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Abstract

Clustering of web documents enables (semi-)automated
categorization, and facilitates certain types of search.
Any clustering method has to embed the documents
in a suitable similarity space. While several clustering
methods and the associated similarity measures have
been proposed in the past, there is no systematic com-
parative study of the impact of similarity metrics on
cluster quality, possibly because the popular cost crite-
ria do not readily translate across qualitatively differ-
ent metrics. We observe that in domains such as YA-
HOO that provide a categorization by human experts,
a useful criteria for comparisons across similarity met-
rics is indeed available. We then compare four pop-
ular similarity measures (Euclidean, cosine, Pearson
correlation and extended Jaccard) in conjunction with
several clustering techniques (random, self-organizing
feature map, hyper-graph partitioning, generalized k-
means, weighted graph partitioning), on high dimen-
sionai sparse data representing web documents. Per-
formance is measured against a human-imposed clas-
sification into news categories and industry categories.
We conduct a number of experiments and use t-tests
to assure statistical significance of results. Cosine and
extended Jaccard similarities emerge as the best mea-
sures to capture human categorization behavior, while
Euclidean performs poorest. Also, weighted graph par-
titioning approaches are clearly superior to all others.

Introduction
The increasing size and dynamic content of the world
wide web has created a need for automated organiza-
tion of web-pages. Document clusters can provide a
structure for organizing large bodies of text for efficient
browsing and searching. For this purpose, a web-page is
typically represented as a vector consisting of the suit-
ably normalized frequency counts of words or terms.
Each document contains only a small percentage of all
the words ever used in the web. If we consider each
document as a multi-dimensional vector and then try
to cluster documents based on their word contents, the
problem differs from classic clustering scenarios in sew
eral ways. Document clustering data is high dimen-
Copyright © 2000, American Association for Artificial In-
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sional, characterized by a highly sparse word-document
matrix with positive ordinal attribute values and a sig-
nificant amount of outliers.

Clustering has been widely studied in several disci-
plines, specially since the early 60’s (Hartigan 1975).
Some classic approaches include partitional methods
such as k-means, hierarchical agglomerative cluster-
ing, unsupervised Bayes, and soft, statistical mechanics
based techniques. Most classical techniques, and even
fairly recent ones proposed in the data mining com-
munity (CLARANS, DBSCAN, BIRCH, CLIQUE, CURE,
WAVECLUSTER etc. (Rastogi & Shim 1999)), are based
on distances between the samples in the original vec-
tor space. Thus they are faced with the "curse of di-
mensionality" and the associated sparsity issues, when
dealing with very high dimensional data. Indeed, often,
the performance of such clustering algorithms is demon-
strated only on illustrative 2-dimensional examples.

When documents are represented by a bag of words,
the resulting document-word matrix typically repre-
sents data in 1000+ dimensions. Several noteworthy
attempts have emerged to efficiently cluster documents
that are represented in such high dimensional space1. In
(Dhillon & Modha 1999), the authors present a spheri-
cal k-means algorithm for document clustering. Graph-
based clustering approaches, that attempt to avoid the
curse of dimensionality by transforming the problem
formulation include (Karypis, Hall, & Kumar 1999;
Boley et al. 1999; Strehl & Ghosh 2000). Note that
such methods use a variety of similarity (or distance)
measures, literature, and we are unaware of any solid
comparative study across different similarity measures.

In this paper, we first compare similarity measures
analytically and illustrate their semantics geometri-
cally. Secondly, we propose an experimental methodol-
ogy to compare high dimensional clusterings based on
mutual information, entropy, and purity. We conduct
a series of experiments on YAHOO news pages to eval-
uate the performance and cluster quality of four simi-

1 There is also substantial work on categorizing such doc-
uments. Here, since at least some of the documents have
labels, a variety of supervised or semi-supervised techniques
can be used (Mooney & Roy 1999; Yang 1999)
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Figure 1: Overview of a similarity based clustering
framework.

laxity measures (Euclidean, cosine, Pearson correlation,
extended Jaccard)in combination with five algorithms
(random, self-organizing feature map, hyper-graph par-
titioning, generalized k-means, weighted graph parti-
tioning).

Let n be the number of objects (web-pages) in the
data and d the number of features (words, terms) for
each sample xj with j E {1,... ,n}. The input data can
be represented by a d × n word-document matrix X with
the j-th column representing the sample xj. Hard clus-
tering 2 assigns a label Aj to each d-dimensional sample
x j, such that similar samples tend to get the same la-
bel. The number of distinct labels is k, the desired
number of clusters. In general the labels axe treated
as nominals with no inherent order, though in some
cases, such as self-organizing feature maps (SOFMS) 
top-down recursive graph-bisection, the labeling may
contain extra ordering information. Let C~ denote the
set of all objects in the g-th cluster (l E {1,...,k}),
with xj E C~ ¢~ Aj = g and n~ = ICel. Figure 1 gives an
overview of a batch clustering process from a set of raw
object descriptions A’ via the vector space description
X and similarity space description S to the cluster la-

bels A: (X e ~) -~ ( X e~-n C ]~dxn) .~ (S e Snx’~ =

[0,1] ~×~ c ~×~) -~ (k e N ={1,...,k}~). Th
next section briefly describes the compared algorithms.

Algorithms
Random Baseline
As a baseline for comparing algorithms, we use cluster-
ing labels drawn from a uniform random distribution
over the integers from 1 to k. The complexity of this
algorithm is O(n).

Self-organizing Feature Map
We use a 1-dimensional SOFM as proposed by Kohonen
(Kohonen 1995). To generate k clusters we use k cells
in a line topology and train the network for m = 5000
epochs or 10 minutes (whichever comes first). All ex-
periments are run on a dual processor 450 MHz Pentium
and for this clustering technique we use the SOFM im-
plementation in the MATLAB neural network tool-box.
The resulting network is subsequently used to generate
the label vector A from the index of the most activated

2In soft clustering, a record can belong to multiple clus-
ters with different degrees of "association" (Kumar & Ghosh
1999),

neuron for each sample. The complexity of this incre-
mental algorithm is O(n.d.k.m) and mostly determined
by the number of epochs m and samples n.

Generalized k-means

We also employed the well-known k-means algorithm
and three variations of it using non-Euclidean distance
measures. The k-means algorithm is an iterative al-
gorithm to minimize the least squares error criterion
(Duda & Hart 1973). A cluster Ct is represented 
its center #t, the mean of all samples in Ct. The cen-
ters are initialized with a random selection of k data
objects. Each sample is then labeled with the index i
of the nearest or most similar center. In the following
subsections we will describe four different semantics for
closeness or similarity s(xa,xb) of two objects xa and
Xb. Subsequent re-computing of the mean for each clus-
ter and re-assigning the cluster labels is iterated until
convergence to a fixed labeling after m iterations. The
complexity of this algorithm is O(n. d. k. m).

Weighted Graph Partitioning

The objects to be clustered can be viewed as a set of
vertices V. Two web-pages xa and Xb (or vertices va and
Vb) axe connected with an undirected edge of positive
weight s(xa, Xb), or (a, b, S(Xa, Xb)) ~.Thecardinal-
ity of the set of edges [C[ equals the number of non-zero
similarities between all pairs of samples. A set of edges
whose removal partitions a graph ~ = (V, £) into k pair-
wise disjoint sub-graphs 6t = (])t, St), is called an edge
separator. Our objective is to find such a separator with
a minimum sum of edge weights. While striving for the
minimum cut objective, the number of objects in each
cluster has to be kept approximately equal. We decided
to use OPOSSUM (Strehl & Ghosh 2000), which pro-
duces balanced (equal sized) clusters from the similar-
ity matrix using multi-level multi-constraint graph par-
titioning (Karypis & Kumax 1998). Balanced clusters
axe desirable because each cluster represents an equally
important share of the data. However, some natural
classes may not be equal size. By using a higher num-
ber of clusters we can account for multi-modal classes
(e.g., Xomproblem) and clusters can be merged at 
latter stage. The most expensive step in this O(n2 ¯ d)
technique is the computation of the n × n similarity
matrix. In document clustering, sparsity can be in-
duced by looking only at the v strongest edges or at
the subgraph induced by pruning all edges except the v
nearest-neighbors for each vertex. Sparsity makes this
approach feasible for large data-sets. In web-page clus-
tering spaxsity is induced by all non-Euclidean similar-
ities proposed in this paper, and may be increased by a
thresholding criterion.

Hyper-graph Partitioning

A hyper-graph is a graph whose edges can connect more
than two vertices (hyper-edges). The clustering prob-
lem is then formulated as a finding the minimum-cut of
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a hyper-graph. A minimum-cut is the removal of the set
of hyper-edges (with minimum edge weight) that sepa-
rates the hyper-graph into k unconnected components.
Again, an object xj maps to a vertex vj. Each word
(feature) maps to a hyper-edge connecting all vertices
with non-zero frequency count of this word. The weight
of this hyper-edge is chosen to be the total number of
occurrences in the data-set. Hence, the importance of
a hyper-edge during partitioning is proportional to the
occurrence of the corresponding word. The minimum-
cut of this hyper-graph into k unconnected components
gives the desired clustering. We employ the HMETIS
package for partitioning. An advantage of this ap-
proach is that the clustering problem can be mapped
to a graph problem without the explicit computation
of similarity, which makes this approach computation-
ally efficient with O(n. d. k) assuming a (close to) linear
performing hyper-graph partitioner. However, sample-
wise frequency information gets lost in this formulation
since there is only one weight associated with a hyper-
edge.

Similarity Measures

Metric Distances

The Minkowski distances Lp(xa, Xb) =

( 
_ Xi,bl,)1/"

~i=1 Ixi,a are the standard metrics
for geometrical problems. For p = 1 (p = 2) 
obtain the Manhattan (Euclidean) distance. For
Euclidean space, we chose to relate distances d
and similarities s using s = e-d2. Consequently,
we define Euclidean [0,1] normalized similarity as
s(E)(xa,xb) = e-llx~-xbll~ which has important
properties (as we will see in the discussion) that the
commonly adopted 8(Xa,Xb) -~ 1/(1 + ]lxa - xbl]2)
lacks.

Cosine Measure

Similarity can also be defined by the angle or cosine
of the angle between two vectors. The cosine measure

is given by s(C)(Xa,Xb) = x~xb and captures aIJx, ll2"llxbli2
scale invariant understanding of similarity. An even
stronger property is that the cosine similarity does not
depend on the length: s(c)(aXa, Xb) = S(C)(Xa, 
a > 0. This allows documents with the same com-
position, but different tOtals to be treated identically
which makes this the most popular measure for text
documents. Also, due to this property, samples can be
normalized to the unit sphere for more efficient process-
ing (Dhillon & Modha 1999).

Pearson Correlation

In collaborative filtering, correlation is often used to
predict a feature from a highly similar mentor group
of objects whose features are known. The [0, 1] nor-
malized Pearson correlation is defined as s(p) (xa, Xb) 

½
{ (x~--~,)*(Xb--~b) 1), where ~ denotes the average
\ llx.-~, ll2"llxb--Sbll2 +

feature value of x over all dimensions.

Extended Jaccard Similarity
The binary Jaccard coefficient measures the ratio of the
number of shared attributes (words) of xa AND Xb to
the number possessed by xa oR Xb. It is often used
in retail market-basket applications. Jaccard similarity
can be extended to continuous or discrete non-negative

X~Xb (Strehlfeatures using s(J)(xa, Xb) = IIx~II~+IlxblI~--X~Xb

& Ghosh 2000).

Discussion
Clearly, if clusters are to be meaningful, the similarity
measure should be invariant to transformations natu-
ral to the problem domain. Also, normalization may
strongly affect clustering in a positive or negative way.
The features have to be chosen carefully to be on com-
parable scales and similarity has to reflect the underly-
ing semantics for the given task.

Euclidean similarity is translation invariant but scale
variant while cosine is translation variant but scale in-
variant. The extended Jaccard has aspects of both
properties as illustrated in figure 2. Iso-similarity lines
at s = 0.25, 0.5 and 0.75 for points xl = (3 1)~t and
x2 = (1 2)t are shown for Euclidean, cosine, and the
extended Jaccard. For cosine similarity only the 4 (out
of 12) lines that are in the positive quadrant are plot-
ted. The dashed line marks the locus of equal similarity
to xl and x2 which always passes through the origin for
cosine and extended Jaccard similarity.

In Euclidean space, iso-similarities are concentric
hyper-spheres around the considered sample point (vec-
tor). Due to the finite range of similarity, the radius
decreases hyperbolically as s increases linearly. The
radius is constant for a given similarity regardless of
the center-point. The only location with similarity of
1 is the considered point itself and no location at fi-
nite distance has a similarity of 0 (no sparsity). Us-
ing the cosine measure renders the iso-similarities to
be hyper-cones all having their apex at the origin and
axis aligned with the given sample (vector). Locations
with similarity 1 are on the 1-dimensional sub-space
defined by this axis and the locus of points with sim-
ilarity 0 is the hyper-plane perpendicular to this axis.
For the extended Jaccard similarity, the iso-similarities
are non-concentric hyper-spheres. The only location
with s = 1 is the point itself. The hyper-sphere ra-
dius increases with the the distance of the considered
point from the origin so that longer vectors turn out
to be more tolerant in terms of similarity than smaller
vectors. Sphere radius also increases with similarity
and as s approaches 0 the radius becomes infinite. The
resulting iso-similarity surface is the hyper-plane per-
pendicular to the considered point through the origin.
Thus, for s ~ 0, extended Jaccard behaves like the co-
sine measure, and for s ~ 1, behaves like the Euclidean
distance.
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Figure 2: Properties of various similarity measures.
The extended Jaccard adopts the middle ground be-
tween Euclidean and cosine based similarity.

In traditional Euclidean k-means clustering the op-
timal cluster representative ee minimizes the sum of
squared error (SsE) criterion, i.e.

In the following, we proof how this convex distance-
based objective can be translated and extended to
similarity space. Consider the generalized objective
function f(ge, z) given a cluster gt and a representa-
tive z: f(Ce, z) = ~-’]x~eC d(xj,z) 2 = ~x~eCl[[xj-
zll~ ¯ Mapping from distances to similarities yields
f(ge,z) = ~-~x~ec,-log(s(xj,z)) , and therefore
f(ge, z) = - log 1-Ix~eC, s(xj, z) . Finally, we trans-.
form the objective using a strictly monotonic decreasing
function: Instead of minimizing f(Ce, z), we maximize

f’(ge, z) = e-Y(ct,"). Thus, in similarity space S, the
least squared error representative ee E ~" for a cluster
ge satisfies

ce = argmax H ’s(xj, z). (2)
z6~"

xj 6Ct

Using the concave evaluation function f’, we can ob-
tain optimal representatives for non-Euclidean simi-
larity spaces. The values of the evaluation function
f({xl,x2},z) are used to shade the background 
figure 2. In a maximum likelihood interpretation, we
.constructed the distance similarity transformation such
that p(zlce) ,~ s(z, ce). Consequently, we can use 
dual interpretations of probabilities in similarity space
and errors in distance space.

Experimental Evaluation
Methodology
We conducted experiments with all five algorithms, us-
ing four variants each for k-means and graph partition-
ing, yielding eleven techniques in total. Since clustering
is unsupervised, success is generally measured by a cost
criterion. Standard cost functions, such as the sum of
squared distances from cluster representative depend
on the the similarity (or distance) measure employed.
They cannot be used to compare techniques that use
different similarity measures. However, in situations

where the pages are categorized (labelled) by an exter-
nal source, there is a plausible way out! Given g cate-
gories (classes) Eh (h E {1, ...,g}, xj E Eh ¢~ ~j 
), we use the "true" classification labels ~ to evaluate
the performance. For evaluating a single cluster, we
use purity and entropy, while the entire clustering is
evaluated using mutual information.

Let n~h) denote the number of objects in cluster Ct
that are classified to be h as given by ~. Cluster gt’s
purity can be defined as

1 mhax(n~h))"
(3)h(P)(Ce)

Purity can be interpreted as the classification rate un-
der the assumption that all samples of a cluster are
predicted to be members of the actual dominant class
for that cluster. Alternatively, we also use [0, 1] entropy,
which is defined for a g class problem as

ACE)(C’) h=lZ - -~t l og \ ’~t] / log(g). (

Entropy is a more comprehensive measure than purity
since rather than just considering the number of objects
"in" and "not in" the most frequent class, it considers
the entire distribution.

While the above two criteria are suitable for measur-
ing a single cluster’s quality, they are biased to favor
smaller clusters. In fact, for both these criteria, the
globally optimal value is trivially reached when each
cluster is a single sample! Consequently, for the over-
all (not cluster-wise) performance evaluation, we use 
measure based on mutual information:

/ n~h ) 
,1 k g

= log(k . g)
£=1 h=l

(5)
Mutual information is a symmetric measure for the de-
gree of dependency between the clustering and the cate-
gorization. Unlike correlation, mutual information also
takes higher order dependencies into account. We use
the symmetric mutual information criterion because it
successfully captures how related the labeling and cate-
gorizations are without a bias towards smaller clusters.

Since these performance measures are affected by the
distribution of the data (e.g., a priori sizes), we nor-
realize the performance by that of the corresponding
random clustering, and interpret the resulting ratio as
"performance lift".

Findings on Industry Web-page Data
From the YAHOO industry web-page data (CMU Web
KB Project (Craven et al. 1998)), the following ten
industry sectors were selected: airline, computer
hardware, electronic instruments and controls,
forestry and wood products, gold and silver,
mobile homes and rvs, oil well services and



equipment, railroad, software and programming,
trucking. Each industry contributes about 10% of
the pages. The frequencies of 2896 different words
that are not in a standard English stop-list (e.g., a,
and, are, ... ) and do occur on average between 0.01
and 0.1 times per page, were extracted from HTML.
Word location was not considered. This data is far
less clean than e.g., the REUTERS data. Documents
vary significantly in length, some are in the wrong
category, same are out-dated or have little content
(e.g., are mostly images). Also, the hub pages that
YAHOO refers to are usually top-level branch pages.
These tend to have more similar bag-of-words content
across different classes (e.g., contact information,
search windows, welcome messages) than news content
oriented pages. Sample sizes of 50, 100, 200, 400, and
800 were used for clustering 966 documents from the
above 10 categories. The number of clusters k was
set to 20 and each setting was run 10 times (each
technique gets the same data) to capture the random
variation in results.

Figure 3 shows the results of the .550 experiments.
In table 1, the t-test results indicate that graph-
partitioning with cosine similarity performs best closely
followed by the other two non-Euclidean measures.
The second tier are non-Euclidean k-means varia-
tions. Hyper-graph partitioning performs reasonably
well. The SOFM and Euclidean similarity with k-means
as well as with graph partitioning, fail to capture the
relationships of the high dimensional data.

Random
10

SOFM

200 400 600 800 200 400 600 800
kM Eucl kM Cosl kM XJac

0 ¯ - $ ~ I a~ ,
,

mq3~’"
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0[~® ® ....... * ~¢i
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10
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0
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Figure 3: Performance lift (normalized to the random
baseline) on YAHOO industry web-page data of mutual
information A(M) for various sample sizes n. The bars
indicate -4-2 standard deviations.

Findings on News Web-pages
The 20 original YAHOO news categories in the data
are Business, Entertainment (no sub-category,

art, cable, culture, film, industry, media,
multimedia, music, online, people, review, stage,
television, variety), Health, Politics, Sports,
Technology and correspond to s = I,...,20, re-
spectively. The data is publicly available from
ftp://ftp, cs. tunn. edu/dept/users/boley/ (K1 se-
ries) and was used in (Boley et al. 1999). The raw
21839 x 2340 word-document matrix consists of the non-
normalized occurrence frequencies of stemmed words,
using Porter’s suffix stripping algorithm (Frakes 1992).
Pruning all words that occur less than 0.01 or more
than 0.10 times on average because they are insignifi-
cant (e.g., abdrazakof) or too generic (e.g., new), 
spectively, results in d = 2903.

Random

3

2

"~C v.

200 400 600 800
kM Eucl

3

2

0 200 4~ 6~ ~
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4

SOFM HQP
4 4

0 ’ ’ 0L
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200400600800 200400600800

GP Cosl GIp Corr
4 4

0 0

kM XJac

3
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0

GP XJac
4

0200 400 600 800 200 400 000 800 200 400 600 800

Figure 4: Performance lift (normalized to the random
baseline) on YAHOO news web-page data of mutual in-
formation A(M) for various sample sizes n. The bars
indicate =E2 standard deviations.

Sample sizes of 50, 100, 200, 400, and 800 were used
for clustering 2340 documents from the above 20 cat-
egories. The number of clusters k was set to 40 and
each setting was run 10 times (each technique gets the
same sub-sample) to capture the random variation in
results. We chose 40 clusters, two times the number
of categories, since this seemed to be the more natu-
ral number of clusters as indicated by preliminary runs
and visualization. Using a greater number of clusters
than classes can be viewed as allowing multi-modal dis-
tributions for each classes. For example, in an XOR like
problem, there are two classes, but four clusters. 550
clustering runs were conducted (figure 4) and the re-
sults were evaluated in 55 one-sided t-tests (table 2) for
the n = 800 sample level.

Non-Euclidean graph partitioning approaches work
best on the data. The top performing similarity mea-
sures are extended Jaccard and cosine. We initially ex-
pected cosine to perform better than the extended Jac-
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H A(M) ][ GPOosi ] GP Oorr OP XJac kM XJ~: kM Cosi kM Corr [ HOP ] SOFM [ kM Eucl OP Eucl ] Ram ore 
GP Cosi 0.192 0.998 0.997 1.OOO 1.OOO 1.OOO 1.0OO l.OOO 1.000 l.OOO l.O0O
GP Corr 0.177 0.957 0.967 0.968 l.OOO l.OOO l.OOO l.OOO l.O0O
GP XJac 0.177 0.956 0.958 1.000 1.000 l.OOO l.OOO l.OOO
kM XJac 0.168 1.000 1.000 1,000 1.000 1.000
kM Cosi 0.167 1.000 1.000 1.000 l.OO0 i .O00
kM Corr 0.167 1.OOO l.OOO 1.0OO l.OO0 i .O00

HGP 0,107 l.O00 1.000 1.000 1 .O00
SOFM 0.061 1.000 1.000 i .O00

kM Eucl 0.039 0.971 1 .OOO
GP Eucl 0.034 1 .O0O
Random 0.021

Table 1: Industry web-page data with n = 966, d = 2896, g = 6, and k = 20. Comparison of 10 trials of techniques
at 800 samples in terms of A(M) performance and t-test results (confidences below 0.950 are marked with ’-’).

[[ A(M) [[ GP XJac GP COSi ] GP Corr [ HOP kM XJac kM Corr kM Cosi I SOFM ] GP Eucl { Random [ kM Eucl ]
GP XJac 0.240 0.991 1.OO0 1.0OO 1.OO0 1.00O 1.000 1.0OO l.OO0 1.000
GP Cosi 0,240 0.990 1.0O0 1.0O0 1.O00 1.000 1.O00 1.0O0 l.O0O 1.000
GP Corr 0.234 1.OOO 1.000 1.OOO 1.000 1.000 1.0OO 1.OOO 1.000

HGP 0.185 0.982 0.988 1.000 1.00O 1.0O0 1 .OOO
kM XJac 0.184 0.992 0.994 1.OO0 1.000 1.0O0 1 .OOO
kM Corr 0.178 1.000 1.000 1.00O 1.OO0
kM Oosi 0.178 1.OO0 1.000 1.000 1.OOO

SOFM 0.150 1.000 1.000 1.000
GP Eucl 0.114 1.000 1.O0O
Random 0.066 1.000
kM Eucl 0.046

Table 2: News web-page data with n = 2340, d = 2903, g = 20, and k = 40. Comparison of 10 trials of techniques
at 800 samples in terms of A(M) performance and t-test results (confidences below 0.950 are marked with ’-’).

card and correlation due to its length invariance. The
middle ground viewpoint of extended Jaccard seems
to be successful in web-page as well as market-basket
applications. Correlation is only marginally worse in
terms of average performance. Hyper-graph partition-
ing is in the third tier, outperforming all generalized k-
means algorithms except for the extended Jaccard. All
Euclidean techniques including SOFM performed very
poorly. Surprisingly, SOFM and graph partitioning were
still able to do significantly better than random despite
the limited expressiveness of Euclidean similarity. Eu-
clidean k-means performed even worse than random in
terms of entropy and equivalent to random in terms of
purity (not shown).

Table 3 shows the results of the best performing
OPOSSUM clustering (Strehl & Ghosh 2000). For each
cluster the dominant category, its purity and entropy
are given along with the top three descriptive and dis-
criminative words. Descriptiveness is defined as occur-
rence frequency (a notion similar to singular item-set
support). Discriminative terms for a cluster have the
highest occurrence multipliers compared to the aver-
age document (similar to the notion of singular item-
set lift). Unlike the YAHOO categories, which vary
in size from 9 to 494 pages .(!), all our clusters are
well-balanced: each contains between 57 and 60 pages.
Health (ICH) turned out to be the category most clearly
identified. This could have been expected since its
language separates quite distinctively from the others.
However, our clustering is better than just matching the
YAHOO given labels, because distinguishes more pre-
cisely. For example there are detected sub-classes such
as HIV (C9) and genetics related (Clo) pages. Cluster

8, for example is described by our system through the
terms vaccin, strain, aatibiot indicating an infec-
tion related cluster. Similarly, in the Entertainment
people category, our algorithm identifies a cluster deal-
ing with Princess Diana’s car accident (C24) and funeral
(C25). Some smaller categories, such as Entertainment
no sub-category pages (ICE) have been absorbed into
more meaningful clusters. Most Technology pages are
found in cluster C12. Interestingly, documents from
the technology category have also been grouped with a
Entertainment-online dominated and a Business domi-
nated cluster indicating an overlap of topics. Cluster-
ings of this quality may be used to build a fully auto-
mated web-page categorization engine yielding cleaner
cut groups than currently seen.

Concluding Remarks

The key contribution of this work lies in providing a
framework for comparing several clustering approaches
across a variety of similarity spaces. The results indi-
cate that graph partitioning is better suited for word
frequency based clustering of web documents than gen-
eralized k-means, hyper-graph partitioning, and SOFM.
The search procedure implicit in graph partitioning
is far less local than the hill-climbing approach of k-
means. Moreover, it also provides a way to obtain bal-
anced clusters and exhibit a lower variance in results.

Metric distances such as Euclidean are not appro-
priate for high dimensional, sparse domains. Cosine,
correlation and extended Jaccard measures are success-
ful in capturing the similarities implicitly indicated by
manual categorizations as seen for example in YAHOO.
Acknowledgments: This research was supported in
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let I1c~ A(P)I A(E)] [top 3 descriptive terms [Itop 3 discriminative t .... [~!H 45.7655 0.60533 abus, label, addict mckinnei, grammer, addict
H 35.0955 0.08312 suicid, israel, jet broccoli, tractor, weizman

3 H 74.1455 0.19081 surgeri, arteri, kidnei vander, stent, pippen
4 H 88.14% 0.15943 fda, safeti, scare cartilag, latex, fda
5 H 100.00% 0 smok, smoker, lung nonsmok, clozapin, prostat
8 H 100.00% 0 weight, pregnanc, obes insulin, calor, heparin
? H 100.0055 0 breast, vitamin, diet miner, fatti, estrogen
8 H 100.0055 0 vaccin, strain, antibiot aureu, vancomycin, influenza
9 H 100.0055 0 hiv, depress, immun chemotherapi, hiv, radiosurgerl

10 H 100.0055 0 murat, Tenet, protein chromosom, murat, prion
11 o 60.0055 0.34318 apple, intel, electron gorman, ibm, compaq
12 T 63.7955 0.44922 java, advertis, sun nader, lucent, java
13 P 18.9755 {).81593 miami, fcc, contract panama, pirat, trump
14 P 56.9055 {3.47765 appeal, suprem, justic iraqi, nato, suprem
15 P 84.7555 {).20892 republican, committe, reform teamster, government, reno
16 S 88.1455 0.17215 smith, coach, marlin oriol, homer, marlin
17 S

i
70.1855 0.35809 goal, yard, pass touchdown, defenseman, yard

18 43.10~ 0.59554 usa, murdoch, channel binndi, viacom, pearson
19 B 73.33~ 0.28802 cent, quarter, revenu ahmanson, loral, gm
2O B 82.76~ 0.24307 dow, greenspan, rose dow, ~reenspan, treasuri

21 p 54.24% 0.52572 notabl, canadian, magazin stamp, notabl, polanski
22 f 26.32~ 0.73406 opera, bing, draw bing, pageant, lange
23 cu 46.5555 0.59758 bestsell, weekli, hardcov hardcov, paperback, bestsell
24 p 64.4155 0.4364~ crash, paparazzi, pari merced, stephan, manslaught
25 p 45.7655 0.59875 funer, royal, prince buckin~gham, srief, spencer
26 mu 22.4155 0.69697 meredith, classic, spice burgess, meredith, espn
27 t 23.7355 0.69376 radio, prodigi, station cybercast, prodigi, fo
28 mu 53.4555 0.39381 concert, band, stage bowie, ballad, solo
29 p 68.3355 0.29712 8howbiz, academi, south cape, showbiz, calendar
30 p 32.?655 0.63372 albert, stone, tour jagger, marv, forcibl

31 f 77.5955 0.30269 script, miramax, sequel sequel, bon, cameron
32 f 76.2755 0.30759 cast, shoot, opposit showtim, cast, duvall

33 r 43.1055 0.49547 tom, theater, writer cusack, selleck, rep
34 r 64.4155 0.37305 script, scot, tom nichola, horse, ira
35 r 93.2255 0.10628 camera, pic, sound julletL narr, costum
36 S 48.28% 0.48187 lapanes, se, hingi porsche, hingi, quarterfin
37 t 39.6655 0.51945 nomin, hbo, winner miniseri, hbo, kim
38 t 55.1755 0.42107 king, sitcom, dreamwork winfrei, dreamwork, oprah
39 f ?6.6755 0.29586 weekend, gross, movi ;ross, weekend, monti
40 t 70.8955 0.34018 household, timeslot, slot denot, timeslot, datelin

[ [B Eac cu f l m mm mu o p r s t v H P S T
19~44 ..... 8 .... 1 - - 1 .... 8
20 48 3 2 2 - - 2 - 1
23 - 1 1 3 27 5 1 2 1 I - 10 4 - 2
22 - -3- 8 15 1 1 - 4 3 7 6 3 5 - - - 1 -
31. - - - 2 - 45 1 - - - 1 2 - - 3 4 .....
32, - - - 3 - 45 ..... 2 - 2 4 3 .....
39 - 2 1 - - 46 5 - - 4 2
18 10 1 - 7 2 - 25 3 2 1 - - 4 3
26 - - 3 4 - 9 1 - 1 13 - 11 5 1 8 2
28.- 1 2 - 1 i - - - 31 - 3 19 ........
II, 8 ..... 2 - - - 36 ........ 14,
21 - -4- 6 6 2 - 4 2 82 1 - 2
24 - -2- 3 4 1 4 2 - 38 - - 5
25 - 1- 2 3 5 - - - 8 1 27 2 1 ? 2
29, .... i 7 - - - 11 - 41 ........ ,
30 - - 1 1 5 9 - 1 1 14 19 3 - 1 1 2
33 - -- 1 2 19 2 4 25 2 - 3
34 8 1 1 9 38- 1 1
35 2 1 - - - 1 - 55
27, .... 6 5 3 i 2 12 i0 3 - 2 14 i .... ,
37. - - - 6 - 16 1 - - 2 - 1 - 1 23 8 .....
38 - - 1 1 - 5 2 2 - - 32 15
40 - - - I - 5 i 5 41 5
1 3 - 1 1 1 1 1 2 3 10 - - 5 - 27 4
2 - 112 1 2 1 i 3 - 8 - - 6 - 2010 3 -
3, ................ 43 - 15 - ’
42 1 52 4 -
5 59 -
6 58 - - -
7,- ............... 59 ....
8, ................ 58 - - -,
9 60 -

10 58 -
13 3 2 2 5 3 1 8 2 ? 1 3 - 1 7 2 - 11 -
14 11 - 2 2 2 - 1 3 1 - - 3 - - 33 - -
15, 5 - - - 1 - 1 1 - - - 1 ..... 50 - - .

16 1 1 3 2 - - - 52 -
17 1 3 - 6 5 1 - - 1 - - 40 -
36 - - - 2 1 16 - - - 3 - 5 - - 1 2 - - 98 -
12. 7 - - 1 - - 1 2 1 1 4 1 - - 3 .... 37.

Table 3: Best clustering for k = 40 using OPOSSUM and extended Jaccard similarity on 2340 YAHOO news pages.
Cluster evaluations, their descriptive and discriminative terms (left) as well as the confusion matrix (right).
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