenario.

The bar charts in Figure 8 present the summary results
for the experiments. We use several cases from Figure 8 to
illustrate the effects of design considerations as well as some
interesting observations.

1) Effect of population graph: The variations of the di-
vergence scores across different application domains (see Fig-
ure 8-d) show that the underlying population graph has an
impact on the results when the same sampling method and
the same query type are utilized. This is also visible in other
charts in the same figure.

Figure 8-a, 8-b, and 8-c show that, for each network,
relative performances of sampling methods for all three char-
acteristics are similar with BE querying. For instance, in
EPINIONS network, for all three characteristics, IRV (and
hence RV) sampling method performs the best; RE, IRE, and
RW sampling methods perform the worst. This observation is
also apparent for other networks. With BE querying, the per-
formance of the sampling method depends on which vertices it
selects. As long as there is a correlation between different char-
acteristics, we expect to observe similar results. As depicted in
Figure 7, as the vertex degree increases, clustering coefficient
of the vertex decreases, which is very natural when the
definition of clustering coefficient is considered. As the vertex
degree increases, to keep the clustering coefficient the same,
the number of edges between the neighbors should increase
quadratically.However, this is not satisfied, especially for high
degree vertices, in any real-networks that we considered. The
similar performance results in Figures 8-a and 8-b can be
explained in a similar way. However, this result does not imply
that if a sampling design performs well for one characteristic,
it will also perform well for any other characteristic [2]. Note
that this trend is not observed in FE querying. In FE querying,
performance of the sampling method depends on the topology
of the sampled graph since no information can be extracted
from the population. Therefore, observing similar results for
different characteristics is not expected especially if the nature



Network Name Appl. domain # of nodes # of edges
degree

(min:mode:max)

average
clustering
coefficient

diameter

CAIDA Internet topology 26,475 106,762 1:2:2628 0.010 17
CO-AUTHOR Collaboration (COND-MAT) 21,363 182,628 1:5:281 0.633 15
ENRON Email exchanges 33,696 361,622 1:3:1383 0.497 12
EPINIONS Social(Trust) 75,877 508,836 1:2:3044 0.228 13
FACEBOOK [29] Social(Friendship) 63,392 816,886 1:10:1098 0.279 15
GNUTELLA P2P 65,561 147,878 1:2:95 0.010 11
YEAST-PPI [14] Biological 1,458 1,993 1:2:56 0.070 19

TABLE I. DETAILS OF REAL-WORLD NETWORKS USED IN EXPERIMENTS

Fig. 7. Scatter plots of degree vs clustering coefficient.

of the characteristics are different.

2) Effect of characteristic: The mismatch between the
characteristic of interest and the sampling design will affect the
results of a sampling study. For instance, walk based sampling
methods perform poorly for the estimation of path length distri-
bution with frontend querying (see Figure 8-f). This is because
they mostly create sparse subgraphs by under-sampling edges
causing overestimation of shortest path lengths. However, in
Figure 8-f we observe a different behavior for YEAST-PPI
network. This difference can be attributed to the sparsity of
the population graph. Moreover, by further analysis, we noticed
that the topology of the YEAST-PPI network has lots of chain
structure, which fits to the nature of the walk-based designs
since the walk-based designs select only one edge of a vertex
at each visit and create sparse sample graphs.

Divergence scores of MRW sampling for GNUTELLA
network in Figures 8-d, 8-e, and 8-f are 0.031, 0.236, and 0.950
for clustering coefficient, degree and path length distributions,
respectively. This result shows that the characteristic of interest
is important for the performance of the utilized sampling
design. By analyzing the clustering coefficient distribution of
GNUTELLA network, which is not shown here due to space
limitations, we observed that more than 90% of vertices have
zero clustering coefficient similar to the ER graph. Since the
MRW sampling method under-samples the edges, it introduces
vertices having artificial zero clustering coefficient. The ver-
tices with zero clustering coefficient values in the population
graph are compensated in the sample graph by those vertices
hence resulting in less divergence. High divergence score for
the path length distribution can be attributed to the mismatch
between the sampling design and the characteristic of interest.

3) Effect of query type: Figure 8 depicts that the BE
querying (top row) results are significantly different than FE
querying results (bottom row) in most cases. For instance, in
Figures 8-c and 8-f, for YEAST-PPI network, even though
IRV and RE sampling methods perform better than path-based
sampling methods under BE querying, the situation is the
reverse for FE querying. This result shows that query type also
has an impact on the performance of the sampling design.

In addition to above results, we also observe that in some
cases FE querying performs better than BE querying, which
we did not observe in synthetic graph analysis. For instance
in Figures 8-b and 8-e, for CAIDA and YEAST-PPI networks,
degree distribution results with FE querying outperform the
degree distribution results with BE querying in walk-based
sampling methods. We believe that this is a quite interesting
result. Existence of such cases may motivate researchers to
do further analysis to understand the interaction between
the sampling design, the characteristic of interest, and the
topology of the network. Understanding this interaction may
give clues about the feasibility of making inferences about a
given population characteristic using the sample graph.

V. FUTURE WORK & CONCLUSIONS

In this study we demonstrate that the design of a sampling
scheme plays an important role in estimating various network
characteristics. Our empirical evaluations clearly shows that
network characteristic estimation problem depends on many
factors and should be handled individually per characteristic
and per sampling scheme supported by the underlying system.
Even though we consider important factors of sampling biases
in this paper, they may not be exhaustive. We plan to conduct
a theoretical study supporting our findings in this empirical
study. Furthermore, we plan to develop working instances of
our proposed sampling framework and device new statistical
estimators for different features of real world complex systems
including OSN, ITM, P2P, and WWW.
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