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ABSTRACT

The performance of two popular approaches for off-line sig-

nature verification in terms of signature legibility and sig-

nature type is studied. We investigate experimentally if the

knowledge of letters, syllables or name instances can help in

the process of imitating a signature. Experimental results are

given on a sub-corpus of the MCYT signature database for

random and skilled forgeries. We use for our experiments

two machine experts, one based on global image analysis and

statistical distance measures, and the second based on local

image analysis and Hidden Markov Models. Verification re-

sults are reported in terms of Equal Error Rate (EER), False

Acceptance Rate (FAR) and False Rejection Rate (FRR). 1

1. INTRODUCTION

The handwritten signature is one of the most widely used in-

dividual authentication methods due to its acceptance in gov-

ernment, legal and commercial transactions as a method of

identity verification [1, 2]. As a result, a number of algo-

rithms have been proposed for automatic signature verifica-

tion [3]. This work is focused on off-line verification, a pat-

tern classification problem with a long history, involving the

discrimination of signatures written on a piece of paper [4].

It is worth noting that even professional forensic document

examiners perform a correct classification rate of only about

70%, confirming that this a challenging research area.

In this paper, we focus on occidental signatures, which

typically consist of connected text (i.e. name) and/or some

form of flourish. Sometimes, signatures only consist of a
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readable written name (e.g. American signatures). In other

cases, as frequently happens in European countries, signa-

tures may consist of only an elaborated flourish. In contrast

to occidental signatures, oriental signatures consist of inde-

pendent symbols. Examples of both oriental and occidental

signatures can be found in the First International Signature

Verification Competition [5].

Signature verification systems have been shown to be sen-

sitive to some extent to signature complexity [6]. Easy to

forge signatures result in increased False Acceptance Rate.

Signature variability also has an impact in the verification

rates attainable [7]. It can be hypothesized that these two

factors, complexity and variability, are related in some way

with signature legibility and signature type. Moreover, some

studies have been concerned with the ability of humans in rec-

ognizing handwritten script [8, 9]. Knowledge about letters,

syllables or name instances may help in the process of imitat-

ing a signature, which is not the case for an incomprehensible

set of strokes that, in principle, are not related to any linguistic

knowledge.

The main goal of this work is to evaluate the impact of sig-

nature legibility and signature type on the recognition rates of

two popular approaches to off-line signature verification. In

this paper, signature legibility and type are assessed by a hu-

man expert. Some examples are shown in Figs. 1 and 2. This

process is not unreasonable in relation to off-line signature

verification environments, where signature acquisition is typ-

ically performed by a human operator using a scanner or a

camera [4].

Two machine experts with different approaches for fea-

ture extraction are used in the work reported here, as de-

scribed in Section 2. The first is based on global image anal-

ysis and a minimum distance classifier as proposed in [10],

and further developed in [11]. The second is based on lo-

cal image analysis and left-to-right Hidden Markov Models

as used in [12] but with a local parameterization derived from

[10], and also detailed in [11]. The rest of this paper is orga-



NAME NO LEGIBLE OR NO NAME

MEDIUM LEGIBILITY

NAME CLEARLY LEGIBLE

Fig. 1. Signature examples with different degrees of name legibility (from top to bottom).

SIMPLE FLOURISH COMPLEX FLOURISH
NAME + SIMPLE 

FLOURISH

NAME + COMPLEX 

FLOURISH

Fig. 2. Signature examples of the four types encountered in the MCYT corpus (from left to right).

nized as follows. The experimental framework used, includ-

ing the database, protocol and results, is described in Sec-

tion 3. Some conclusions are finally drawn in Section 4.

2. MACHINE EXPERTS

In this section, the two machine experts used in this paper

are described. They exploit information at two different lev-

els: the first approach analyze the image in a holistic manner,

wheres the second approach is based on features extracted lo-

cally. Additional details can be found in [11].

2.1. Based on global information

Input signature images are first preprocessed according to the

following consecutive steps: binarization by global threshold-

ing of the histogram [13], morphological closing operation on

the binarized image [14], segmentation of the signature outer

traces, and normalization of the image size to a fixed width of

512 pixels while maintaining the aspect ratio (see Fig. 3 for an

example). Normalization of the image size is used to make the

proportions of different realizations of an individual sample to

be the same, whereas segmentation of the outer traces is car-

ried out because a signature boundary typically corresponds

to a flourish, which has high intra-user variability. For this

purpose, left and right height-wide blocks having all columns

with signature pixel count lower than threshold Tp and top

and bottom width-wide blocks having all rows with signature

pixel count lower than Tp are discarded.

A feature extraction stage is then performed, in which

slant directions of the signature strokes and those of the en-

velopes of the dilated signature images are extracted using

mathematical morphology operators [14], see Fig. 4. These

descriptors are used as features for recognition as proposed in

[10]. For slant direction extraction, the preprocessed signa-

ture image is eroded with 32 structuring elements, thus gen-

erating 32 eroded images. A slant direction feature sub-vector

of 32 components is then generated, where each component is

computed as the signature pixel count in each eroded image.

For envelope direction extraction, the preprocessed signature

image is successively dilated 5 times with each one of 6 lin-

ear structuring elements, thus generating 5×6 dilated images.

An envelope direction feature sub-vector of 5×6 components

is then generated, where each component is computed as the



Fig. 3. Preprocessing stage performed in the global expert.

signature pixel count in the difference image between suc-

cessive dilations. The preprocessed signature is finally pa-

rameterized as a vector o with 62 components by concatenat-

ing the slant and envelope feature sub-vectors. Each client

(enrolee) of the system is represented by a statistical model

λ = (µ, σ) which is estimated by using an enrolment set of

K parameterized signatures {o1, ..., oK}. The parameters µ

and σ denote mean and standard deviation vectors of the K

vectors {o1, ..., oK}. In the similarity computation stage, the

similarity score between a claimed model λ = (µ, σ) and a

parameterized test signature o is computed as the inverse of

the Mahalanobis distance [15].

2.2. Based on local information

In the preprocessing stage, images are first binarized and seg-

mented as described in Section 2.1. Next, a feature extraction

step is performed, in which slant directions and envelopes are

locally analyzed using the approach described in Section 2.1,

but applied to blocks. Preprocessed images are divided into

height-wide blocks of 64 pixels width with an overlapping

between adjacent blocks of 75%. The rightmost block is dis-

carded. A signature is then parameterized as a matrix O whose

columns are 62-tuples, each one corresponding to a block.

Each client of the system is represented by a Hidden Markov

Model λ (HMM) [16, 17], which is estimated by using an en-

rolment set of K parameterized signatures {O1, ..., OK}. A

left-to-right topology of four hidden states with no transition

skips between states is used in this work. Estimation of the

model is made by using the iterative Baum-Welch procedure

[16]. The similarity computation between a claimed model

λ and a parameterized test signature O is computed by using

the Viterbi algorithm [16, 17].

Legibility level Number of users

Non-legible 18 users (24%)

Medium 19 users (25,33%)

Legible 38 users (50,67%)

Type Number of users

Simple flourish 5 users (6,67%)

Complex flourish 13 users (17,33%)

Name + simple flourish 35 users (46,67%)

Name + complex flourish 22 users (29,33%)

Table 1. Distribution of users on the MCYT database based

on name legibility and signature type.

3. EXPERIMENTAL FRAMEWORK

3.1. Database and protocol

We have used for the experiments a subcorpus of the MCYT

bimodal database [18], which includes fingerprint and on-line

signature data of 330 contributors. In the case of the signature

data, skilled forgeries are also available. Imitators are pro-

vided the signature images of the client to be forged and, after

an initial training period, they are asked to imitate the shape

with natural dynamics. Signature data were acquired using an

inking pen and paper templates over a pen tablet (each signa-

ture is written within a 1.75 × 3.75 cm2 frame), so the sig-

nature images were available on paper. Paper templates of

75 signers (and their associated skilled forgeries) have been

digitized with a scanner at 600 dpi (dots per inch). The re-

sulting subcorpus comprises 2250 signature images, with 15
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Fig. 4. Feature extraction stage performed in the global expert. Structuring elements used for slant direction extraction (SE-1 to

SE-32) and envelope direction extraction (SE-33 to SE-38) are also shown. Origin of the element is indicated in gray. The area

of SE-1 to SE-32 is 10 pixels and the angle between successive elements is approximately 11 degrees. The areas of SE-33/34

and SE-35/36/37/38 are 7 and 4 pixels respectively.

genuine signatures and 15 forgeries per user (contributed by

3 different user-specific forgers). Examples can be seen in

Figs. 1 and 2.

The experimental protocol is as follows. The training set

comprises either 5 or 10 genuine signatures (depending on

the experiment under consideration). The remaining genuine

signatures are used for testing. For a specific target user,

casual impostor test scores are computed by using the gen-

uine samples available from all the remaining targets. Real

impostor test scores are computed by using the skilled forg-

eries of each target. As a result, we have 75 × 10 = 750 or

75×5 = 375 client similarity scores, 75×15 = 1, 125 impos-

tor scores from skilled forgeries, and 75× 74× 10 = 55, 500
or 75× 74× 5 = 27, 750 impostor scores from random forg-

eries.

In order to have an indication of the level of performance

with an ideal score alignment between users, results here are

based on using a posteriori user-dependent score normaliza-

tion [6]. The score normalization function is as follows s′ =
s − sλ(client, impostor), where s is the raw score com-

puted by the signature matcher, s′ is the normalized matching

score and sλ(client, impostor) is the user-dependent deci-

sion threshold at a selected point obtained from the genuine

and impostor histograms of user λ. In the work reported here,

we record verification results at three points: EER, FAR=10%
and FRR=10%.

3.2. Results

All signers in the database used for our experiments are man-

ually assigned a legibility label and a type label. One of three

different legibility labels is assigned: i) name not legible or no

name; ii) uncertain; and iii) name clearly legible. Examples

are shown in Fig. 1. Condition ii) is used in the case that some

characters of the name can be recognized but it is not possi-

ble to extract the name completely. In addition, four different

type labels are assigned based on the following criterion: a)
simple flourish; b) complex flourish; c) name + simple flour-

ish; and d) name + complex flourish. Examples are shown in

Fig. 2. It should be noted that signatures of class a) and b) are

those assigned to the non-legible class. Similarly, signatures

of class c) and d) are those assigned to the medium and legi-

ble classes. The distributions of signers in the database based

on name legibility and signature type are shown in Table 1.

Table 2 shows the system performance based on name leg-

ibility for the two machine experts. Regarding skilled forg-

eries, we find that the best results are always obtained for the

legible case. The non legible case results in no significant

improvement in most cases or even worse performance with

both machine experts. It could be expected that legible sig-

natures result in worse performance, since they are easier to

imitate, because imitators have some background knowledge

of what they have to imitate. However, it is observed that leg-

ible signatures provide better performance than non legible

ones. This may be due to the simplicity of most non-legible



EXPERT BASED ON GLOBAL INFORMATION

Skilled forgeries Random forgeries

TR sign point Non legible Medium Legible Overall Non legible Medium Legible Overall

EER 24.91 26.49 21.58 23.78 8.41 10.58 9.94 9.79

5 FA=10 FR=45.56 FR=44.74 FR=37.63 41.47 FR=11.11 FR=13.16 FR=15.53 13.73

FR=10 FA=39.81 FA=53.68 FA=36.49 40.44 FA=13.09 FA=19.06 FA=15.62 15.41

EER 21.11 25.17 20.55 22.13 6.57 9.47 5.97 7.26

10 FA=10 FR=38.89 FR=42.11 FR=36.32 38.13 FR=6.67 FR=7.89 FR=5.26 6.27

FR=10 FA=41.29 FA=47.72 FA=32.28 38.4 FA=11.46 FA=13.11 FA=8.50 10.32

EXPERT BASED ON LOCAL INFORMATION (HMM)

Skilled forgeries Random forgeries

TR sign point Non legible Medium Legible Overall Non legible Medium Legible Overall

EER 16.67 21.23 16.54 17.76 4.45 5.26 5.59 5.21

5 FA=10 FR=35.00 FR=39.47 FR=27.37 32.4 FR=1.67 FR=4.21 FR=6.58 4.8

FR=10 FA=24.82 FA=37.19 FA=22.11 26.84 FA=4.14 FA=4.58 FA=5.62 5.03

EER 16.67 20.00 10.61 14.44 1.51 2.28 3.27 2.74

10 FA=10 FR=23.33 FR=31.58 FR=18.42 22.93 FR=0.00 FR=1.05 FR=4.74 2.67

FR=10 FA=22.22 FA=32.63 FA=16.84 22.04 FA=1.81 FA=4.69 FA=4.35 3.82

Table 2. System performance based on name legibility. Results are given in %.

signatures.

Regarding random forgeries, we observe from Table 2

that for the expert based on global information, improvement

achieved depends on the number of signatures used for enrol-

ment. When using 5 signatures, the best results are obtained

for the non legible case, whereas when using 10 signatures,

the best results are for the legible signature case. On the other

hand, for the machine expert based on local information, the

best performance is always obtained for the non legible case.

System performance in relation to signature type is shown

in Table 3. Regarding skilled forgeries, Table 2 shows that

non legible signatures resulted in no significant improvement

with either expert. If we divide non legible signatures into

“simple flourish” and “complex flourish”, we observe that

complex flourish signatures result in improved performance.

This could be because simple flourish signatures are easier

to imitate than complex flourish ones. It is also worth not-

ing that signatures classified as “name + simple flourish” re-

sult in better performance with the global expert, but a worse

performance is obtained with the local expert. The opposite

happens with the “name + complex flourish” samples. This

could be because, since the local machine expert processes

signature images by blocks, it better deals with most com-

plex signatures such as the “name + complex flourish” ones.

In complex signatures, there are regions of the signature im-

age having various strokes crossing in several directions. The

global machine expert is not able to deal satisfactorily with

this case, since it processes the signature image as a whole.

Regarding random forgeries, we observe from Table 3 that

signatures classified as “name + complex flourish” always re-

sult in worse performance with both machine experts. Signa-

tures classified as “name + simple flourish” result in improved

performance with the global expert, but worse performance is

obtained with the local expert in most cases. The opposite

happens with the “complex flourish” signatures. Also inter-

estingly, simple flourish signatures always work well with the

local expert, but this is not the case with the global expert,

in which the performance becomes poorer as we increase the

number of signatures for enrolment.

4. CONCLUSIONS

In this paper, we evaluate the impact of signature legibility

and signature type on the recognition rates of off-line signa-

ture verification systems. For our experiments, we have used

two machine experts that exploit information at two different

levels. The first is based on global image analysis and a statis-

tical distance measure, whereas the second is based on local

image analysis and left-to-right Hidden Markov Models.

Regarding name legibility criteria, similar behaviour is

found for both machine experts for the skilled forgeries ex-

periments. The best results are always obtained for the legi-

ble case, whereas the non legible case results in no significant

improvement, or even worse performance.

It could be expected that legible signatures result in worse

performance for skilled forgeries, since they are easier to im-

itate, however this is not the case in our experiments. Charac-

teristics such as signature complexity or stability could have

clearer impact in the performance [7, 19] and this will be the

target of future work. In our experiments, we observe that

the most complex signatures (“name + complex flourish”) are

quite robust to skilled forgeries using the HMM system, al-

though they are not suitable to discriminate between different

signers (i.e. random forgeries). The opposite happens with

the most simple signatures (“simple flourish”).

Exploiting differences in performance of several matchers

with respect to a measurable criteria can be used to improve

verification rates, as shown in other biometric traits (e.g. see

[20]). For instance, the steps of the recognition system can

be adjusted or different matchers can be invoked based on the

measured criteria.



EXPERT BASED ON GLOBAL INFORMATION

Skilled forgeries Random forgeries

TR point Simple Complex Name + Name + Overall Simple Complex Name + Name + Overall

sign flourish flourish simple fl. complex fl. flourish flourish simple fl. complex fl.

EER 26.33 23.72 20.33 28.18 23.78 4.14 10.06 7.24 14.74 9.79

5 FA=10 FR=68 FR=36.92 FR=35.14 FR=47.73 FR=41.47 FR=0.00 FR=15.38 FR=9.71 FR=22.73 FR=13.73

FR=10 FA=37.33 FA=40.77 FA=36 FA=49.70 FA=40.44 FA=2.89 FA=17.06 FA=8.05 FA=29.21 FA=15.41

EER 20 21.12 22.32 22.41 22.13 7.97 6.94 5.70 9.53 7.26

10 FA=10 FR=48 FR=35.38 FR=36.57 FR=40.91 FR=38.13 FR=4.00 FR=7.69 FR=4.57 FR=8.64 FR=6.27

FR=10 FA=57.33 FA=34.87 FA=35.05 FA=42.12 FA=38.4 FA=19.43 FA=8.41 FA=8.68 FA=12.24 FA=10.32

EXPERT BASED ON LOCAL INFORMATION (HMM)

Skilled forgeries Random forgeries

TR point Simple Complex Name + Name + Overall Simple Complex Name + Name + Overall

sign flourish flourish simple fl. complex fl. flourish flourish simple fl. complex fl.

EER 25.67 13.85 21.57 12.58 17.76 4.00 4.67 4.86 6.41 5.21

5 FA=10 FR=52.00 FR=28.46 FR=36.29 FR=24.10 32.4 FR=2.00 FR=1.54 FR=5.14 FR=6.82 4.8

FR=10 FA=42.67 FA=18.72 FA=33.52 FA=17.58 26.84 FA=3.84 FA=4.36 FA=4.90 FA=6.10 5.03

EER 25.33 12.82 15.33 11.82 14.44 0.03 2.08 1.71 4.84 2.74

10 FA=10 FR=36.00 FR=18.46 FR=25.71 FR=18.18 22.93 FR=0.00 FR=0.00 FR=3.43 FR=3.64 2.67

FR=10 FA=29.33 FA=20.00 FA=22.48 FA=21.21 22.04 FA=0.22 FA=2.39 FA=2.72 FA=7.26 3.82

Table 3. System performance based on signature type. Results are given in %.
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