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Abstract

Previous work on multiple-antenna channels uses the discrete-array model and cap-
tures the scattering condition of channel by introducing certain structures on the corre-
lation across different antenna pairs. Performance results then depend on the character-
istics of antenna arrays and the connection of the correlation structure to the physical
scattering mechanisms is unclear. This paper uses a continuous-array model and intro-
duces a two-step approach to model the scattering condition in an array-independent
but manageable description of physical environments. The first step defines the spatial
signal space that gives a compact view of the scattering channel. The second step ap-
plies wave scattering theory to model the underlying scattering mechanisms. Based on
these modeling strategies, a more fundamental understanding of scattering channels is
obtained, in particular, its impact on the spatial multiplexing gain, the diversity gain,
as well as the trade-offs among spatial multiplexing, diversity, and propagation range.
Insights obtained then guide the development of a transceiver architecture for the chan-
nel estimation of multiple-antenna systems that would utilize channel scattering more
efficiently.
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1 Introduction

Multiple-antenna systems improve performance dramatically by exploiting the scattering
nature of physical environments. To better utilize this channel resource, [1–11] incorporate
physical parameters of scattering condition into the channel model and study their effects
on performances. While these results provide us with more practical insight, they are not
sufficient to understand the fundamental limit of scattering channels. One major inadequacy
of these approaches is the use of the correlation across different pairs of antennas to capture
the scattering condition. By imposing different structures on this antenna correlation, the
impact of channel scattering is concluded. While this antenna correlation depends on the
scattering condition, it also depends on the location of antennas and therefore different
array configurations will yield different conclusions even in the same channel.

To obtain more fundamental understanding of scattering channels, we use a continuous-
array model which eliminates the need to specify a priori the number of antennas and
their relative locations on the antenna array. [12] uses similar approach to model the an-
tenna arrays. However, it uses the ray-tracing approach to model the scattering condition
which lessens its analytical tractability. Instead, we apply wave scattering theory along
with observations from channel measurements to model the scattering condition. Our ap-
proach is different from the mainstream analytical approach using discrete antenna arrays
where the distribution of scatterers is modeled. For example, [1,3,9] consider the scatterer
distribution being isotropic around the transmitter and/or the receiver – the ideal fully-
scattered channel. However, channel measurements reveal that physical paths are more
appropriately analyzed as clusters [13–16], as illustrated in Fig. 1. [4] therefore considers
the scatterer distribution being clustered around several angular intervals. The complexity
of the model, however, complicates the performance results where numerical examples are
used to concluded the impact of scattering on performances.

In this paper, we introduce a two-step approach to model the scattering condition of
physical environments. The first step takes into account the clustering phenomenon ob-
served from channel measurements. The angular intervals subtended by scattering clusters,
Θt and Θr (see Fig. 1), define the spatial signal space to interpret the scattering channel.
From which we obtain a set of basis functions that gives the most compact view of the chan-
nel. [17] shows that the dimension of this set determines the available number of spatial
degrees of freedom (spatial channels) given an area limitation on the transmit and receive
antenna arrays1. The second step captures the connectivity between Θt and Θr introduced
by the underlying scattering mechanism. We will consider the most basic scattering mech-
anisms: reflection, refraction, diffuse scattering, and diffraction. This modeling step allows
us to compute various performance metrics. Then, we will divide the analyses into three

1 [17] studies the effect of array geometry and polarization as well.
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Figure 1: Illustrates the clustering of transmit and receive signals along the elevation di-
rection and angles subtended by the scattering clusters as observed from the transmitter
Θt = Θt,1 ∪Θt,2 ∪ · · · and from the receiver Θr = Θr,1 ∪Θr,2 ∪ · · · .

regions according to the size of antenna arrays:

• When antenna arrays are small, the optimal radiation and reception patterns are omni-
directional. Power transfer becomes the major concern. The underlying scattering
mechanisms critically determine the power gain with specular reflection being the
most efficient while multi-bounce diffuse scattering being the least (see Fig. 2). For
a given scattering mechanisms, the larger the widths of Θt and Θr are, the better is
the receive SNR but their effect is secondary.

• When antenna arrays are large, the widths of Θt and Θr become critical as they
determine the dimension of the basis to view the scattering channel. The ergodic
capacity for linear arrays is shown to be2

C = Lt|Ωt| log2(γSNRt) + o(Lt|Ωt|)

at high SNR where Lt is the length of the transmit array normalized to a wavelength,
|Ωt| :=

∫
Θt

sin θ dθ, and SNRt is the transmit SNR. The underlying scattering mech-
anisms determine the power gain per spatial channel denoted by γ and now become

2The expression assumes that the length of transmit array equals to that of the receive array and the

width of Θt with respect to the axis of the transmit array equals to the width of Θr with respect to the axis

of the receive array.
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Figure 2: Illustrates (left) single-bounce diffuse scattering and (right) multi-bounce diffuse
scattering.

a secondary effect. However, these mechanisms have critical impact on the diver-
sity benefit. In particular, we will show that the single-bounce diffuse scattering and
multi-bounce diffuse scattering (see Fig. 2) give very different trade-offs between spa-
tial multiplexing gain (data rate) and diversity gain. Since real channels are more
specular and single-bounce diffuse in nature, the insight obtained will help us de-
sign better space-time coding schemes. In addition, we will investigate the trade-off
between propagation range and multiplexing gain such that a more comprehensive
conclusion on the range-multiplexing-diversity trade-off can be drawn.

• When the size of antenna arrays is in between the above two limits, the number
of spatial degrees of freedom is perplexing. It depends not only on the widths of
Θt and Θr but also on the number of scattering clusters, angular positions of these
clusters, and the SNR. We will illustrate that at high SNR, a higher throughput
is supported by packing more antennas beyond the well-established half-wavelength
antenna spacing criterion [18]. In terms of diversity benefits, the impact of different
scattering mechanisms is not as distinguishable as when the antenna arrays are large.
The distinction diminishes as antenna arrays become smaller but magnifies as antenna
arrays become larger.

Finally, the proposed two-step approach to understand scattering channels leads the devel-
opment of a two-stage transceiver architecture for channel estimation of multiple-antenna
systems. The proposed architecture would make use of the channel resource due to the
scattering nature of physical environment more effective and efficient.

The rest of the paper is organized as follows. Section 2 presents the continuous multiple-
antenna channel model and the steps taken to simplify the model to make it analytically
tractable. Section 3 introduces the spatial signal space to interpret the scattering channel.
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Section 4 to 6 present performance analyses in the small-array regime, large-array regime,
and finite-array regime respectively. Section 7 proposes a two-stage transceiver architecture
for channel estimation. Finally, we will conclude this paper in Section 8.

In this paper, the following notation will be used. We use boldface capital letters for
matrices and boldface small letter for vectors. For a vector v, v̂ is a unit vector denoting
its direction. I is the identity matrix. The determinant of a square matrix A is denoted
by det(A) and its trace by tr(A). Two matrices related by A � B implies that A − B

is positive definite. Cn and Cn×m denote the set of n-dimensional complex vectors and
n × m complex matrices respectively. (·)∗, (·)† and E[·] denote the conjugate, conjugate-
transpose and expectation operations respectively. For an uncountable set S, |S| denotes
its Lebesgue measure. CN (µ, σ2) denotes a complex Gaussian random variable with mean
µ and variance σ2, and CN (M,C ⊗D) denotes a complex Gaussian random matrix with
mean M and covariance C ⊗D where ⊗ is the kronecker product. Two random variables
related by x ∼ y means that they are statistically the same. �x� gives the smallest integer
equal to or greater than x.

2 System Model

We will first review the transmission in free-space in Section 2.1. Insights obtained will
help deriving the continuous multiple-antenna channel model detailed in Section 2.2. Sim-
plications will be introduced in Section 2.3 to make the model tractable for subsequent
analyses.

2.1 Preliminaries

In line-of-sight channels, the receive power Pr is related to the transmit power Pt by the
Friis transmission formula of classic antenna theory [18]

Pr

Pt
=
ArAt

λ2
c l

2
(1)

whereAt and Ar are the effective aperture of the transmit and receive antennas respectively,
λc is the carrier wavelength, and l is the transmitter-receiver separation (propagation range).
With reference to Fig. 3, the power gain can be expressed as a ratio of

Pr

Pt
=
|Ωt|
∆ωt

(2)

where
|Ωt| = Ar

l2
and ∆ωt :=

1
At/λ2

c

(3)
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Figure 3: Illustrates the power gain of line-of-sight channels as a ratio of channel angular
bandwidth |Ωt| to transceiver angular resolvability ∆ωt.

The |Ωt| is the solid angle subtended by the receive antenna as seen from the transmitter.
Only signals radiated within Ωt are captured by the receiver and |Ωt| is its measure. We
therefore coin |Ωt| the channel angular bandwidth. The ∆ωt is the beam-width of the
transmit antenna and determines the angular resolvability of the transmit antenna over Ωt.

In scattering environments, scatterers provide additional connectivities between the
transmitter and the receiver. Equivalently, |Ωt| is increased. However, this does not
guarantee an increase in the power gain which also depends on the underlying scatter-
ing mechanisms and the electromagnetic properties of scatterers. The log-distance path
loss model [19], a classical propagation model used to estimate the received signal strength
as a function of l, states:

Pr

Pt
=
ArAt

λ2
c l
n

(4)

The path loss exponent n abstracts the impact of scattering on the power gain. In the
line-of-sight channel, n equals 2. When the scattering is specular reflection, n is around
2. It can be less than 2 [20, 21] when scattering sources are lossless or the channel is
unobstructed. In this case, the increase in the channel angular bandwidth |Ωt| will increase
the power gain. Now, when the scattering is diffuse or diffraction, n is around 2(ν + 1)
and ν is the number of scattering (bouncing) encountered by physical paths before reaching
the receiver. That is, the power gain decreases despite of an increase in |Ωt|. Let us give
an intuitive explanation. Consider a single-bounce diffuse channel (n ≈ 4) where there is
a single scatterer of effective cross-sectional area As located in the midway between the
transmitter and the receiver. Defining δ := logl(4As/π) and with reference to Fig. 4, the
power gain can be expressed as a product of two ratios:

Pr

Pt
=
ArAt

λ2
c l

4−δ
=
|Ωt|
∆ωt

· |Ωs|
4π

(5)

where
|Ωt| = As

(l/2)2
and |Ωs| = Ar

(l/2)2
(6)

The fraction of power captured by the scatterer is |Ωt|/∆ωt where only |Ωs|/(4π) of the
captured power reaches the receive antenna. Compared with (2), the single-bounce diffuse
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Figure 4: Illustrates the power gain of a single-bounce diffuse channel as a product of two
ratios.

channel has an extra scaling factor of |Ωs|/(4π). In general, each bounce encountered by
physical paths introduces an extra scaling factor on the power gain and each of these factors
is inversely proportional to l2.

In summary, the path-loss model has three key parameters:

• angular resolvability of transceiver, ∆ωt;

• angular bandwidth of channel, |Ωt|; and

• underlying scattering mechanisms: specular reflection versus diffuse scattering and
single-bounce versus multi-bounce diffuse scattering.

These parameters not only impact the power gain but also the performance of multiple-
antenna channels. To understand their impact, we will next introduce a spatial channel
model that captures these three parameters while maintains analytical tractability.

2.2 Continuous Multiple-Antenna Channel Model

We consider continuous arrays which are composed of an infinite number of antennas sepa-
rated by infinitesimal distances. This eliminates the need to specify a priori the number of
antennas and their relative positions on antenna arrays. Each antenna is composed of three
orthogonal dipoles oriented along Euclidean directions ê1, ê2 and ê3. In a frequency non-
selective fading channel, the transmit and receive signals at a particular time are related
by

y(q) =
∫

C(q,p)x(p) dp + z(q) (7)

The transmit signal x(·) is a vector field on R3, a function that assigns each point p ∈ R3

of the transmit array to a vector x(p) ∈ C3. Similarly, y(·) is the receive vector field. The
channel response C(·, ·) is a 3 × 3 complex integral kernel where its domain is the set of
transmit vector fields and its range is the set of receive vector fields. The matrix C(q,p)
gives the channel gain and polarization between the transmit position p and receive position
q. The vector field z(·) is the additive noise.
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The channel response is a composition of five responses:

C(q,p) =
∫∫

E†
r(κ̂,q)A†

r(κ̂,q)H(κ̂, k̂)At(k̂,p)Et(k̂,p)dk̂dκ̂ (8)

where Et(·, ·), Er(·, ·), At(·, ·), Ar(·, ·), and H(·, ·) are 3 × 3 complex integral kernels, and
are defined as follows:

• The transmit element response Et(·,p) gives the field pattern of the antenna element
at p. Similarly, Er(·, ·) is the receive element response. These element responses
capture the mutual coupling between adjacent antenna elements, and between the
antenna element and its surroundings. When there is no mutual coupling, Et(k̂,p) is
independent of p. Furthermore, if antenna elements are onmi-directional Et(k̂,p) is
independent of both p and k̂.

• The transmit array response At(k̂,p) maps the excitation current at p assuming
onmi-directional element response to the radiated field along k̂. Similarly, the receive
array response Ar(·, ·) maps the incident field to the induced current distribution. In
the far field, we can apply the plane wave approximation and obtain [17]

At(k̂,p) =
(
I− k̂k̂†) exp(−j2πk̂†p), p ∈ Vt (9a)

Ar(q, κ̂) =
(
I− κ̂κ̂†) exp(−j2πκ̂†q), q ∈ Vr (9b)

where Vt and Vr denote the transmit and receive spaces respectively. In the expression,
the position vectors p and q are normalized by the wavelength λc for conciseness.

• The scattering response H(κ̂, k̂) gives the channel gain and polarization between the
transmit direction k̂ and the receive direction κ̂. [22] refers it the double-directional
channel response and illustrates its properties by measurement results. Most spatial
channel measurements reveal that scattered paths are typically clustered around a
number of disjoint angular intervals (see Fig. 1). Therefore, H(·, ·) is non-zero in
multiple sub-intervals only. Suppose there are Mt scattering clusters illuminated by
the transmit array with angular sub-intervals of Ωt,i (i = 1, · · · ,Mt) and Mr clusters
as observed from the receive array with sub-intervals of Ωr,i (i = 1, · · · ,Mr). Then,
the scattering response satisfies

H(κ̂, k̂) �= 0 only if (κ̂, k̂) ∈ Ωr × Ωt (10)

where

Ωt =
Mt⋃
i=1

Ωt,i and Ωr =
Mr⋃
i=1

Ωr,i
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Table 1: Examples of scattering sources and their underlying scattering mechanisms.

Examples of scattering sources
Mechanisms

3 kHz–300 MHz 300 MHz–3 GHz > 3 GHz

Reflection/Refraction Ionosphere Buildings Walls

Diffuse Scattering Troposphere Plants Furniture

Diffraction Earth surface Hills Door-way openings

Now, |Vt| and |Vr| capture the angular resolvability of transceiver, and |Ωt| and |Ωr| capture
the angular bandwidth of channel. We will next model H(·, ·) within Ωr × Ωt to capture
the underlying scattering mechanisms.

Specular Reflection

Starting with reflection, it occurs when the scattering source is smooth and large as
compared to a wavelength, for example, the back-wall reflection (see Table 1). The incident
and reflected directions make equal angles from the surface normal. Suppose n̂ is the unit
normal of the surface (see Fig. 5). For an impulse applied in the direction k̂, the signal
scattered in the direction κ̂ is

H(κ̂, k̂) = e−j2πrδ
(
κ̂−Θ(n̂)k̂

)
ΓSP (n̂× k̂, k̂) (11)

where

Θ(n̂) = I− 2n̂n̂†

ΓSP (v, k̂) =
η2

√
1− v2 −

√
η2
1 − η2

2v
2

η2

√
1− v2 +

√
η2
1 − η2

2v
2
v̂v̂†

− η2
1/η2

√
1− v2 −

√
η2
1 − η2

2v
2

η2
1/η2

√
1− v2 +

√
η2
1 − η2

2v
2
(v̂ × k̂)(v̂ × k̂)†

v is the magnitude of v, η1 and η2 are the intrinsic impedance of free space and the scattering
source respectively, and r is the distance traveled normalized to the wavelength. The matrix
Θ(n̂) determines the rotation on the propagation direction and ΓSP (n̂ × k̂, k̂) determines
the change in polarization.

Now, let us generalize it to the cluster response:

HSP (κ̂, k̂) = e−j2πfcτi(k̂)δ
(
κ̂−Θ(n̂i)k̂

)
ΓSP,i(n̂i × k̂, k̂), k̂ ∈ Ωt,i, i = 1, · · · ,Mt (12)

where n̂i and ΓSP,i are the unit normal and polarization matrix of the ith scattering cluster
respectively, τi(k̂) is the delay along k̂ ∈ Ωt,i, and fc is the carrier frequency. The response
has two distinct features:
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• the transmit direction k̂ and the receive direction κ̂ are in one-to-one correspondence;
and

• the response is inherently deterministic.

Same conclusions are drawn for refraction.

Diffuse Scattering

Diffuse scattering occurs when the scattering source is composed of a volume of small
discrete scatterers, small as compared to a wavelength (see Table 1 for some examples).
Upon impinging, the incident fields induce electric and magnetic dipoles on each discrete
scatterer. The induced dipoles then re-radiate energy in directions other than the incident
direction (see Fig. 6). The scattering response for each individual discrete scatterer is [23]3

H(κ̂, k̂) = e−j2πrΓSD(κ̂, k̂) (13)

where
ΓSD(κ̂, k̂) =

εr − 1
εr + 2

(I− k̂k̂†) +
µr − 1
µr + 2

(κ̂k̂† − κ̂†k̂I) (14)

εr and µr are the relative permittivity and relative permeability of the scatterer respec-
tively, and r is the distance traveled normalized to the wavelength. Compared to specular
reflection, the transmit and receive directions are no longer in one-to-one correspondence.
In other words, the transmit and receive directions are more connected. Summing together
the contribution from each individual scatterer yields (see Fig. 7)

e−j2πrΓSD(κ̂, k̂) · 1√
N

N∑
n=1

ejk
†
effrn

where r is the distance traveled as measured from the centroid of the scattering volume,
rn is the position of the nth scatterer relative to the centroid, and keff is the effective
wavenumber of the scattering volume. As the size of the scattering volume is typically

3The scattering process discussed is also known as Rayleigh scattering.
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Figure 7: Illustrates diffuse scattering from a cluster of scatterers.

large as compared to a wavelength and the volume contains a lot of discrete scatterers, the
displacement vector rn can be modeled as a random variable in space and the phase lag
k†
effrn is approximately uniformly distributed in [0, 2π). By the central limit theorem,

e−j2πr 1√
N

N∑
n=1

ejk
†
effrn ∼ CN (0, 1)

As r and keff are functions of k̂ and κ̂, the single-bounce diffuse response is

HSD(κ̂, k̂) = wi(κ̂, k̂)ΓSD,i(κ̂, k̂), (κ̂, k̂) ∈ Ωr,i × Ωt,i, i ∈ {1, · · · ,Mt} (15)

where wi(κ̂, k̂) is a complex Gaussian random process capturing the randomness of the ith
scattering cluster.
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Because of the secondary-source property of diffuse scattering, the multi-bounce diffuse
response is a convolution of single-bounce diffuse responses:

HMD(κ̂, k̂) = Wij(κ̂, k̂), (κ̂, k̂) ∈ Ωr,i × Ωt,j, (i, j) ∈ {1, · · · ,Mr} × {1, · · · ,Mt} (16)

where W(·, ·)’s are 3×3 complex random processes. For example, a double-bounce channel
has

Wij(κ̂, k̂) =
∫

Ωs,ij

wri(κ̂, v̂)ΓSD,ri(κ̂, v̂)wtj(v̂, k̂)ΓSD,tj(v̂, k̂) dv̂ (17)

where Ωs,ij is the angular interval subtended by the ith scattering cluster at the receive side
as seen from the jth scattering cluster at the transmit side. The randomness of Wij(·, ·)’s
critically depends on the number of bouncing encountered by physical paths. Unlike the
single-bounce response, the transmit and receive directions are now fully connected as il-
lustrated in Fig. 2.

The single-bounce and multi-bounce diffuse responses have two distinct features:

• the transmit and receive directions are more connected; and

• the response is inherently stochastic.

In particular, the scattering source acts like a secondary source and functions like a passive
relay.

Finally, diffraction occurs when the scattering source has sharp edges, for example,
around door-way openings (see Table 1). Each point in the diffraction region generates a
secondary field upon impinging by an incident field which is similar to diffuse scattering.
Therefore, we consider diffuse scattering and diffraction as alike.

2.3 Simplified Model

The model presented so far captures the essence of the angular resolvability of transceiver,
the angular bandwidth of channel, and the underlying scattering mechanisms. Next, we
introduce five steps to simple the model and make it analytically tractable:

1. Element responses. We will not investigate the effect of mutual coupling. Thus, the
element reponses becomes

Er(κ̂,q) = Et(k̂,p) =
1
4π

I

2. Array responses. We consider linear arrays oriented along the z-axis. In spherical
coordinates, the propagation directions can be expressed as

k̂ =



sin θ cosφ
sin θ sinφ

cos θ


 and κ̂ =



sinϑ cosϕ
sinϑ sinϕ

cos ϑ



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The array responses can therefore be written as

At(k̂,p) =
(
I− k̂k̂†)e−j2πpz cos θδ(px)δ(py), |pz| ≤ Lt

2

Ar(q, κ̂) =
(
I− κ̂κ̂†)e−j2πqz cosϑδ(qx)δ(qy), |qz| ≤ Lr

2

where Lt and Lr are the length of the transmit and receive arrays respectively.

3. Scattering responses. For specular reflection, ‖Θ(n̂i)‖ is unity for all n̂i implying
|dκ̂| = |dk̂|, we therefore consider

HSP (κ̂, k̂) = e−j2πfcτi(k̂)δ(κ̂ − k̂) ΓSP,i(n̂i × k̂, k̂), k̂ ∈ Ωt,i, i = 1, · · · ,Mt (18)

For the single-bounce diffuse scattering, we consider wi(κ̂, k̂)’s are uncorrelated, zero
mean and unit variance white complex Gaussian random processes, that is,

E
[
wi(κ̂, k̂)w∗

i′(κ̂
′, k̂′)

]
= δ(κ̂ − κ̂′)δ(k̂ − k̂′)δii′ , (κ̂, k̂) ∈ Ωr,i × Ωt,i (19)

Finally for the multi-bounce diffuse channel, we consider

E
[
Wij(κ̂, k̂)W†

i′j′(κ̂
′, k̂′)

]
=

1
l2(ν−1)

δ(κ̂−κ̂′)δ(k̂−k̂′)δii′δjj′ (κ̂, k̂) ∈ Ωr,i×Ωt,j (20)

where l is the transmitter-receiver separation and ν is the number of bouncing en-
countered by physical paths. As the multi-bounce response is a convolution of single-
bounce responses, the normalization by l2(ν−1) is due to the differential in the convo-
lution as shown in (17) for the double-bounce response.

4. Polarization. The above simplication on the multi-bounce diffuse channel hardly true
except when there are substantial number of bounces. But if we do not consider the
role of polarization on performances and focus on scalar responses instead of matrix
responses, the simplication is more justifiable. Now the channel response becomes

c(q,p) =
1

(4π)2

∫∫
a∗r(κ̂,q)h(κ̂, k̂)at(k̂,p) dk̂dκ̂ (21)

in which the array responses are

at(k̂,p) = e−j2πpz cos θδ(px)δ(py), |pz| ≤ Lt

2
(22a)

ar(κ̂,q) = e−j2πqz cosϑδ(qx)δ(qy), |qz| ≤ Lr

2
(22b)

the specular response is

hSP (κ̂, k̂) = e−j2πfcτ(k̂)δ(κ̂ − k̂), κ̂, k̂ ∈ Ωt = Ωr (23)
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and the diffuse responses satisfy

E
[
hSD(κ̂, k̂)h∗

SD(κ̂′, k̂′)
]
= δ(κ̂ − κ̂′)δ(k̂ − k̂′), (κ̂, k̂) ∈

Mt⋃
i=1

Ωr,i × Ωt,i (24a)

E
[
hMD(κ̂, k̂)h∗

MD(κ̂′, k̂′)
]
=

1
l2(ν−1)

δ(κ̂ − κ̂′)δ(k̂ − k̂′), (κ̂, k̂) ∈ Ωr × Ωt (24b)

where τ(k̂) = τi(k̂) for i = 1, · · · ,Mt. The single-bounce diffuse response hSD(κ̂, k̂)
is a complex Gaussian random process. To simplify the model further, we limit sub-
sequent analyses to hMD(κ̂, k̂) being a zero-mean complex Gaussian random process
as well.

5. Propagation directions. As linear arrays can only resolve the elevation direction (θ or
ϑ), further simplications yield

c(qz, pz) =
1
22

∫∫
ar(cos ϑ, qz)∗h(cos ϑ, cos θ)at(cos θ, pz) sin θ sinϑ dθdϑ (25)

Now, h(cos ϑ, cos θ) is non-zero only within Ωθ,r × Ωθ,t where Ωθ,t = {cos θ : θ ∈ Θt},
Ωθ,r = {cos ϑ : ϑ ∈ Θr}, and Θt and Θr are the angular intervals subtended by
scattering clusters along the elevation direction of the transmitter and the receiver
respectively (see Fig. 1).

To simplify the notation in subsequent analyses, we will drop the subscript θ on Ωθ,t

and Ωθ,r, z on pz and qz, and the factor 1/22 from now on. Furthermore, we define
α := cos θ and β := cosϑ. The channel response then becomes

c(q, p) =
∫∫

a∗r(β, q)h(β, α)at(α, p) dαdβ (26)

in which the array responses are

at(α, p) = e−j2πα, |p| ≤ Lt

2
and ar(β, q) = e−j2πβ, |q| ≤ Lr

2
(27)

the specular response is

hSP (β, α) = e−j2πfcτ(α)δ(β − α), β, α ∈ Ωt = Ωr (28)

and the diffuse responses satisfy

E
[
hSD(β, α)h∗

SD(β′, α′)
]
= δ(β − β′)δ(α − α′), (β, α) ∈

Mt⋃
i=1

Ωr,i × Ωt,i (29a)

E
[
hMD(β, α)h∗

MD(β′, α′)
]
=

1
lν−1

δ(β − β′)δ(α − α′), (β, α) ∈ Ωr ×Ωt (29b)

14



The normalization on the multi-bounce diffuse response is now lν−1 instead of l2(ν−1)

because only one propagation direction is accounted for (the differential in the convo-
lution changes from dk̂ = dα dφ to dα.) Furthermore, hSD(β, α) and hMD(β, α) are
zero-mean complex Gaussian random processes.

In general, the scattering response h(β, α) is a superposition of hSP (β, α), hSD(β, α), and
hMD(β, α). Those component responses have very different power gains (see Section 2.1).
Depending on the physical environment and the carrier frequency, h(β, α) is usually dom-
inated by one of them. Therefore, we will perform analyses on them individually. Next,
we will give the set of basis functions that gives the most compact look of the scattering
response.

3 Optimal Basis for h(β, α)

The scattering response is sandwiched between two integral kernels:

at(α, p), (α, p) ∈ Ωt × [−Lt/2, Lt/2] (30a)

ar(β, q), (β, q) ∈ Ωr × [−Lr/2, Lr/2] (30b)

As these kernels are non-zero and square integrable, there exist two sets of orthonormal
functions {ηt,m(α)} and {ξt,m(p)}, and a sequence of positive numbers in a decreasing order
{σt,m} such that [24, Therorem 8.4.1]

at(α, p), (α, p) ∈ Ωt × [−Lt/2, Lt/2] =
∞∑

m=1

σt,mηt,m(α)ξt,m(p) (31)

The expansion is equivalent to the singular value decomposition on finite dimensional ma-
trices and σt,m’s are the singular values. Similarly,

ar(β, q), (β, q) ∈ Ωr × [−Lr/2, Lr/2] =
∞∑
n=1

σr,nηr,n(β)ξr,n(q) (32)

Three points are noted:

• The behavior of σt,m with m and that of σr,n with n determine the number of spatial
degrees of freedom. Fig. 8 plots the σ2

t,m for a channel with 3 scattering clusters each
of angle 30◦. It illustrates that there is a limit on the number of significant singular
values. Suppose there are Nt significant σt,m and Nr significant σr,n. Then, the
minimum of Nt and Nr gives the number of spatial degrees of freedom [17]. In addition,
we notice that the transition between good and bad singular values is more abrupt
for large Lt. Therefore, we divide subsequent anlyses into three regions: small-array
regime (Lt|Ωt|, Lr|Ωr| � 1), large-array regime (Lt|Ωt|, Lr|Ωr| � 1), and finite-array
regime.
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• The left eigenfunctions ηt,m(α) and ηr,n(β) form the basis to project the scattering
response. In particular, on knowing Ωt at the transmitter and Ωr at the receiver only,
the subset {

η∗r,n(β)ηt,m(α) : m = 1, · · · , Nt, n = 1, · · · , Nr

}
(33)

is the optimal basis for the scattering response. Fig. 9 plots the eigenfunctions for the
same channel and Lt = 4. These functions, as expected, are non-zero only in Θt. The
ηt,1(α) has most energy in the middle sub-interval, ηt,2(α) in the first sub-interval,
and ηt,4(α) in the third sub-interval, while ηt,3 is spread over the entire Θt.

• The right eigenfunctions ξt,m(p) and ξr,n(q) are the current distributions that yield
the radiation and reception patterns with decreasing efficiency. It is because

Ξt,m(α) :=
∫ Lt/2

−Lt/2
at(α, p)ξt,m(p) dp

Ξr,n(β) :=
∫ Lr/2

−Lr/2
ar(β, q)ξr,n(q) dq

have σ2
t,m of the energy within Θt and σ2

r,n of the energy within Θr respectively.
Therefore, {

Ξt,m(α) : m = 1, · · · , Nt

}
and

{
Ξr,n(β) : n = 1, · · · , Nr

}
(34)

give the respective set of optimal radiation patterns and reception patterns. Fig. 10
plots the optimal radiation patterns for the same channel and antenna array. The
Ξt,4(α) has most energy spilling out Θt while Ξt,1(α) has the least. These optimal sets
are key to the design of an efficient mutliple-antenna transceiver detailed in Section 7.

Note that the basis introduced depends on both the scattering condition and the size of
antenna arrays. The basis introduced in [7], however, is independent of the scattering
condition. [7] uses sinc functions to approximate Ξt,m(α) and Ξr,n(β) which is not well-
justified for clustered channels as shown by the plots in Fig. 10.

Now, we can obtain a discrete representation for the input-output model in (7) by
projecting the scattering response h(β, α), the input signal x(p), the output signal y(q),
and the additive noise z(q) onto the left and right eigenfunctions. Defining

Hnm :=
∫∫

η∗r,n(β)h(β, α)ηt,m(α) dαdβ

xm :=
∫

x(p)ξ∗t,m(p) dp

yn :=
∫

y(q)ξ∗r,n(q) dq

zn :=
∫

z(q)ξ∗r,n(q) dq
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Figure 8: Plots σ2
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varying from 2 to 64.
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intervals in Θt is shaded. Note that

∫ π
0 |ηt,m(cos θ)|2 sin θ dθ = 1 and therefore, ηt,4(cos θ)

has magnitude larger than the others.
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yields the discrete representation:

yn =
∞∑

m=1

σr,nHnmσt,mxm + zn, n ∈ {1, 2, · · · } (35)

In conclusion, the impact of scattering on multiple-antenna systems has two spatial scales:

• Coarse-scale. The Ωt and Ωr determine the behavior of σt,m and σr,n, and hence
determine the dimension of the channel matrix H,

H :=
[
Hnm

]
n=1,··· ,Nr;m=1,··· ,Nt

They also determine the set of basis functions for projecting the scattering response,
and the set of optimal radiation and reception patterns for transceiver design.

• Fine-scale. The connectivity between the transmit and receive directions within
Ωr × Ωt determines the well-conditionedness of H. Thus, the underlying scattering
mechanisms would affect the space-time coding scheme used.

In the following analyses, we will first derive the eigenvalue distributions and the basis
functions for h(β, α) in each regime of operation. Then, we will obtain a matrix form of the
response H for each scattering mechanism. Based on which we develop the main results
that distinguish the impact of coarse-scale and that of fine-scale scattering on performances.
The insight obtained leads to a two-stage transceiver design for multiple-antenna systems.

4 Small-Array Regime

The small-array regime refers to: Lt|Ωt| � 1 and Lr|Ωr| � 1. In this regime, there are only
one significant σt,m and one significant σr,n so the channel is simple. We will introduce the
tool to study the trade-offs among spatial multiplexing, diversity, and propagation range.

4.1 Main Results

As Lt|Ωt|, Lr|Ωr| � 1, we have the following decomposition:

at(α, p) = e−j2πpα, (α, p) ∈ Ωt × [−Lt/2, Lt/2] (36a)

≈ 1, (α, p) ∈ Ωt × [−Lt/2, Lt/2] (36b)

=
√

Lt|Ωt| · 1√|Ωt|
χΩt(α) · 1√

Lt
Π(

p

Lt
) (36c)

where

Π(p) :=


1, |p| ≤ 1/2

0, otherwise
and χΩ(α) :=


1, α ∈ Ω

0, otherwise
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There is only one significant singular value σt,1 =
√

Lt|Ωt| and the corresponding eigenfunc-
tions are: ηt,1(α) = 1√

|Ωt|
χΩt(α) and ξt,1(p) = 1√

Lt
Π( p

Lt
). The optimal radiation pattern is

omni-directional. Similarly,

ar(β, q) ≈
√

Lr|Ωr| · 1√|Ωr|
χΩr(α) · 1√

Lr
Π(

p

Lr
) (37)

Now, we project the scattering response corresponding to different scattering mecha-
nisms onto η∗r,1(β)ηt,1(α) and obtain:

• Specular channels. The channel matrix is given by

H11 =
1
|Ωt|
∫

Ωt

e−j2πfcτ(α) dα (38a)

(a)∼ 1
|Ωt| CN (0, |Ωt|) (38b)

∼ 1√|Ωt|
CN (0, 1) (38c)

As fc is typically large, the phase lag, 2πfcτ(α), is approximately uniformly dis-
tributed over [0, 2π). By the central limit theorem, (a) holds. The receive SNR is
related to the transmit SNR by

SNRr

SNRt
= σ2

t,1σ
2
r,1 E
[|H11|2

]
= LtLr|Ωt| (39)

• Multi-bounce diffuse channels. The channel matrix is

H11 =
∫∫

η∗r,1(β)hMD(β, α)ηt,1(α) dαdβ (40a)

(a)∼ 1
l(ν−1)/2

∫
Ωr

∫
Ωt

η∗r,1(β)hw(β, α)ηt,1(α) dαdβ (40b)

(b)∼ 1
l(ν−1)/2

∫∫
η∗r,1(β)hw(β, α)ηt,1(α) dαdβ (40c)

(c)∼ 1
l(ν−1)/2

CN (0, 1) (40d)

where hw(β, α) is a zero-mean unit-variance white complex Gaussian random process
over all β and α. As hMD(β, α) is a zero-mean white complex Gaussian random
process over Ωr×Ωt, (a) holds. As illustrated by Fig. 9, ηr,n(·) and ηt,m(·) are non-zero
only over Ωr and Ωt respectively so (b) holds. (c) is due to the circularly symmetric
property of hw(β, α). The ratio of receive SNR to transmit SNR is therefore

SNRr

SNRt
=

1
lν−1

LtLr|Ωt||Ωr| (41)
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• Single-bounce diffuse channels. The channel matrix is

H11
(a)
=

1√|Ωt||Ωr|
Mt∑
i=1

∫
Ωr,i

∫
Ωt,i

hSD(β, α) dαdβ (42a)

(b)∼ 1√|Ωt||Ωr|
Mt∑
i=1

CN (|Ωr,i||Ωt,i|
)

(42b)

∼
√√√√Mt∑

i=1

|Ωr,i|
|Ωr|

|Ωt,i|
|Ωt| CN (0, 1) (42c)

(a) is from the property of ηt,1(α) and ηr,1(β) while (b) is from the property of
hSP (β, α). The ratio of receive SNR to transmit SNR is

SNRr

SNRt
= LtLr

Mt∑
i=1

|Ωt,i||Ωr,i| (43)

If |Ωt,i|’s and |Ωr,i|’s are individually the same, the ratio will be

SNRr

SNRt
=

1
Mt

LtLr|Ωt||Ωr|

4.2 Power Gain and its Trade-offs with Propagation Range

In Section 2.1, the channel angular bandwidth in both line-of-sight channel and single-
scatterer single-bounce diffuse channel are inversely proportional to 1/l2 (see (3) and (6)).
In clustered channels, will this relationship remain held? Cast to our simplified model where
only elevation direction is considered due to the use of linear arrays, we will investigate if
the following is true at least to the first order:

|Ωt|, |Ωr| ∝ 1
l

(44)

If the scattering clusters remain fixed while the transmitter-receiver separation is changing,
this relationship will obviously maintain. However, in general changing the transmitter-
receiver separation will bring in or fade out scattering clusters. For example, Fig. 11 shows
a physical environment where scattering clusters are located in the midway between the
transmitter and the receiver with b > a where a is the diameter of the cluster and b is the
cluster-cluster separation. The transmit and receive channel angular bandwidth are both
equal to

|Ωt| = |Ωr| = 4a
l

∞∑
n=0

1
1 + (2n + 1)2(b/l)2

(45)

It is bounded by

πa

bl

(
1− 2

π
tan−1 b

l

) ≤ |Ωt| = |Ωr| ≤ πa

bl

(
1 +

2
π

tan−1 b

l

)
(46)
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implying

|Ωt| = |Ωr| = πa

b

1
l

+ o(1/l) (47)

for large l. Therefore, we draw the following hypothesis on the channel angular bandwidth:

Hypothesis 4.1. At propagation range of l, the transmit and receive channel angular band-
width of linear arrays satisfy

|Ωt| = |Ωt0|
l

and |Ωr| = |Ωr0|
l

(48)

where |Ωt0| and |Ωr0| are the respective transmit and receive channel angular bandwidth at
the reference range l0 = 1m.

Now, the power gain of specular, multi-bounce diffuse, and single-bounce diffuse channels
can be written as

gSP (l) = LtLr|Ωt| =
LtLr

l1−δSP

gMD(l) =
1

lν−1
LtLr|Ωt||Ωr| = LtLr

lν+1−δMD

gSD(l) =
1
Mt

LtLr|Ωt||Ωr| =
LtLr

l2−δSD

respectively, where δSP = logl |Ωt0|, δMD = logl(|Ωt0||Ωr0|), and δSD = logl(|Ωt0||Ωr0|/Mt).
Three main points are concluded:

• The results are consistent with the path loss model in (1) and therefore reinforce
Hypothesis 4.1. Later in Section 5.5, we will apply this hypothesis to bring out the
trade-off between spatial degrees of freedom and propagation range.

• Not surprisingly there is a trade-off between power gain and propagation range, and
this trade-off varies with the underlying scattering mechanism as illustrated in Fig. 12.

• For a particular scattering mechanism and a fixed propagation range, there are three
contributing components: the transmit beamforming gain (Lt), the receive beamform-
ing gain (Lr), and the scattering gain (δSP , δMD, or δSD). The length of the transmit
array determines how well the transmitter can focus its energy to a particular direc-
tion: the larger it is, the more the transmit power can be focused on the direction
of scattering sources. These scattering sources then relay the transmit power to the
receiver. Therefore, the larger the angular bandwidth is, the more the transmit power
can reach the receiver. At the receiver, the length of the receive array determines the
amount of additive noise and interfering signals captured together with the desired
signal. The larger the receive array is, the better its noise immunity is.
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Figure 11: A physical environment with an infinite line of scattering clusters in the midway
between the transmitter and the receiver.
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4.3 Multiplexing-Diversity Trade-offs

Not a coincidence, the three scattering mechanisms yield the same scalar Rayleigh fading
channel with different variances. The impact of scattering on the diversity gain is thus
straightforward. At a fixed target rate, the outage probability decays like SNRr

−1 at high
SNR. The diversity gain is therefore unity and is insensitive to the underlying scattering
mechanisms. Increasing the target rate R (bits/s/Hz) reduces this decay. For example,
consider uncoded communication using QAM. The minimum Euclidean distance is approx-
imately

d2
min ≈

SNRr

2R

and the error probability at high SNR is approximately

Pe ≈ Eχ2

[
Q
(√χ2d2

min

2

)]
≈ (d2

min)
−1 ≈ 2R SNRr

−1 = SNRr
−(1− R

log SNRr
)

where χ2 has a chi-square distribution with 2 degrees of freedom. If the target rate increases
with SNR, the diversity gain will become 1−R/ log SNRr. The maximum diversity gain is
unity. To capture this trade-off between data rate and error probability, we use the trade-off
formulation proposed in [25].

Definition 4.2. A diversity gain d(r) is achieved at multiplexing gain r if the data rate is

R = r log SNRr,

and the outage probability is
Pout(R) ≈ SNRr

−d(r)

or more precisely,

lim
SNRr→∞

log Pout(r log SNRr)
log SNRr

= −d(r)

The curve d(r) characterizes the multiplexing-diversity trade-off of the channel.

The specular, multi-bounce diffuse and single-bounce diffuse channels have the same
outage probability:

Pout = P
(
log(1 + χ2SNRr) < r log SNRr

)
= P
(
χ2 <

SNRr
r − 1

SNRr

) (a)≈ SNRr
−(1−r)

at high SNR. For small ε, P (χ2 < ε) ≈ ε and therefore (a) holds. From which, we obtain
the trade-off curves

dSP (r) = dMD(r) = dSD(r) = 1− r (49)

Fig. 12 plots these trade-off curves. Unlike the trade-offs between power gain and propa-
gation range, the trade-offs between multiplexing and diversity gains are the same for all
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Figure 12: Illustrates the trade-off (left) between power gain and propagation range, and
(right) between diversity gain and multiplexing gain in the specular, multi-bounce diffuse,
and single-bounce diffuse channels.

channels. Later, we will show that they are different in other regimes. Finally, [25] proposes
the trade-off formulation to compare different space-time codes and motivate a universal
code design criterion for the particular i.i.d. fading channel. In this paper, we use the
trade-off formulation to contrast different scattering mechanisms.

5 Large-Array Regime

The large-array regime refers to: Lt|Ωt| � 1 and Lr|Ωr| � 1. In this regime, the respective
number of significant σt,m and σr,n are more than one. Therefore, we will first discuss
the behavior of σt,m with m and that of σr,n with n in Section 5.1 as they will shape the
dimension of the channel matrix. Then, we will derive the capacity of the specular channel
in Secion 5.2 and that of the multi-bounce diffuse channel in Section 5.3. Based on which,
we summarize the asymptotic capacity of various channels in Section 5.4 where we will
draw several interesting points. After that, we will look into the trade-off between range
and maximum multiplexing gain in Section 5.5, and the trade-off between multiplexing and
diversity gains in Section 5.6. Finally, we will give a more comprehensive conclusion on the
range-multiplexing-diversity trade-off in Section 5.7.
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Figure 13: Plots the distribution of σ2
t,m for large Lt|Ωt|.

5.1 Properties of σt,m’s and σr,n’s

When Lt|Ωt| is large, the number of σ2
t,m greater than x is given by

Ḡt(x) = Lt|Ωt|+ 1
π2

Mt ln(2πLt|Ωt|) ln
1− x

x
+ o
(
ln(Lt|Ωt|)

)
(50)

as Lt|Ωt| → ∞. This formula was first conjectured by Slepian in 1965 for the case when
Mt = 1 [26]. It gave a precise interpretation of the 2WT degrees of freedom in a class
of signals that are approximately time-limited to [−T/2, T/2] and frequency-limited to
[−W,W ] in [24]. Later in 1980, Landau and Widom proved the result for arbitrary Mt.

Fig. 13 plots the σ2
t,m versus m. For small ε > 0, the number of σ2

t,m greater than 1− ε

is
Ḡt(1− ε) = Lt|Ωt| − ln(1/ε)

π2
Mt ln(2πLt|Ωt|) + o

(
ln(Lt|Ωt|)

)
while the number of σ2

t,m in between ε and 1− ε is

Ḡt(ε)− Ḡt(1− ε) =
2 ln(1/ε)

π2
Mt ln(2πLt|Ωt|) + o

(
ln(Lt|Ωt|)

)
For a fixed ε, the ratio of the number of eigenvalues in the transition region (between 0
and 1) to those approaching 1 is approximately Mt ln(Lt|Ωt|)/(Lt|Ωt|) which is vanishingly
small for large Lt|Ωt|. As the transition between the good and bad singular values is very
abrupt (see Fig. 8 for Lt = 64), the number of spatial degrees of freedom can be easily
identified [17]. However, when Lt|Ωt| is not very large, the fraction of singular values in the
transition region can no longer be ignored. In particular, the number of spatial degrees of
freedom depends on the SNR, the number of scattering clusters Mt, and the disjointness
of sub-intervals in Ωt. We will discuss this later case in Section 6. Now, we derive the
asymptotic cumulative distributions of σ2

t,m and σ2
r,n based on the Landau-Widom formula.

These distributions will then be used to derive channel capacities.
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Lemma 5.1. Define

Gt(x) := − 1
π2

Mt ln(2πLt|Ωt|) ln
1− x

x
(51)

for 0 < x < εt, where εt satisfies

ln
εt

1− εt
= − π2Lt|Ωt|

Mt ln(2πLt|Ωt|) (52)

For any increasing and bounded function f(x), we have

∑
x∈{σ2

t,m}, x≥a

f(x) =
∫ 1−εt

a
f(x) dGt(x) + o

(
ln(Lt|Ωt|)

)
(53)

Therefore, Gt(x) is the asymptotic cumulative distribution for σ2
t,m.

Similarly, the asymptotic cumulative distribution for σ2
r,n is

Gr(x) := − 1
π2

Mr ln(2πLr|Ωr|) ln
1− x

x
(54)

for 0 < x < εr, and εr satisfies

ln
εr

1− εr
= − π2Lr|Ωr|

Mr ln(2πLr|Ωr|) (55)

The proof is similar to that in [24, Lemma 8.5.3].

5.2 Capacity of Specular Channels

Following the same approach as in the small-array regime, we will first project the scattering
response onto η∗r,n(β)ηt,m(α) and obtain the (n,m)th element of the channel matrix:

Hnm =
∫∫

η∗r,n(β)e−jτ(α)δ(α − β)ηt,m(α) dαdβ

=
∫

e−jτ(α)η∗r,n(α)ηt,m(α) dα

To capture the essense of the deterministic nature of specular channels and account for the
good angular resolvability of large arrays [17], we assume that

Hnm = e−jτnm

∫
η∗r,n(α)ηt,m(α) dα (56)

When Lt = Lr,
Hnm = e−jτnnδnm (57)
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yielding a diagonal channel matrix. When Lt �= Lr, we expect the channel matrix mimics
a band matrix with equal upper and lower bandwidth4. For simplicity, this paper focuses
on Lt = Lr. The inputs and outputs are then related by

yn = e−jτnnσ2
t,nxn + zn, n ∈ {1, 2, · · · } (58)

The channel is composed of a multiple of parallel sub-channels. If the receiver estimates
τnn, the channel capacity will be

CSP =
∑

x∈{σ2
t,m}

log(x2µ)+ (59)

where µ satisfies ∑
x∈{σ2

t,m}

(
µ− 1

x2

)+
= SNRt (60)

Applying Lemma 5.1 yields

CSP =
∫ (

log(x2µ)
)+

dGt(x) + o
(
ln(Lt|Ωt|)

)
(61)

and µ satisfies ∫ (
µ− 1

x2

)+
dGt(x) + o

(
ln(Lt|Ωt|)

)
= SNRt (62)

The computed result is summarized in the following lemma and the proof is included in
Appendix A.

Lemma 5.2. The capacity of the specular channel is

CSP =
[
Lt|Ωt|+ Mt ln(2πLt|Ωt|)f1(SNRt)

]
log
(
1 +

SNRt

Lt|Ωt|
)

+ o
(
ln(Lt|Ωt|)

)
(63)

as Lt|Ωt| → ∞, where

f1(SNRt) =
1

4π2
ln

SNRt

Lt|Ωt| + o(ln SNRt) (64)

as SNRt →∞.

5.3 Capacity of Multi-bounce Diffuse Channels

Following the same reasoning as in (40), the (n,m)th element of the channel matrix is

Hnm =
∫∫

η∗r,n(β)hMD(β, α)ηt,m(α) dαdβ (65a)

∼ 1
l(ν−1)/2

∫∫
η∗r,n(β)hw(β, α)ηt,m(α) dαdβ (65b)

∼ 1
l(ν−1)/2

CN (0, 1) (65c)

4A matrix A has a lower bandwidth p if Anm = 0 whenever n > m+p and upper bandwidth q if m > n+q

implies Anm = 0.
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Figure 14: Plots the inverse map F−1
t,ε (x).

In addition, the circularly symmetric property of hw(β, α) asserts that Hnm’s are inde-
pendent. Consequently, the channel matrix is an i.i.d. complex Gaussian random matrix.
Now, the statistical properties of the channel matrix do not depend on the detail of the basis
functions which is a very convenient property. Also, note that the asymptotic cumulative
distribution of σt,m depends on the product Lt|Ωt| and Mt only (Lemma 5.1). That is, two
channels with different Ωt but same measure |Ωt| and same number of disjoint sub-intervals
Mt will yield the same performance for large Lt. For simplicity, this paper therefore focuses
on the scenario where Lt|Ωt| = Lr|Ωr| and Mt = Mr. That is, the asymptotic cumulative
distributions of σt,m and σr,n are approximately the same.

If the channel matrix is known at the receiver but unknown at the transmitter, the
ergodic channel capacity will be

CMD = max
K�0, tr(K)≤SNRt

EH

[
log det(I+ΣtHΣtKΣtH†Σt)

]
(66)

where Σt is a diagonal matrix with the nth diagonal element equal to σt,n. Accordingly, the
optimal covariance matrix K is diagonal as Σt is diagonal. The dimension of H, however, is
unknown a priori. Tools from random matrix theory can be applied to obtain a lower bound
only. An upper bound is also derived. Then we will show that they are asymptotically tight.

Lower Bound

If we consider only those σ2
t,m’s greater than ε and pour equal power over them, this

will give a lower bound for CMD. Recall that Ḡt(ε) gives the number of σ2
t,m greater than

ε. We define the empirical distribution of σ2
t,m by

Ft,ε(x) :=
Ḡt(ε)− Ḡt(x)

Ḡt(ε)
(67)
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Fig. 14 plots the inverse map F−1
t,ε (x), compared to Fig. 13. For a fixed ε, as Lt|Ωt| increases,

random matrix results in Girko [27] can be applied to obtain the limiting eigenvalue distri-
bution of l1−νΣ2

t,εHεΣ2
t,εH

†
ε, denoted by Fc(x). Submatrices Σt,ε and Hε contain the first

Ḡt(ε) rows and columns of Σt and H respectively. [5] showed that the Steltjes’ transform5

of Fc(x) is given by

mFc(z) =
∫ 1

0
u(x, z) dx

and u(x, z) is the unique solution to the fixed-point equation

u(x, z) =
[
−z + F−1

t,ε (x)
∫ 1

0

F−1
t,ε (p) dp

1 + F−1
t,ε (p)

∫ 1
0 u(q, z)F−1

t,ε (q) dq

]−1

Hence, CMD is lower-bounded by

CMD ≥ Ḡt(ε)
∫ ∞

0
log
(
1 +

SNRt

lν−1
x
)
dFc(x) (68)

as Lt|Ωt| → ∞. At high SNR, [5] obtains the following approximation:

CMD � Ḡt(ε)
[
log

SNRt

lν−1e
+ 2
∫ 1

0
log F−1

t,ε (x) dx
]

(69a)

= Ḡt(ε)
[
log

SNRt

lν−1e
+ 2
∫ 1

ε
log x dFt,ε(x)

]
(69b)

The lower-bound is computed and summarized in the following lemma, and the proof is
included in Appendix B.

Lemma 5.3. The ergodic capacity of the multi-bounce diffuse channel is approximately
lower-bounded by

CMD �
[
Lt|Ωt|+ Mt ln(2πLt|Ωt|)f2(SNRt)

]
log

SNRt

lν−1e
+ o
(
ln(Lt|Ωt|)

)
(70)

as Lt|Ωt| → ∞, where

f2(SNRt) =
1

4π2
ln

SNRt

lν−1
+ o(ln SNRt) (71)

as SNRt →∞.

Upper Bound
5The Steltjes’ transform of a distribution F (·) is defined by

mF (z) :=

∫
1

x − z
dF (x)
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As all σ2
t,m’s are less than 1, we have

tr(ΣtKΣr) < tr(K)

Hence, CMD is upper-bounded by

CMD ≤ max
K�0, tr(K)≤SNRt

EH

[
log2 det(I +ΣtHKH†Σt)

]
(72)

Furthermore, log det is concave so the bound is relaxed to

CMD ≤
∑
m

log2(1 + SNRtσ
2
t,m) (73)

The upper-bound is computed and summarized in the following lemma, and the proof is
included in Appendix C.

Lemma 5.4. The ergodic capacity of the multi-bounce diffuse channel is upper-bounded by

CMD ≤
[
Lt|Ωt|+ Mt ln(2πLt|Ωt|)f3(SNRt)

]
log
(
1 +

SNRt

lν−1

)
+ o
(
ln(Lt|Ωt|)

)
(74)

as Lt|Ωt| → ∞, where

f3(SNRt) =
1

2π2
ln

SNRt

lν−1
+ o(ln SNRt) (75)

as SNRt →∞.

5.4 Maximum Spatial Multiplexing Gain

Theorem 5.5. Suppose Ωt and Ωr are known a priori at the transmitter and the receiver
respectively.

• Specular channels. Assume Lt = Lr. The channel capacity CSP is

CSP = Lt|Ωt| log
(
1 +

SNRt

Lt|Ωt|
)

+ o(Lt|Ωt|) (76)

as Lt|Ωt| → ∞.

• Multi-bounce diffuse channels. Assume Lt|Ωt| = Lr|Ωr|, Mt = Mr, and elements of
the channel matrix Hnm’s are known at the receiver but unknown at the transmitter.
The ergodic capacity CMD is bounded by

Lt|Ωt| log SNRt

lν−1e
+ o(Lt|Ωt|) � CMD ≤ Lt|Ωt| log

(
1 +

SNRt

lν−1

)
+ o(Lt|Ωt|) (77)

as Lt|Ωt| → ∞.
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Figure 15: Illustrates the impact of scattering on capacity for fixed length of antenna arrays
(Lt = Lr) and SNRt.

• Single-bounce diffuse channels. Assume Lt|Ωt,i| = Lr|Ωr,j| = Lt|Ωt|
Mt

for all i, j, Mt

is finite, and elements of the channel matrix Hnm’s are known at the receiver but
unknown at the transmitter. The ergodic capacity CSD is bounded by

Lt|Ωt| log SNRt

Mte
+ o(Lt|Ωt|) � CSD ≤ Lt|Ωt| log

(
1 +

SNRt

Mt

)
+ o(Lt|Ωt|) (78)

as Lt|Ωt| → ∞.

Theorem 5.5 summaries the asymptotic capacity results. When Lt and Lr are large,
the single-bounce diffuse channel is approximately equivalent to Mt independent single-
cluster multi-bounce diffuse channels. Fischer’s inequality assures that the optimal input
covariance is separable among the Mt parallel clustered channels. Asymptotic results from
multi-bounce diffuse channel are then applied to obtain the asymptotic capacity of single-
bounce diffuse channels. All channels have the same asymptotic number of spatial degrees
of freedom equal to Lt|Ωt| – the maximum spatial multiplexing gain. It is insensitive to
the underlying scattering mechanisms. This aligns with the degree-of-freedom result in [17]
where scattering mechanisms are not modeled.

The capacity results lead us to have a different perspective on:

• Antenna correlation. Fixing Lt and Lr, Fig. 15 plots the channel capacity (CMD) ver-
sus the number of antennas and channel angular bandwidth. At a particular channel
angular bandwidth, channel capacities saturate as the number of antennas increases
and therefore, they are not increasing linearly with the number of antennas. Instead,
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Table 2: Power gain per spatial channel.

Scattering mechanisms Small-array regime Large-array regime

Specular LtLr|Ωt| 1

Multi-bounce diffuse LtLr |Ωt||Ωr|
lν−1

Lt|Ωt|
lν−1

Single-bounce diffuse LtLr |Ωt||Ωr|
Mt

Lt|Ωt|
Mt

the channel can be made less correlated by using fewer antennas and not fully uti-
lizing the available channel angular bandwidth, or it can be made highly correlated
and fully utilized the channel angular bandwidth at the expense of more antennas.
The dotted line in the figure shows the transition. Conventionally, the quality of a
multiple-antenna channel is justified by the correlation across different pairs of an-
tennas. This antenna correlation, however, is a consequence of the trade-off between
performance and the number of antennas used (or cost). Therefore, it is not fair to
justify the quality of a channel based on the antenna correlation.

• Minimum antenna spacing. The maximum multiplexing gain cannot be increased
indefinitely by exploring the scattering nature of physical environments. Because the
channel angular bandwidth is upper-bounded by the extent of the propagation space.
For linear arrays, |Ωt| and |Ωr| are less than or equal to 2. Therefore, in a fully
scattered environment, the maximum multiplexing gain is 2Lt, and 2Lt number of
antennas corresponds to the well-established half-wavelength antenna spacing criterion
from antenna theory. The criterion given in [1] based on the antenna correlation
derived from a statistical single-cluster model is somewhat optimistic. It showed that
the minimum antenna spacing is 0.382 wavelength for linear arrays. The inconsistency
stems from the use of dθ instead of d cos θ as the differetial in (25). Otherwise, both
criteria should coincide. However, the former involves no assumption on the channel
statistics.

• Capacity scaling. For a given |Ωt| and fixed antenna spacing, the channel capacity
increases with the number of antennas due to an increase in the total length of antenna
arrays. This linear growth holds in a richly scattered environment (larger |Ωt|) as
well as in a less scattered environment (smaller |Ωt|). Thus, it is also not fair to
assert that the capacity scaling in multiple-antenna systems occurs in richly scattered
environments.

The underlying scattering mechanisms affect the power gain per spatial channel, like
that in the small-array regime. Table 2 summaries these gains. Larger arrays have a better
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Figure 16: Contrasts the power transfer and the creation of spatial channels in the small-
array and large-array regimes. Note that the beams plotted are over-simplified to ease
explanation and do not reflect the actual Ξt,m(·) and Ξr,n(·).

angular resolution and are able to generate narrower beams. A narrower beam improves
the energy transfer as illustrated in Fig. 16(a). When the array length is substantial,
more beams can be fitted within the sub-intervals of Ωt as shown in Fig. 16(b). The
transmit power is now split up to support multiple spatial channels with SNRt/(Lt|Ωt|)
each. However, unlike the small-array regime, the fraction of this transmit power being
relayed by scatterers is unity because the entire beam is within Ωt. The receive power then
depends on the underlying scattering mechanisms:

• In specular channels, as the transmit and receive directions are in one-to-one corre-
spondence, the receive power per spatial channel is

SNRr =
SNRt

Lt|Ωt|
that is, the power gain per spatial channel is unity.

• In multi-bounce diffuse channels, as the transmit power is spread over the entire Ωr,
the receive power per spatial channel is therefore scaled up by Lr|Ωr| (= Lt|Ωt|),

SNRr =
SNRt

lν−1
=

Lt|Ωt|
lν−1

· SNRt

Lt|Ωt|
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This phenomenon is similar to the spreading gain in waveform channels where a data
symbol can be spread over multiple time-samples and/or sub-carriers to increase the
robustness against channel fading. In waveform channels, the spreading is done ex-
plicitly whereas in multiple-antenna channels, the secondary-source property of diffuse
scattering/diffraction brings forth the spreading implicitly.

• In single-bounce diffuse channels, the transmit power emanated from Ωt,i is spread
over Ωr,i so the receive power per spatial channel is scaled up by Lr|Ωr,i| (= Lt|Ωt|/Mt)
instead,

SNRr =
SNRt

Mt
=

Lt|Ωt|
Mt

· SNRt

Lt|Ωt|
Plausibly, multi-bounce diffuse channels are more favorable. However, they have the worst
path loss, being scaled down by lν−1. The amount of spreading and path loss counteract
each other. As a result, the multi-bounce diffuse channel is better for short range and high
data rate transmission, while the specular channel is better for longer range but lower data
rate transmission. The single-bounce diffuse channel enjoys both sides of the coin. Similar
observation is reported in [28].

In [7, 10], channel capacities are shown to be increasing with less connectivity between
the transmit and receive propagation spaces. Ignoring path loss, they imply that single-
bounce diffuse channels have better ergodic performance than multi-bounce diffuse channels.
The inconsistency stems from [7,10] keeping the receive SNR per spatial channel constant.
That is, the transmit SNR in the single-bounce diffuse channel will be Mt times more than
that in the multi-bounce diffuse channel. Not surprisingly, the ergodic performance is in
favor of the single-bounce diffuse channel.

Finally, at high SNR the capacity formulas derived in Lemma 5.2–5.4 can be approxi-
mated by

CSP ≈
[
Lt|Ωt|+ 1

4π2
Mt ln(2πLt|Ωt|) ln

SNRt

Lt|Ωt|
]
log

SNRt

Lt|Ωt| (79a)

CMD ≈
[
Lt|Ωt|+ 1

cπ2
Mt ln(2πLt|Ωt|) ln

SNRt

lν−1

]
log

SNRt

lν−1
(79b)

for some constant c ∈ (2, 4). Apparently, there is an addition of 1
4π2 Mt ln(2πLt|Ωt|) ln SNRt

Lt|Ωt|
degrees of freedom in the specular channel and 1

cπ2Mt ln(2πLt|Ωt|) ln SNRt
lν−1 in the multi-

bounce diffuse channel. These additional degrees of freedom as compared to Lt|Ωt| is
negligble as Lt|Ωt| → ∞ but become increasingly significant as Lt|Ωt| is finite. Here we
point out this interesting observation which will be elaborated more at the finite-array
regime in Section 6.
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Figure 17: A range-multiplexing trade-off example where (a) shows the angular bandwidth
at the reference range of l0 and (b) illustrates the decrease in the number of spatial chan-
nels at propagation range of l. Note that the beams plotted are over-simplified to ease
explanation and do not reflect the actual Ξt,m(·) and Ξr,n(·).

5.5 Range-Multiplexing Trade-offs

Usually, range extension relates to beamforming to the strongest spatial channel, and there-
fore there should not be any trade-off between propagation range and spatial degrees of
freedom. However, it can be carried out more sophisticatedly by beamforming to the first
few strongest spatial channels. For example, one originally transmits with N1 spatial de-
grees of freedom and now wants to extend the propagation range by focusing all energy on
the first N2 (< N1) strongest degrees of freedom. Now, increasing the propagation range
presumably decreases the channel angular bandwidth as suggested by Hypothesis 4.1. This
will put forth an upper bound on N2. This section therefore devotes to quantify the trade-off
between propagation range and this bound.

Applying Hypothesis 4.1, the maximum spatial multiplexing gain at a propagation range
of l is

r0(l) =
1
l
Lt|Ωt0| (80)

which gives the range-multiplexing trade-off curve. Fig. 17 gives an example of this trade-
off. In the small array regime, the trade-off between range and power gain is very sensitive
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Figure 18: Illustrates differences in the channel matrix among specular, single-bounce dif-
fuse, and multi-bounce diffuse channels. Each small dot represents the matrix element being
non-zero. A darker dot means the element being deterministic while a ligher dot means the
element being a zero-mean complex Gaussian random variable independent of others.

to the underlying scattering mechanisms (see Fig. 12). Here, the trade-off between range
and maximum multiplexing gain is insensitive to these mechanisms.

The formula is very simple. Imagine if one attempts to study this trade-off using the
standard MIMO model for multiple-antenna systems, one would need to model the effect
of propagation range on the antenna correlation and then indirectly infer the trade-off
from an increase in the antenna correlation with increasing propagation range. Here, we
demonstrate a more direct approach.

5.6 Multiplexing-Diversity Trade-offs

Unlike the small-array regime, now the channel matrix varies with the underlying scattering
mechanisms as contrasted in Fig. 18. As there are asymptotically Lt|Ωt| significant σ2

t,m

and Lr|Ωr| significant σ2
r,n, and these eigenvalues are all asymptotically equal to 1, the

multi-bounce diffuse channel is approximately mimic the standard i.i.d. fading model for
multiple-antenna systems. The maximum diversity gain is therefore LtLr|Ωt||Ωr|. Similarly,
the single-bounce diffuse channel is approximately

y =



H1 0

. . .

0 HMt


x+ z (81)

where Hi ∼ CN (0, ILr |Ωr,i| ⊗ ILt|Ωt,i|
)

for i = 1, · · · ,Mt. The maximum diversity gain
becomes

∑
i LtLr|Ωt,i||Ωr,i|. Table 3 summaries these diversity orders.

Underlying scattering mechanisms not only affect the maximum diversity gain but also
the trade-offs between diversity and multiplexing gains. Following the formulation proposed
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Table 3: Maximum diversity gain.

Scattering mechanisms Small-array regime Large-array regime

Specular 1 ∞

Multi-bounce diffuse 1 LtLr|Ωt||Ωr| <∞

Single-bounce diffuse 1
∑

i LtLr|Ωt,i||Ωr,i| ≤ LtLr|Ωt||Ωr|

in [25] (see Definition 4.2), the trade-off curve for the multi-bounce diffuse channel is given
by solving

lim
SNRr→∞

logP
[
det(I+ SNRr

Lt|Ωt|H
†
wHw) < SNRr

r
]

log SNRr
= −dMD(r) (82)

where Hw ∼ CN (0, ILt|Ωt| ⊗ ILt|Ωt|
)
. Similarly, the trade-off curve for the single-bounce

diffuse channel is given by solving

lim
SNRr→∞

logP
[∏Mt

i=1 det(I+ SNRr
Lt|Ωt,i|H

†
iHi) < SNRr

r
]

log SNRr
= −dSD(r) (83)

The trade-off curve for the multi-bounce diffuse channel is the same as the i.i.d. fading
channel solved in [25]. Here, we solve the trade-off curve for the single-bounce diffuse
channel. The results are summarized in Theorem 5.6.

Theorem 5.6. Suppose Ωt and Ωr are known a priori at the transmitter and the receiver
respectively, and the channel matrix is known at the receiver but unknown at the transmitter.
Define

r0 := min
{
Lt|Ωt|, Lr|Ωr|

}
• Multi-bounce diffuse channels. The trade-off curve dMD(r) is given by a piecewise
linear function connecting the points (r, dMD(r)), r = 0, · · · , r0, where

dMD(r) = (Lt|Ωt| − r)(Lr|Ωr| − r) (84)

• Single-bounce diffuse channels. The trade-off curve dSD(r) is

dSD(r) = d1(r)⊕ d2(r)⊕ · · · ⊕ dMt(r) (85)

where di(r) is a piecewise linear function connecting the points (r, di(r)), r = 0, · · · ,
min{Lt|Ωt,i|, Lt|Ωr,i|} and

di(r) = (Lt|Ωt,i| − r)(Lr|Ωr,i| − r) (86)
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Figure 19: Contrasts the multiplexing-diversity trade-off curves for the specular, multi-
bounce diffuse, and single-bounce diffuse channels where Mt = Mr = 2, Lt|Ωt,i| = 2, and
Lr|Ωr,i| = 2 for i = 1, 2.

The operation ⊕ denotes the min-plus convolution and is defined as

(f ⊕ g)(t) = inf
0≤s≤t

{
f(t− s) + g(s)

}
(87)

Descriptively, the trade-off curve is obtained by putting end-to-end the different lin-
ear pieces in di(r)’s, sorted by increasing slopes (or equivalently, decreasing negative
slopes).

The proof for dSD(·) is included in Appendix D. For example, if the number of disjoint
sub-intervals in Ωt and Ωr are equal and the respective sub-intervals are of equal length, then
dSD(r) is the piecewise linear function connecting the points (m,dSD(r)), r = 0,Mt, · · · , r0,
where

dSD(r) =
1
Mt

(Lt|Ωt| − r)(Lr|Ωr| − r) (88)

Comparing with dMD(r) in (84), the multi-bounce diffuse channel achieves an Mt-fold better
diversity gain than the single-bounce diffuse channel in supporting a multiplexing gain which
is a multiple of Mt, as illustrated in Fig. 19.

Compared to Fig. 12, the impact of scattering mechanisms on performances is more
distinguishable. Two points are noteworthy
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• Randomness of channel matrices. Large antenna arrays have fine angular resolution,
and therefore are able to separate reflected paths finely and remove the randomness
from the aggregation of many paths6. However, the randomness in diffuse channels is
due to the aggregation of many paths within the scattering source. Even the antenna
array has very good angular resolution, it still cannot remove the inherent randomness.

• Space-time code design. The trade-off curves are no longer identical unlike those in the
small-array regime. Recent space-time code design mainly focuses on the i.i.d. fading
channel (equivalent to the multi-bounce diffuse channel). However, real channels are
more specular and single-bounce diffuse in nature7. Understanding these differences
on trade-offs, sheds light on designing more efficient space-time coding schemes that
can adapt to the physical environment. Imagine if we design a space-time code that
is optimal for the i.i.d fading channel and use it in a single-bounce diffuse channel,
the link reliability can be much worse, particularly for large systems.

Finally, it is possible to turn a single-bounce diffuse channel into a multi-bounce diffuse
channel by increasing the antenna spacing. This plausibly increases the diversity gain and
validate the performance analyses based on the i.i.d. fading model. However, when the
array length is fixed, using less antennas decreases the spatial degrees of freedom. The
resulting trade-off curve is upper-bounded by the curve given in Theorem 5.6. That is, the
transceiver is not utilizing all the available channel resources given by nature in order to
justify the i.i.d. fading model.

5.7 Range-Multiplexing-Diversity Trade-offs

A multiple-antenna system can improve the propagation range, data rate, and probability
of error. All these benefits can be achieved simultaneously but there is a trade-off among
them. The following corollary summaries this trade-off in terms of the channel angular
bandwidth and the underlying scattering mechanisms. To achieve a propagation range of
l, the maximum multiplexing gain available is r0(l) which depends on the channel angular
bandwidth, |Ωt| and |Ωr|. Now, one can sacrifice some of this multiplexing gain to obtain
certain diversity gain where this trading depends on the underlying scattering mechanisms.
Fig. 20 gives an example of this trade-off where it succinctly illustrates the impact of
scattering on the achievable performance of a multiple-antenna system.

Corollary 5.7. Suppose Ωt and Ωr are known a priori at the transmitter and the receiver
respectively, and the channel matrix is known at the receiver but unknown at the transmitter.

6As another example, the familiar r−4 path loss for a channel with a direct path and a ground reflected

path [19] can be resolved back to the path loss of r−2 if the antenna array is large enough to separate the

two paths.
7From channel measurements, typical path-loss exponent is between 2 and 4.

41



0 1 2 3 4
0

2

4

6

8

10

12

14

16

Multiplexing gain, r

D
iv

er
si

ty
 g

ai
n,

 d
(r
)

Multi-bounce diffuse
Single-bounce diffuse

5

l = l0

l = 2l0

Figure 20: Illustrates the multiplexing-diversity-range trade-offs when Mt = Mr = 2 and
Nt,i = Nr,j = 2 at l = l0 and 2l0.

• Multi-bounce diffuse channels. The trade-off curve dMD(l, r) is given by a piecewise
linear function connecting the points

dMD(l, r) =
(Lt|Ωt0|

l
− r
)(Lr|Ωr0|

l
− r
)
, r = 0, · · · ,min

{Lt|Ωt0|
l

,
Lr|Ωr0|

l

}
(89)

• Single-bounce diffuse channels. The trade-off curve dSD(r) is

dSD(l, r) = d1(l, r)⊕ d2(l, r)⊕ · · · ⊕ dMt(l, r) (90)

where di(l, r) is a piecewise linear function connecting the points

di(l, r) =
(Lt|Ωt0,i|

l
−r
)(Lr|Ωr0,i|

l
−r
)
, r = 0, · · · ,min

{Lt|Ωt0,i|
l

,
Lr|Ωr0,i|

l

}
(91)

where |Ωt0,i| and |Ωr0,i| are the respective transmit and receive angular bandwidth
subtended by the ith scattering cluster at the reference range l0.

6 Finite-Array Regime

The finite-array regime is in between the small-array and large-array regimes. Insights
developed in those two regimes now guide the intuition for the finite-array regime where
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Figure 21: Plots the distribution of σt,m for Lt = 4 and different |Ωt| = 0.6.

heuristic reasonings will be developed. We will focus the discussion on the maximum spatial
multiplexing gain and diversity gain.

6.1 Spatial Multiplexing Gain

The integral kernels in (30) have infinite number of non-zero singular values, σt,n and
σr,n. At the large-array regime, the transition between good and bad singular values is so
abrupt that the significant singular values are mostly the same and approximately equal
to 1. The distribution of σt,m and that of σr,n depend on the respective measure |Ωt|
and |Ωr|. At the finite-array regime, however, the transition is leveled off (see Fig. 8)
and those distributions now depend on the angular positions of scattering clusters, that
is, the set Ωt and Ωr. To gain some intuitions, consider a multiple-antenna system with
Lt = 4 (1/Lt = 0.25) in physical environments having 2 scattering clusters of equal angular
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bandwidth, |Ωt,1| = |Ωt,2| = 0.3 but different angular separation8. In the first scenario, the
clusters are the farthest apart. Fig. 21(a) shows that there are two strong singular values
and two weak ones. Each cluster contributes a strong one. Furthermore, since |Ωt,m| > 1/Lt

and the transmit cluster separation is much greater than 1/Lt, each cluster contributes an
additional weaker one, as pictured in Fig. 22. This continues to apply even when the
respective cluster separations are comparable to 1/Lt as in the second scenario and plotted
in Fig. 21(b). Finally, when the clusters are close to each other, there are 2 strong singular
values and a weak one as plotted in Fig. 21(c) and 21(d). Now the antenna arrays cannot
distinguish those two clusters and perceive them as a single large cluster, and therefore the
number of significant singular values can be approximated by

⌈
Lt|Ωt|

⌉
which coincides with

the result in the large-array regime. Fig. 23 gives a pictorial description. Two points are
summarized:

• The disjointness among scattering clusters introduces more spreading in the distribu-
tion of singular values, and provides more viable transmission modes.

• The closeness between scattering clusters hinders the antenna arrays to separate them,
and leads to the merging of scattering clusters. When the separation between any two
clusters is less than the angular resolution of the antenna array, they would be merged
as a single cluster.

Denote the angular intervals after merging as Ω̃t,i and Ω̃r,i, and the respective number
of them as M̃t and M̃r. Based on the above two observations, the maximum multiplexing
gain is approximated by

M̃t∑
i=1

min
{⌈

Lt|Ω̃t,i|
⌉
,
⌈
Lr|Ω̃r,i|

⌉}
(92)

in both specular and single-bounce diffuse channels, and

min
{ M̃t∑

i=1

⌈
Lt|Ω̃t,i|

⌉
,
M̃r∑
i=1

⌈
Lt|Ω̃r,i|

⌉}
(93)

in the multi-bounce diffuse channel. Furthermore, the result in the multi-bounce diffuse
channel is lower bounded by its large-array-regime counterpart as

min
{ M̃t∑

i=1

⌈
Lt|Ω̃t,i|

⌉
,

M̃r∑
i=1

⌈
Lt|Ω̃r,i|

⌉} ≥ min
{
Lt|Ωt|, Lr|Ωr|

}
(94)

The last paragraph of Section 5.4 brings out that there is an addition of

1
cπ2

Mt ln(2πLt|Ωt|) ln SNRr

8The scenario is equivalent to transmit/receive arrays of length 24 cm at 5GHz and an average cluster

angle of 27◦.
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spatial degrees of freedom at high SNR where c equals 4 for specular channels, and is in
between 2 and 4 for multi-bounce diffuse channels. These additional degrees of freedom
increase with SNR, and are more apparent at the finite-array regime as the distribution
of singular values is less abrupt. As pointed out, there is an infinite number of non-zero
singular values. Whether these singular values corresponding to the spatial degrees of
freedom depends on the SNR. At high SNR, small singular values that are once ignored are
possible to contribute to the spatial degrees of freedom.

Fig. 24 plots the expected mutual information and the corresponding expected number
of spatial channels in a multi-bounce diffuse channel with 3 randomly placed scattering
clusters each of angle 30◦, and array length of 2 and 4. Three power allocation schemes are
investigated. The first scheme is guided by the result in the large-array regime where equal
power is poured over the first �Lt|Ωt|� spatial channels. The expected mutual information
is given by

I1 = EΩt,Hw

[
log det

(
I+

SNRr

�Lt|Ωt|� HwΣ2
tH

†
wΣ

2
t

)]
(95)

where Hw is a square matrix of dimension �Lt|Ωt|�. The second scheme is guided by (93)
where equal power is poured over the first

∑M̃t
i=1�Lt|Ω̃t,i|� (≥ �Lt|Ωt|�) spatial channels.

The expected mutual information is given by

I2 = EΩt,Hw

[
log det

(
I+

SNRr∑M̃t
i=1�Lt|Ω̃t,i|�

HwΣ2
tH

†
wΣ

2
t

)]
(96)

whereHw is now of dimension
∑M̃t

i=1�Lt|Ω̃t,i|�. In the third scheme, waterfalling is performed
over the singular values σt,m. This determines the number of spatial channels and the
amount of power poured over them. The expected mutual information is given by

I3 = EΩt,Hw

[
log det

(
I+ΣtHwΣtKΣtH†

wΣt

)]
(97)

where K is a diagonal matrix,
Kii = (µ− σ−2

t,i )+

and µ satisfies ∑
i

(µ− σ−2
t,i )+ = SNRr

Now, the dimension of Hw is the number of non-zero Kii. Finally, the upper bound shown
in the graphs is the ergodic capacity with full channel state information at both transmitter
and receiver. From the graphs, two points are observed:

• At moderate SNR (up to 30 dB), the proposed approximation in (93) for the finite-
array regime closely tracks the upper bound. The expected numbers of spatial chan-
nels guided by it are close to 4 for Lt = 2 and 6 for Lt = 4 wherease those guided by
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Figure 24: Plots the expected mutual information and the corresponding expected number
of spatial channels using three different power allocation schemes.
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Figure 25: Plots the distribution of σ2
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the result of the large-array regime are 3 and 5 respectively. Fig. 25 plots the distri-
bution of σ2

t,m. From which we notice that the approximations of 3 significant singular
values for Lt = 2 and 5 for Lt = 4 are too conservative. The proposed approximation
for the finite-array regime provides a better match and therefore the corresponding
expected mutual information is in close proximity to the upper bound.

• At high SNR (above 30 dB), the proposed approximation cannot track the upper
bound and the discrepancy increases with SNR. The scheme with waterfilling over
σt,m, however, continues to follow the upper bound closely. Note that the expected
number of spatial channels in the waterfilling scheme is greater than 2Lt. This re-
veals that a higher throughout is supported by packing more antennas beyond the
well-established half-wavelength antenna spacing criterion.

Now we attempt to elucidate the second observation from electromagnetic theory. In
principle, any radiating system can generate infinite number of transmission modes implying
that a small array can generate the same radiation pattern as a large array. However, in
order to generate the same radiation pattern, one needs to pack the same amount of moving
charges in both arrays. More power is needed to keep the charges in the small array than
in the large array9. Therefore, a higher SNR is required by a small array to generate
comparable number of spatial channels as a large array. Consequently, the number of
spatial channels should depend on the SNR as well.

9Since the amount of moving charges is the same, the small array has a higher current density than the

large array. A higher current density, in turn, builds up a larger radiation reaction, the self force to hold

charges together. Hence, the small array will have a poorer radiation efficiency because most of its energy

is consumed to hold the charges in a small volume instead of radiating out.
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Figure 26: Plots the contour of the variance of the channel matrix H for (left) specular and
(right) single-bounce diffuse channels with Θt = [25◦, 55◦] ∪ [80◦, 110◦] ∪ [145◦, 175◦] and
Lt = 4. The angular resolution of the model is 0.01 radian, compared to the 1/Lt = 0.25
radian of antenna arrays. In the specular channel, the phase lag of physical paths are
uniformly distributed and independent of each other.

6.2 Randomness of H

The finite angular resolution of antenna arrays in this regime brings in two issues:

• In specular channels, physical paths can no longer be resolved individually but are
perceived as aggregations. This introduces randomness on the diagonal elements of
the channel matrix.

• The basis functions η∗r,n(β)ηt,m(α) spread more over the entire Ωr × Ωt. This intro-
duces randomness on the off-diagonal elements of specular channels and the off-block-
diagonal submatrices of single-bounce diffuse channels. The variances would be less
than the respective diagonal elements and block-diagonal submatrices. Furthermore,
these random variables would be correlated to the respective diagonal counterparts.

The multi-bounce diffuse channels, however, are the same regardless of the size of antenna
arrays due to the property explained in (65).

Fig. 26 plots the variance of the channel matrices in an environment with 3 scattering
clusters at Θt = [25◦, 55◦] ∪ [80◦, 110◦] ∪ [145◦, 175◦] and Lt = 4. The dimension of the
matrices is given by (93) and equals to 6 in which �Lt|Ωt,1|� = 2, �Lt|Ωt,2|� = 3, and
�Lt|Ωt,3|� = 1. In the specular channel, the variance of diagonal elements is clustered
around three regions. The variance of off-diagonal elements is small and mostly negligible.
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In the single-bounce diffuse channels, the variances are concentrated along the diagonal as
well as the left lower corner and the right upper corner. Those two corners correspond to
projections onto the most optimal radiation patterns and reception patterns respectively.

Apparently, the finite angular resolution of antenna arrays would introduce more ran-
domness on the channel matrix. This would make a specular channel more like a single-
bounce diffuse channel and a single-bounce diffuse channel more like a multi-bounce diffuse
channel. In the extreme case, when the angular resolution is omni-directional as in the
small-array regime, all three channels have the same randomness.

7 A Two-Stage Transceiver Architecture

The impact of scattering has two spatial scales. In the coarse scale, the total widths of
cluster intervals, |Ωt| and |Ωr|, determine the dimension of the channel matrix while the
detail location of those intervals, Ωt and Ωr, defines the set of basis functions that gives the
most compact view of the channel. In the fine scale, the underlying scattering mechanism
affects the scattering response within Ωr × Ωt which in turn affects the magnitude and
randomness of the channel matrix. This hierarchical understanding of scattering suggests a
two-stage transceiver architecture for the channel estimation of multiple-antenna systems.

The first stage accounts for the coarse-scale scattering and estimates the amount of
channel resources along the spatial dimension supported by the physical environment. It
involves the following sequence of operations at the transceiver:

• The receiver estimates Ωt and Ωr, and sends the estimated Ωt back to the transmitter.

• Both the transmitter and the receiver then compute the set of optimal radiation
patterns and reception patterns respectively as well as the available number of spatial
degrees of freedom.

The second stage accounts for the fine-scale scattering and zooms in on the available channel
resources along the spatial dimension. It involves the following operations:

• The receiver estimates the channel matrix viewed over the basis determined at the
first stage, and learns the randomness of the channel matrix.

• The receiver then updates the transmitter about this randomness. Based on which
the transmitter adjusts the space-time coding schemes used.

Fig. 27 shows the block diagram of the transceiver architecture.
The feedback involved is little. In the first stage, only the cluster boundaries are sent

back, that is, 2Mt real numbers. In the second stage, as little information as whether the
channel is specular, single-bounce diffuse, or multi-bounce diffuse, suffices. For wideband
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Figure 27: Block diagram of the two-stage transceiver architecture for the channel estima-
tion of multiple-antenna systems.

systems, the cluster boundaries and the underlying scattering mechanism are expected to be
more or less the same over the entire bandwidth. When multicarrier transmission is used,
the amount of feedback per subcarrier is negligible. In addition, the channel estimation at
the second stage is undertaking over an optimal basis, the complexity is therefore kept to
the minimum.

8 Conclusions

In this paper, we use a continuous-array model, and introduce a two-step approach to model
the scattering condition of channels in an array-independent but manageable description
of physical environments. Based on this model, we investigate the impact of scattering on
the spatial multiplexing gain, the diversity gain, as well as the trade-off among spatial mul-
tiplexing, diversity, and propagation range. The results help assess the available channel
resources from the scattering nature of physical environments. Whether a transceiver can
fully utilize these available resources, depends on the sophistication of the transceiver. Ob-
viously, the denser the antennas is, the closer is the performance approaching the optimum.
Of course, when antennas are putting too close to each other, there is mutual coupling
among them. In this case, we cannot ignore the element responses in (8). However, the dis-
tributions of the singular values σt,m and σr,n would reveal the optimal number of antennas.
Beyond which there will be diminishing return on performances.

Furthermore, we introduce a more direct approach to capture the propagation range
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into the performance studies. To reinforce this approach, Hypothesis 4.1 needs to be tested
by experiments. Finally, we use the outage formulation proposed in [25] to bring out
the effect of different scattering mechanisms on the diversity benefit of multiple-antenna
systems. Other formulations such as using the variance of mutual information [29] can be
substituted to capture the essence of underlying scattering mechanisms.

A Proof of Lemma 5.2

First, we solve µ:

SNRt =
∫ (

µ− 1
x2

)+
dGt(x) + o

(
ln(Lt|Ωt|)

)
= (µ− 1)Lt|Ωt|+ 1

π2
Mt ln(2πLt|Ωt|)

[
(µ− 1) ln(

√
µ− 1)− µ

2

−√µ +
1

2(1− εt)2
+

1
1− εt

]
+ o
(
ln(Lt|Ωt|)

)
= (µ− 1)Lt|Ωt|+ o

(
ln(Lt|Ωt|)

)
implying

µ = 1 +
SNRt

Lt|Ωt| + o(1)

as Lt|Ωt| → ∞. Then, CSP can be written as

CSP =
∫ 1−εt

1/
√
µ

log(x2µ) dGt(x) + o
(
ln(Lt|Ωt|)

)

= log µ

∫ 1−ε

1/
√
µ

dGt(x) + 2
∫ 1−ε

1/
√
µ
log x dGt(x) + o

(
ln(Lt|Ωt|)

)
The integral in the first term is

Lt|Ωt|+ 1
π2

Mt ln(2πLt|Ωt|) ln(
√

µ− 1)

and the integral in the second term is

1
π2 ln 2

Mt ln(2πLt|Ωt|)
∫ 1−εt

1/
√
µ

lnx

x
+

lnx

1− x
dx

=
1

π2 ln 2
Mt ln(2πLt|Ωt|)

[1
2

ln2(1− εt)− 1
8

ln2 µ + Li2(εt)− Li2(1 − 1/
√

µ)
]

As εt tends to 0 as Lt|Ωt| tends to ∞, the capacity can be written as

CSP =
[
Lt|Ωt|+ Mt ln(2πLt|Ωt|)f1(SNRt)

]
log µ + o

(
ln(Lt|Ωt|)

)
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as Lt|Ωt| → ∞, where

f1(SNRt) =
1
π2

[
ln(
√

µ− 1)− 1
4

lnµ− 2
ln 2

Li2(1− 1/
√

µ)/ log µ
]

=
1

4π2
ln

SNRt

Lt|Ωt| + o(ln SNRt)

as SNRt →∞.

B Proof of Lemma 5.3

The Ft,ε(x) can be expressed as

Ft,ε(x) =
Mt ln(2πLt|Ωt|)

π2Ḡt(ε)

(
ln

1− ε

ε
− ln

1− x

x

)
+ o
( ln(Lt|Ωt|)

Lt|Ωt|
)

Now, we have∫ 1

ε
log x dFt,ε(x) = −Mt ln(2πLt|Ωt|)

2π2Ḡt(ε) ln 2
[
ln2 ε + 2Li2(1− ε)

]
+ o
( ln(Lt|Ωt|)

Lt|Ωt|
)

which yields

CMD � Lt|Ωt| log SNRt

lν−1e
+

1
π2

Mt ln(2πLt|Ωt|)
[
log

SNRt

lν−1e
ln

1− ε

ε

− log ε ln ε− 2
ln 2

Li2(1− ε)
]
+ o
(
ln(Lt|Ωt|)

)
as Lt|Ωt| → ∞, for all ε ∈ (0, 1). Now, we pick

ε =
(√SNRt

lν−1e

)−1
(98)

and complete the proof.

C Proof of Lemma 5.4

Applying Lemma 5.1, we obtain

CMD ≤
∫ 1−εt

0
log
(
1 +

SNRt

lν−1
x
)
dG(x) + o

(
ln(Lt|Ωt|)

)
=

1
π2

Mt ln(2πLt|Ωt|)
∫ 1−εt

0

1
x(1− x)

log
(
1 +

SNRt

lν−1
x
)
dx + o

(
ln(Lt|Ωt|)

)
=

1
π2 ln 2

Mt ln(2πLt|Ωt|)
∫ 1−εt

0

1
x

ln
(
1 +

SNRt

lν−1
x
)

+
1

1− x
ln
(
1 +

SNRt

lν−1
x
)
dx

+ o
(
ln(Lt|Ωt|)

)
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The first integral is∫ 1−εt

0

1
x

ln
(
1 +

SNRt

lν−1
x
)
dx = −Li2

(
−SNRt

lν−1
(1− εt)

)

and the second integral is∫ 1−εt

0

1
1− x

ln
(
1 +

SNRt

lν−1
x
)
dx

=
π2Lt|Ωt|

Mt ln(2πLt|Ωt|) ln
(
1 +

SNRt

lν−1
(1− εt)

)
− ln
(
1 +

SNRt

lν−1
(1− εt)

)
ln

SNRt/l
ν−1(1− εt)

1 + SNRt/lν−1

− Li2
(1 + SNRt/l

ν−1(1− εt)
1 + SNRt/lν−1

)
+ Li2

( 1
1 + SNRt/lν−1

)

As εt approaches 0 for large Lt|Ωt| and

lim
SNRt→∞

−Li2(−SNRt/l
ν−1)

ln2(SNRt/lν−1)
=

1
2

the upper-bound can be expressed as

CMD ≤
[
Lt|Ωt|+ Mt ln(2πLt|Ωt|)f3(SNRt)

]
log
(
1 +

SNRt

lν−1

)
+ o
(
ln(Lt|Ωt|)

)
as Lt|Ωt| → ∞, where

f3(SNRt) =
1

2π2
ln

SNRt

lν−1
+ o(ln SNRt)

as SNRt →∞.

D Proof of Theorem 5.6

The channel matrix for the single-bounce diffuse channel is block diagonal and each diagonal
sub-block is an i.i.d. fading channel by itself. Suppose di(r) satisfy

lim
SNRr→∞

log P
[
det(I+ SNRr

Lt|Ωt,i|H
†
iHi) < SNRr

r
]

log SNRr
= −di(r)

for i = 1, · · · ,Mt. The next lemma gives dSD(r) in terms of di(r)’s.

Lemma D.1. The trade-off curve dSD(r) is

dSD(r) = d1(r)⊕ d2(r)⊕ · · · ⊕ dMt(r)

Proof. We follow the notation in [25] and use the symbol .= to denote

lim
SNRr→∞

log g(SNRr)
log2 SNRr

= b ⇐⇒ g(SNRr)
.= SNRr

b
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Then, di(r) satisfies

P
[
det(I+ SNRrH

†
iHi) < SNRr

r
] .= SNRr

−di(r)

for i = 1, · · · ,Mt. Let SNRr
θi = det(I + SNRrH

†
iHi) for i = 1, · · · ,Mt. The cdf of θi is

Fθi
(θ) = P (θi < θ) .= SNRr

−di(θ)

and thus, its pdf is

fθi
(θ) .=

d

dθ
SNRr

−di(θ) = SNRr
−di(θ) ln SNRr

d

dθ
di(θ)

.= SNRr
−di(θ)

ignoring the sign. Since the sub-blocks are independent, so

P

[ Mt∏
i=1

det
(
I+

SNRr

Lt|Ωt,i|H
†
iHi

)
< SNRr

r

]

.= P

[ Mt∏
i=1

det(I+ SNRrH
†
iHi) < SNRr

r

]

= P

( Mt∑
i=1

θi < r

)

= (Fθ1 ∗ fθ2 ∗ · · · ∗ fθMt
)(r)

=
∫ r

0

∫ θ2

0
· · ·
∫ θMt−1

0
Fθ1(r − θ2)fθ2(θ2 − θ3) · · · fθMt

(θMt) dθMt · · · dθ3 dθ2

=
∫ r

0

∫ θ2

0
· · ·
∫ θMt−1

0
SNRr

−
[
d1(m−θ2)+d2(θ2−θ3)+···+dMt (θMt )

]
dθMt · · · dθ3 dθ2

.= SNRr
−dSD(r)

where

dSD(r) = inf
0≤θ2≤r

0≤θ3≤θ2

...
0≤θMt≤θMt−1

[
d1(r − θ2) + d2(θ2 − θ3) + · · · + dMt−1(θMt−1 − θMt) + dMt(θMt)

]

Therefore, dSD(r) can be expressed as a series of min-plus convolution

dSD(r) = (d1 ⊕ d2 ⊕ · · · ⊕ dMt)(r)

Now, di(r)’s are decreasing and piecewise linear with end-points at (0, LtLr|Ωt,i||Ωr,i|)
and (min{Lt|Ωt,i|, Lr|Ωr,i|}, 0). Consequently, dSD(r) has the following property.
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Lemma D.2. The trade-off curve dSD(r) is obtained by putting end-to-end the different
linear pieces in di(r)’s, sorted by increasing slopes (or equivalently, decreasing negative
slopes).

Proof. It is sufficient to show that the statement holds for Mt = 2. Let d̃(r) denote the
claimed curve, and the slopes of d1(r) and d2(r) be 0 ≥ s1 ≥ s2 ≥ · · · ≥ sL, with the
corresponding length of projection onto the horizontal axis being α1, α2, · · · , αL where L =
min{Lt|Ωt,1|, Lr|Ωr,1|} + min{Lt|Ωt,2|, Lr|Ωr,2|}. Furthermore, let Sn be the set of index
of slopes belonging to dn(r), for n = 1, 2. Then, for r ∈ [L −∑l

i=1 αi, L −
∑l−1

i=1 αi

]
, the

claimed curve is

d̃(r) = −
l−1∑
i=1

siαi − sl

(
L−

l−1∑
i=1

αi − r

)

Assume without loss of generality, l ∈ S2. Now we will show that when r = L−∑l−1
i=1 αi−∆

for some ∆ ∈ [0, αl),

d1(u) + d2(r − u) ≥ d1(a) + d2(b), ∀u ∈ [0, r] (99)

where

a = min{Lt|Ωt,1|, Lr|Ωr,1|} −
∑

1≤i≤l−1
i∈S1

αi

b = min{Lt|Ωt,2|, Lr|Ωr,2|} −
∑

1≤i≤l−1
i∈S2

αi −∆

1◦ u ≤ a

As dn(r)’s are decreasing and piecewise linear,

d1(u)− d1(a) ≥ −sl(a− u)

Note that a + b = r and hence r − u ≥ b. Thus,

d2(b)− d2(r − u) ≤ −sl(r − u− b) = −sl(a− u)

Combining both inequalities gives the desired result.

2◦ u > a

Similarly, we have

d1(a)− d1(u) ≤ −sl(u− a)

d2(r − u)− d2(b) ≥ −sl(b− r + u) = −sl(u− a)

Combining them gives the desired result as well.
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Back to (99), it can be expressed as

d1(u) + d2(r − u) ≥ d1(a) + d2(b)

= −
∑

1≤i≤l−1
i∈S1

siαi −
∑

1≤i≤l−1
i∈S2

siαi − sl∆

= −
l−1∑
i=1

siαi − sl

(
L−

l−1∑
i=1

αi − r

)

= d̃(r)

for all u ∈ [0, r]. Since dSD(r) is the infimum of the sum on the left over all u from 0 to r,
so it coincides with the claimed curve on the right.
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