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ABSTRACT 

Daily living activity monitoring is important for early detection of 
the onset of many diseases and for improving quality of life 
especially in elderly. A wireless wearable network of inertial 
sensor nodes can be used to observe daily motions. Continuous 
stream of data generated by these sensor networks can be used to 
recognize the movements of interest. Dynamic Time Warping 
(DTW) is a widely used signal processing method for time-series 
pattern matching because of its robustness to variations in time 
and speed as opposed to other template matching methods. 
Despite this flexibility, for the application of activity recognition, 
DTW can only find the similarity between the template of a 
movement and the incoming samples, when the location and 
orientation of the sensor remains unchanged. Due to this 
restriction, small sensor misplacements can lead to a decrease in 
the classification accuracy. In this work, we adopt DTW distance 
as a feature for real-time detection of human daily activities like 
sit to stand in the presence of sensor misplacement. To measure 
this performance of DTW, we need to create a large number of 
sensor configurations while the sensors are rotated or misplaced. 
Creating a large number of closely spaced sensors is impractical. 
To address this problem, we use the marker based optical motion 
capture system and generate simulated inertial sensor data for 
different locations and orientations on the body. We study the 
performance of the DTW under these conditions to determine the 
worst-case sensor location variations that the algorithm can 
accommodate. 
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1. INTRODUCTION 
Human-activity recognition has become a task of high interest 
within the field, especially for medical, military, and security 
applications. For instance, patients with diabetes, obesity, or heart 
diseases are often required to follow a well defined exercise 
routine as part of their treatment [1] [2]. Therefore, recognizing 
activities such as walking, running, or cycling becomes quite 
useful to provide feedback to the caregiver about the patient’s 

behavior. A continuous stream of data in particular is a sequence 
of real numbers generated naturally in many applications, such as 
real-time network measurements, medical devices, sensor 
networks, and manufacturing processes. Matching patterns in 
continuous data streams is important for monitoring and mining 
stream data [3]. For example, if the real-time stream of data from 
the electrocardiogram is found similar to a pattern of ischemia, the 
physician can be alerted for assistance [4]. 

 
Figure 1: (a) Euclidean distance (b) DTW distance 

Various signal processing and classification techniques are 
employed to achieve high accuracies in Human-Activity 
recognition such as hidden Markov model (HMM), principle 
component analysis (PCA), support vector machines (SVM), 
linear discriminant analysis (LDA), artificial neural networks 
(ANN) and dynamic time warping (DTW) [5]. In this paper, we 
focus on DTW. 
Euclidean distance is a traditionally used technique to measure the 
similarity between two sequences [6]. However, a more robust 
technique is needed that allows an elastic shifting of the time axis, 
to hold valid for sequences that are similar but out of phase(Figure 
(1)). Dynamic time warping (DTW) is a technique that allows 
variations in the time axis to be accommodated for a fair 
comparison between them [7].  
Dynamic time warping (DTW) is an algorithm for measuring the 
similarity between two sequences which may vary in their time or 
speed. For instance, similarities in walking patterns can be 
detected, even if the person was walking slowly or if he or she 
were walking more quickly. DTW has been applied to video and 
audio signal processing and indeed to any data which can be 
turned into a time-series representation. A well-known application 
for DTW to cope with speed variations is automatic speech 
recognition. DTW is also employed in Human-Activity 
recognition for pattern matching of a previously stored template 
of a data stream from a body-worn sensor corresponding to a 
movement and the real-time incoming sample data [8]. However, 
DTW has a disadvantage that in order to have a precise match, the 
position and orientation of the sensor when the template of 
movement was recorded should be the same when using it in real-
time detection, which might be difficult to retain. Body-worn 
sensors might be slightly misplaced or accidentally moved. In this 
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paper, we attempt to study the performance of DTW under the 
misplaced sensor stream of data. For determining the acceleration 
values from all possible misplacements, we need closely spaced 
infinite number of sensors placed on the body which is practically 
very difficult. Creating all different configurations and the 
experimental study associated with it can be tedious. To facilitate 
this, we make use of an optical motion capture to create a human 
skeleton model and reconstruct the simulated inertial 
measurements values which can be manipulated to produce the 
equivalent of misplaced or disorientated sensor. 
The rest of the paper is organized as follows: In Section 2 we 
review the related works and discuss the Dynamic Time Warping 
Algorithms. In Section 3, we introduce the system components 
and the generation of accelerations from motion capture and its 
validity. We introduce the methods to generate the shift in 
orientations and translations in the sensor data in Section 4. In 
Section 5, we provide the results of experiment. Section 6 and 7 
gives a brief introduction to our future direction. 

2. BACKGROUND 
2.1 Related Work 
Dynamic Time Warping is used as a feature classification 
technique in variety of applications such as speech recognition 
[9], character recognition [10], etc. Researchers have employed 
methods like normalization of DTW, matching distance [1] for 
speech recognition or clustering algorithms to estimate high 
quality templates [11]. Normalization techniques cannot be 
utilized in human activity recognition as under sensor 
misplacement, the acceleration values are distributed among other 
axes by a factor that is dependent on the degree of misplacement. 
It is also difficult to employ correcting techniques to the templates 
in Human-Activity recognition where there are variations in the 
templates due to accidental misplacements of the sensor. These 
variations can be in the form of rotations or translations by an 
unknown factor which make them difficult to predict [12]. 
Therefore, we attempt to determine the boundary limits of 
misplacements and disorientations under which the DTW will 
perform with satisfactory results. 
2.2 Review of Dynamic Time Warping 
Suppose we have two time series, R and T, of length M and N, 
respectively, where 

 ,  (1) 

To align two sequences using DTW, we construct an n-by-m 
matrix where the (ith, jth) element of the matrix contains the 
distance between the two points ri and tj (i.e. d(ri, tj) = (ri – tj)2). 
As shown in Figure (2), each matrix element (i, j) corresponds to 
the alignment between the points ri and tj. A warping path W is a 
contiguous (in the sense that is stated below) set of matrix 
elements that defines a mapping between R and T. The kth element 
of W is defined as wk = (i, j)k. Therefore, we have 

W = w1,w2, . . .,wi, . . .,wk  max(m, n) ≤ K < m + n − 1 (2) 
The warping path is typically subject to several constraints. 
Boundary conditions: w1 = (1, 1) and wk = (m, n). This requires 
the warping path to start and finish in diagonally opposite corner 
cells of the matrix. 
Continuity: Given wk = (a, b), then wk-1 = (a , b ), where a-a  ≤ 1 
and b –b  ≤ 1. This constraint restricts the allowable steps in the 
warping path to the adjacent cells (including diagonally adjacent 
cells). 

 
Figure 2: An example of a DTW path 

Monotonicity: Given wk = (a, b), then wk-1 = (a , b ), where a –a  
≥ 0 and b –b  ≥ 0. This forces the points in W to be monotonically 
spaced in time. 
There are exponentially many warping paths that satisfy the above 
conditions. However, we are only interested in the path that 
minimizes the warping cost: 

 

 
(3) 

This path can be found using dynamic programming to evaluate 
the following recurrence, which defines the cumulative distance 
γ(i, j) as the distance d(i, j) found in the current cell and the 
minimum of the cumulative distances of the adjacent elements: 

 
(4) 

The Euclidean distance between two sequences can be seen as a 
special case of DTW where the kth element of W is constrained 
such that wk = (i, j)k and i = j = k. Note that it is only defined in the 
special case where the two sequences have the same length. The 
time and space complexity of DTW is O(nm). 

3. METHODOLOGY 
3.1 System Components 
Inertial Measurement Units: Figure 3 shows the sensor node used 
in the system. Each sensor node consists of commercially 
available Motiv TelosB with a custom designed sensor board. The 
sensor board consists of a tri-axial accelerometer and a bi-axial 
gyroscope and is powered by a rechargeable battery. Sensor nodes 
that are placed on the body sample the data at 100 Hz perform 
limited local computations and transmit the data wirelessly to a 
base-station. In our experiments, the base-station is a sensor node 
connected to a PC via the USB port. During the experiment, we 
also use a Logitech® camera to record the video of the movement 
trials. The video frames and data samples are recorded and 
synchronized in MATLAB®.  
Optical Motion Capture System: We use a commercial Vicon® 
system [13] that comes with eight cameras. Each camera consists 
of a distinct video camera, a strobe head unit, a suitable lens, an 
optical filter and cables. The Vicon® is supported by the Nexus 
1.7 software which works as the core motion capture and 
processing software. The Nexus software samples the data at 100 
Hz and measures the rotations and translations at each with 
respect to the predefined Vicon® axes, which later can be used to 
reconstruct the accelerations due to random movements.   



3.2 Data Collection 
The Vicon® markers are placed on the IMU locations on the 
body, as shown in Figure 3. A replica of the IMU is generated in 
Vicon-Nexus® which records the rotations in Euler angles and 
translations in the Vicon® axes. The IMU sensor data and 
Vicon® data is synchronized using the ViconDataStream® 
software development kit for MATLAB® by which we validate 
the reconstruction of accelerations to the actual IMU readings. 
For continuous stream of data from the Vicon®, all the markers 
placed on the body should be visible to at-least 4 out of the 8 
cameras present in the system, which restricts on the variety of 
movements that can be tested. We collected data on an average of 
20 trials by placing IMU on the right thigh, waist and ankle for the 
movements sit-to-stand, stand-to-sit, walking, turn right  and 
back, kneeling forward and back, turn left  and back with each 
movement being the target movement for each trial. 

 
Figure 3: (a) TelsoB mote (b) Placement of the motes 

By using the video file available, we annotate the data to its 
corresponding movement, with which we can generate the 
template file for a particular movement. These template files are 
later used for evaluating the DTW distance over the sample data. 
As these templates have a particular position and orientation, 
misplacement in the sensor position can lead to more error. 
For the sake of simplicity, we assume that the human limb is a 
perfect spherical cylinder. We induce variations in the position of 
the sensor by adding a constant rotation and translation factor in a 
particular axis. Due to this assumption, the regenerated 
accelerations lack the influence of muscle or tissue flexibility that 
is produced by any human limb when in motion. Therefore, the 
correlation between accelerations generated by the Vicon® and 
the IMU may be slightly less than the ideal cases.  

3.3 IMU data generation with motion-capture 
Let the rotation about the X, Y and Z axes be denoted as 

 respectively [14]. The rotation matrices ,  and  
with the Euler angles known in degrees are given as: 

  

 

 

 
 
 
(5) 

An orthogonal matrix producing a combined rotation effect 
corresponding to clockwise rotation with x-y-z convention is 
formed as: 

 (6) 

The translations are converted to accelerations by differentiating 
and then post-multiplied to the matrix R at each sample to provide 
the accelerations of the IMU replica in the IMU frame. The 
samples received from Vicon® carry noise and therefore the 
translations are needed to be smoothed which is done initially 
using a median filter before filtering it with a second order low-
pass filter to remove the spurious changes in the data collected.   
The sample at any instant is given by a six columns matrix 
including rotations in degrees and translations. The sample 
changes at any instant can be denoted by a space vector S(t): 

 

 

(7) 
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 (13) 

The computations show the conversion of translations in the 
Vicon® frame to IMU frame. The accelerations obtained in m/s2 
lack the gravity component. The influence of the gravity is 
determined by using the same rotation matrices obtained in 
Equation (7) and then subtracted to reconstruct the accelerations 
that are equivalent to IMU tri-axial accelerometer values. The 
negative sign in Equation (13) symbolizes the counteracting 
forces against gravity. Figure 4 shows a comparison between the 
IMU acceleration recordings and the reconstructed accelerations 
from the Vicon® or IMU replica.  

 
Figure 4: Comparison of accelerations along the X, Y, Z axis 
between IMU and reconstructed accelerations from Vicon® 
The angles obtained from Vicon® at each instant, need to be 
converted to the sensor (body) frame from the Vicon® (global) 
frame. 

 (14) 

With the x-y-z rotation convention the rotation matrix for the 
same are obtained by Equation (15) 
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R(t) = Rx(t) × Ry(t) × Rz(t) (15) 

Converting the combined rotation matrix from Vicon® (global) 
frame to sensor (body) frame, we can determine the local angles 

 

 

 

 
 
(16) 

Differentiating with respect to time, the angles are converted to 
obtain the angular velocities (gyroscope readings). 

 (17) 

 
(18) 

Figure 5 shows a comparison between the IMU gyroscope 
recordings and the reconstructed angular velocities from the 
Vicon® or IMU replica. 
 

 
Figure 5: Comparison of gyroscope along the X, Y axis 
between IMU and reconstructed angular velocities from 
Vicon® 
The two sensor values have a satisfactory correlation factor of 
0.84. The primary source of inconsistency is due to sporadic noise 
that can be well handled in DTW. 

4. GENERATION OF MISPLACEMENT 
The misplacement of the sensor can be due to change either in 
rotation or in translations. The pure translation is invoked in the 
sensor accelerations using backward transformations and pure 
rotation by post multiplying with constant angle rotation matrix. 

4.1 Orientation 
As shown if Figure 6, a sensor placed on the body can rotate along 
its own axis in any direction. Therefore, we generate the rotated 
acceleration values by post-multiplying the accelerations 
generated from optical motion capture by a constant angle rotation 
matrix, in the range of -90  to +90  along the X, Y and Z axis 
individually. The constant angle rotation matrix, denoted by 

, is generated by using the rotation matrices in Equation 
(5) along the respective axis. If there is a rotation along the z-axis 
by an angle , the equations will be of form 

 
(19) 

Using the total acceleration generated from Equation (13), we 
denote the final acceleration due to rotation by: 

 (20) 

When we obtain these disoriented acceleration values, using the 
original position templates we compute the DTW distance for 
these simulated rotated sample data. 
 

 
Figure 6: A space vector P showing the position and angles 
along Vicon® axis. Space vector P  denotes the shifted version 
of the original vector. 

 
Figure 7: Effect on the accelerations of Z-axis. 

4.2 Translation 
A sensor placed positioned on the body can have pure translations 
only along the vertical axis as in other direction will involve a 
combination of both translation and rotation along its own axis. If 
the sensor is supposed to be displaced along vertical axis, it is 
denoted by a vector  where  denotes the displacement 
along the vertical axis. The motion of this vector in the Vicon® 
co-ordinate system is determined by post-multiplying it to the 
rotation matrix R from Equation (6) at each sample. The vector 
position matrix at each instant is added to the translations in 
Equation (7) which produces the effect of displaced sensor 
position values in the Vicon® co-ordinate system. We then 
process these values to convert them into accelerations and use 
them as sample values for DTW processing. 
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The accelerations recorded from the sensor have a prominent 
gravity component and the actual accelerations due to human 
motions are very low. As illustrated in Figure 8, the translations 
do not produce significant changes in the values that the DTW can 
accommodate. 

 
Figure 8: Effects of translation on accelerations of Z-axis      
Using the results from the translated and rotated data, we try to 
determine the range of misplaced sensor locations that the DTW 
can accommodate for a movement. 
5. RESULTS 
The acceleration values from the sensor are dependent on the 
subject performing the motion. Therefore, acceleration values 
from two different subjects might be dissimilar from each other. 
For investigating the effects of sensor misplacement, we need to 
avoid the variances caused by using templates from different 
subjects. Therefore in this study, we primarily focus on a single-
subject scenario and sensor misplacements. With the sensor 
devices placed on the body along with reflective markers, we 
perform the set of movements. 
We make the use of the simulated sensor data from the various 
body positions to establish threshold limits for the detection of 
each of the target movements. With the help of the Vicon® 
system, we generate 20 data sets of simulated sensor values for 
each of the target movements that we randomly divide into two 
equal parts: one for training and the other for testing. Using the 
training templates and data sets, we compute the DTW distance 
values for all the recorded movements. We determine the closest 
non-target movement to each target movement. To differentiate 
between these two movements, we need a threshold distance 
value, served as the margin to ensure the separability of target and 
non-target movements. 
Figure 9 shows the distribution of the DTW distance values for 
thigh sensor with sit-to-stand movement as the target movement. 

We can determine the walking to be the closest non-target 
movement to sit-to-stand movement. 

 
Figure 9: DTW distance distribution for sit-to-stand 
movement template for thigh sensor compared to various non-
target movements 

 
Figure 10: DTW distance distribution for kneeling movement 
template for ankle sensor compared to various non-target 
movements 

 
Figure 11: DTW distance distribution for kneeling movement 
template for ankle sensor compared to various non-target 
movements 
We determine similar plots of the DTW distance values for each 
of the target movement and its closest non-target movement. 
Figure 10 shows the distribution of the DTW distance values for 
the kneeling movement with the ankle sensor and Figure 11 for 
turn right . Figure 12 is the DTW distance distribution for the 
kneeling movement with the waist sensor. 
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Figure 12: DTW distance distribution for turn right 

template movement for thigh sensor compared to various 
non-target movements 
Having established a threshold on the DTW distance values for 
Sit-to-Stand movement, using the testing data, we check the 
robustness of the algorithm. The established DTW threshold 
distance misclassifies the walking movement as sit-to-stand on 
three instances and sit-to-stand as walking on one instance giving 
an accuracy of 98% where we choose 100 maximum DTW 
distances (worst-case) for target movement and 100 minimum 
DTW distances (best-case) for non-target movement. Figure 13 
shows the comparison of the sit-to-stand and walking DTW 
distance values for thigh sensor with the horizontal line denoting 
the threshold for target movement. Figure 14 shows the 
comparison of kneeling and walking distance values for the waist 
sensor.  
In the similar fashion, we obtain the threshold value for detection 
of each of the target movements. 
Orientation: The sensor on the body has the freedom to be rotated 
in two axes, though for the purpose of analysis, we try and learn 
the impact of sensor misplacement in all the three axes. For 
generating the hypothetical misplaced IMU acceleration values, 
we induce a constant degree of rotation along the axes in the 
original position. We achieve these misplaced sensor accelerations 
by rotating it from a range of -90  to +90  in steps of 2 degrees 
and for each step evaluate the performance of DTW. With the 
same threshold limit we used for the testing data, we perform the 
DTW comparison between the testing templates for target 
movement and the misplaced sensor accelerations. The DTW 
distance is computed on 80 misplaced sit-to-stand trials for each 
degree of rotation and their accuracies are measured.   
Accuracy is defined as the ratio of correctly classified rotated 
target movements to the total number of target movements. Figure 
15 shows the influence of the sensor rotation along the X, Y and Z 
axes on the accuracy of the DTW distance values for sit-to-stand 
movement for the thigh sensor. 
Figure 16 and Figure 17 show the effects of the sensor rotations 
on the accuracy for detection of kneeling and turn left  
movements, respectively. We obtain similar plots for the 
performance of sensor disorientation on the DTW based 
gyroscope evaluations. Figure 19 and Figure 20 show the 
performance of the gyroscope in terms of percent accuracy for the 
detection of sit-to-stand and kneeling movements.  

 
Figure 13: Comparison between Sit-to-Stand and Walking 
DTW distances for thigh sensor. The dotted horizontal line 
denotes the threshold. 

 
Figure 14: Comparison between kneeling and Walking DTW 
distances for waist sensor. The dotted horizontal line denotes 
the threshold. 
 

 
Figure 15: Accuracy against degree of rotation for thigh 
sensor for detection of sit-to-stand movement 
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Figure 16: Accuracy against degree of rotation for ankle 
sensor for detection of kneeling movement 
 

 
Figure 17: Accuracy against degree of rotation for waist 
sensor for detection of turn left movement 
 

 
Figure 18: Accuracy against degree of rotation for waist 
sensor for detection of stand to sit movement 

 

 
Figure 19: Accuracy against degree of rotation for thigh 
sensor (gyroscope) for detection of sit-to-stand movement 
 

 
Figure 20: Accuracy against degree of rotation for waist 
sensor (gyroscope) for detection of kneeling movement 
 
Translation: The accelerations from the accelerometers are the 
results of both motions and the counteracting forces against the 
gravity. In particular, for wearable computing applications, 
acceleration changes are primarily resulted by the gravity rather 
than the motion itself. Provided that the body segment on which 
the accelerometer is placed is relatively rigid, and the distance of 
the accelerometers from the rotation center of the body is not 
severely changed, the effects of gravity forces will not be affected. 
Therefore, a displacement or pure translations along the vertical 
axis should not have drastic effects on the measured accelerations 
which we confirmed from our conducted experiments. The DTW 
distance values for these purely translated sensor accelerations 
gives 99.9% accuracy for a range of -20cm to 20cm displacement 
along the vertical axis with only one misclassified movement. 
Figure 21 confirms that pure translation along the vertical axis 
does not have drastic impacts on the DTW computations. 
Assuming a human limb to be an almost spherical cylinder, there 
cannot be pure translations along other axes.  
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Figure 21: The tradeoff of rotation and translation along the 
vertical axis on the DTW distance value. 
 

6. CONCLUSION 
The tradeoff between the accuracy and the degrees of rotation 
confirms that -  to  misplacements in each axis can be 
tolerated and does not affect the signal processing adversely. A 
displacement in the form of pure translation of the sensor along 
the vertical axis can be accommodated in DTW. 
If the sensor is placed within these limits of sensor placement in 
which originally the template was generated, the movement is 
detected. If a match found, Dynamic Time Warping algorithm 
provides the added advantage of generating new templates (or 
training sets) that are specific to the new positioning of sensor. 
Therefore, the algorithm can learn and self-correct itself. By 
utilizing this, we can continue achieving higher accuracies with 
higher degrees of misplacement in sensor positions. 

7. FUTURE WORK 
For comparison between complex movements, we will take into 
consideration data from two or more sensors as sensor from one 
limb is not sufficient to differentiate between all movements. 
When using the changes in the accelerations from the thigh for the 
sit-to-stand movement the values can be similar to movements 
like kneeling-to-stand, so to differentiate between these two 
movements we need to analyze the results from two or more 
sensors placed at different locations on the body such as on the 
ankle. To study the impact of sensor misplacements for 
differentiating between such similar movements, we need to 
formulate an effective technique. We will further consider other 
sensors and their corresponding replica and simulated data such as 
magnetometers.  
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