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Impact of Smart Metering Data Aggregation on

Distribution System State Estimation
Qipeng Chen, Dritan Kaleshi, Zhong Fan and Simon Armour

Abstract—Pseudo MV/LV (Medium/Low Voltage) transformer
loads are usually used as partial inputs to the Distribution System
State Estimation (DSSE) in MV systems. Such pseudo load can
be represented by the aggregation of Smart Metering (SM) data.
This follows the government restriction that Distribution Network
Operators (DNOs) can only use aggregated SM data. Therefore,
we assess the subsequent performance of DSSE, which shows the
impact of this restriction - it affects the voltage angle estimation
significantly. The possibilities for improving the DSSE accuracy
under this restriction are further studied. First, two strategies
that can potentially relax this restriction’s impact are studied: the
correlations among pseudo loads’ errors are taken into account
in the DSSE process; a power loss estimation method is proposed.
Second, the investments (i.e., either adding measurement devices
or increasing the original devices’ accuracy) for the satisfactory
DSSE results are assessed. All these are for addressing DNOs’
concerns on this restriction.

Index Terms—distribution system state estimation, medium
voltage power system, smart meter.

I. INTRODUCTION

BY 2020, the majority of EU and US consumers will have

their smart meters installed. A smart meter can measure

the active and reactive power of loads in every 30 minutes

[1]. This development will bring in huge amounts of data.

On one hand, stakeholders have shown their firm beliefs in

the power and usefulness of the data, but on the other hand,

they are keen to find out how to make the most out of the

data. Another concern about such Smart Metering (SM) data

is its impact on consumer privacy, so the governments have

proposed restrictions on stakeholders’ SM data access. For

Distribution Network Operators (DNOs), only aggregated SM

data is allowed to be accessed, so no individuals’ privacy

can be identified. More details are published in the UK

Data Access and Privacy Consultation Report [2] which has

followed wider EU and international research related to SM

data access and privacy [3], [4]. The above policy has also

been extended to a wider range of remote access meters which
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have similar functionality as smart meters [5]. This restriction

concerns stakeholders because it may limit the use of the

data in fulfilling their obligations. DNOs’ major obligation

is to maintain distribution systems’ reliability. In recent years,

there has been significant interest in involving new types of

resources (e.g. electrical vehicles and distributed renewable

generations) which bring into these systems new dynamics

and give rise to the necessity of accurate operating condition

information.

Medium Voltage (MV) systems’ conditions are hard to

acquire due to the limited number of measurement devices

installed. In Fig. 1 we show the topology of a UK power

distribution system. It has High, Medium and Low Voltage

(HV, MV and LV) systems. The MV system starts from a

HV/MV substation and ends at multiple MV/LV transformers.

In most of the countries, the installation of measurement

devices is limited to the HV/MV substation but is rarely at

MV/LV transformers - the number of MV/LV transformers is

nearly two orders of magnitude bigger than the number of

HV/MV substations [6]. However, a MV system’s condition

can be estimated by Distribution System State Estimation

(DSSE) which can be facilitated by SM data. We thereby study

the performance of the DSSE in MV systems under the data

aggregation restriction.

A power system may be taken as a network with nodes and

branches. State estimation in a power system can estimate

the state of this system, where the state is commonly the

set including all nodes’ voltage magnitudes and phase angles.

Based on the system state, the other electrical quantities such

as nodes’ loads and branches’ power flows and current can

be calculated. All of these quantities denote the operating

condition of this system. In MV systems, substations’ volt-
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age magnitudes and power flows are usually measurable,

in addition to which there may also be a limited number

of transformers having measurement devices that produce

similar types of measurements. All these are taken as partial

inputs to DSSE. To execute DSSE, the pseudo measurements

that denote the active and reactive power of loads (hereafter

referred to as pseudo loads) at the other transformers without

measurement devices are also required. The pseudo loads were

modelled monthly or for even longer periods [7], which is

applicable for a system under steady state operations but not

for the more dynamical system of the near future. The use

of SM data offers a new opportunity for more accurate load

modeling.

Under the data aggregation restriction, the pseudo load at

a transformer is the aggregation of loads of the consumers

that are downstream from this transformer. Consequently, the

power loss along a LV system is neglected. We evaluate the

DSSE performance with such pseudo loads as partial inputs,

which actually evaluates the impact of the LV system power

loss on the MV system DSSE. Using such SM data aggregated

pseudo loads for DSSE has been studied in [8] and [9], but

both ignore the power loss impact. If this impact is insignifi-

cant, the concern about this data aggregation restriction would

be addressed. Otherwise, more efforts may be required to relax

this impact and to improve the DSSE accuracy. Therefore,

this work also studies the possibilities to improve the DSSE

accuracy under this restriction.

Consequently, two potential strategies are considered in this

paper respectively. The first strategy defines the correlation

between the errors of each pair of measurement variables

then takes all such correlations into account in the state

estimation process. As discussed, the state estimation in a

power system can estimate the system state based on the

available real and pseudo measurements. Prior to the state

estimation process, a measurement variable is weighted by

its degree of brief which is given by the variance of the

errors of this variable. And to take into account the weights

of all measurement variables in the state estimation process,

the state estimation formula traditionally involves a Matrix of

Measurement Error Covariances. In the state estimation related

research, such as in [8] and [9], this matrix is usually assumed

to be diagonal, which is under the assumption that the errors of

any two measurement variables are not correlated. However, as

described in [10] and [11], the errors of a pair of measurement

variables may be correlated, and the state estimation accuracy

could be improved by taking into account such correlations.

For this case, that covariance matrix may not be assumed to be

diagonal. The errors of the pseudo loads at different MV/LV

transformers may have correlations, because: the power loss is

a main cause to a LV system’s pseudo loads’ errors; the time-

varied power loss of different LV systems may be correlated.

In this paper, such correlations are defined and are taken into

account in constructing the covariance matrix. This is the first

strategy considered to be potential for relaxing the impact

of the data aggregation restriction on DSSE in this paper.

Alternatively, a method that can estimate the LV system power

loss is proposed as the second strategy.

The performance of the DSSE in a MV system also depends

on this system’s real measurement configuration in terms of the

total number and the accuracies of the involved measurement

devices. Even if the DSSE accuracy with the above strategies

is not satisfactory, DNOs can introduce more investments by

either adding extra measurement devices or raising the original

devices’ accuracies to perform more accurate DSSE. And the

data aggregation restriction may not be a big issue to DNOs, if

affordable investments can lead to satisfactory DSSE results.

Therefore, the performance of the DSSE in MV systems with

different measurement configurations is assessed in this paper

as well: first, it is assumed that only the HV/MV substation in

a MV system has a measurement device, based on which the

DSSE performance with respect to different accuracy settings

of the measurement device is assessed; second, it is assumed

that transformers can also have such devices, based on which

the DSSE performance with increased numbers of additional

measurements is evaluated.

In recent years, there has been significant interest in using

the phasor measurements provided by Phasor Measurement

Units (PMUs) to improve the performance of state estima-

tion. However, as described in [6], PMUs are rarely used in

power distribution systems due to their high financial costs.

Therefore, in this study using PMUs is not taken as a strategy

to improve the performance of the DSSE in MV systems.

A study with respect to the cost-effectiveness to use PMUs

for the DSSE in MV systems may be carried out in the

future, which could be helpful for DNOs to determine the

trade-off between the costs of these devices and the DSSE

performance improvement. And the method to also involve

PMUs’ phasor measurements into the state estimation process

has been introduced in [12].

In addition to the simulations above, one more simulation

which also takes into account SM data’s errors is also con-

ducted. The above simulations consider the LV system power

loss as the only cause to pseudo loads’ errors. However, in a

realistic scenario, a smart meter cannot produce 100% accurate

measurements, and smart meters may not be perfectly synchro-

nized. As a consequence, extra errors may be introduced into

the pseudo loads, and the DSSE performance may be further

affected.

To our best knowledge, this is the first work that demon-

strates the impact of the SM data aggregation restriction on

DSSE, which addresses DNOs’ concerns about this restriction.

This paper is organized as follows. A DSSE technique, the

design of the testing systems and the assessment criteria for

DSSE results are described in Section II. In Section III, pseudo

load errors’ correlations are specified, and the LV system

power loss estimation method is introduced. The simulation

results are discussed in Section IV. Conclusions are drawn in

Section V.

II. DSSE AND EVALUATION

A. Testing System Design

A test system has two levels with a MV system and

multiple LV systems. The MV system’s network topology is

shown in Fig. 2, which is from [13] where the impedance

is specified. It has one HV/MV substation (node 1) and 32
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MV/LV transformers (node 2-33). Each transformer is the

starting point of a LV system. We model LV networks by

ourselves but follow the method that is proposed in [14]. We

model fifteen LV networks for sub-urban areas with different

types of underground cables and 300kV A transformers. Fig.

3 shows an example, where node one denotes the MV/LV

transformer. A filled node is a residential sector which is

actually a group of households. Hereafter we call a modelled

LV network a BLVN. We model eleven two-level test systems

in total, with their names as MV&LV1, MV&LV2, . . . and

MV&LV11 respectively. For the first ten MV&LV s, the LV

networks in each MV&LV are the same, which is one of the

first ten BLVNs. MV&LV11 simulates the real world scenario

that the LV networks in a system are different. For this case,

we allocate the first ten BLVNs to the system’s 32 LV networks

randomly. The remaining five BLVNs are used for power loss

estimation.

The Electricity Customer Behavior Trial Database is made

accessible to the public by the Commission for Energy Reg-

ulation (CER) [15]. We then allocate this database into each

MV&LV system and calculate their true system conditions.

This database records the half-hourly active power consump-

tions between 14-07-2009 and 31-12-2010 of 4225 residential

consumers. We only use their records of the last 50 days. These

consumers are with certain residential services. We thus divide

these consumers into 32 groups according to their services. We

simply assume that the power of a CER consumer during a

30-minute interval keeps constant, under which the original

active power consumption data is multiplied by two to get the

active power. The reactive power of a household is unknown,

so we simulate reactive power records ourselves. We set for

each group of households a constant power factor. As specified

in [16], the minimum acceptable power factor for residential

consumers is between 85% and 90%, so our simulated power

factors are randomly derived from this range. Therefore, the

reactive power can be calculated accordingly. Provided that

the active power p and the power factor pf of a household is

known, the reactive power is computed as p×tan(arccos(pf)).
For a MV&LV , we allocate the 32 groups to the LV networks

of this system one by one. For every LV network, we then

randomly assign the corresponding group of households to all

of the consumer sectors.

For a MV&LV with allocated SM data, the true time-series

operating conditions of each LV system can be calculated. This

is accomplished by the power flow analysis with the toolbox

MATPOWER [17]. Therefore, the true active and reactive

loads at MV/LV transformers are known. The power flow

analysis is then used to calculate the true time-series operating

conditions of the MV system. The secondary side voltage

magnitudes of a MV/LV transformer and the substation are

defined as 400V and 11kV respectively.

B. Weighted Least Squares State Estimation Technique

We use the Weighted Least Squares (WLS) State Estimation

[18] in our study. In a power system, DSSE aims to identify

an optimal set of nodal voltage magnitudes and phase angles

such that the system’s quantities calculated based on these

voltage estimates have the minimum overall error against the

provided measurements. This aim can be formulated as a WLS

optimization problem:

min
x

J(x) =
∑Zn

j=1
(zj − hj(x))

2/Rjj

= [z − h(x)]TR−1[z − h(x)]
(1)

where z is the set of the provided measurements. Traditionally,

it includes the measurements of nodes’ voltage magnitudes and

loads and branches’ current magnitudes and power flows. j
is the index of a measurement, and Zn is the total number

of measurements. x is the set of system state estimates

that is given by [θ̃, Ṽ ], where θ̃ and Ṽ are the sets of

nodes’ voltage angles and magnitudes respectively. hj(x) is a

measurement function that relates x to the measurement zj ,

so the residual rj = zj−hj(x) reflects the difference between

the provided measurement and the measurement calculated

from the estimated states. R is the covariance matrix of the

errors of measurements, and it is given by Equation 2, where

an element denotes the covariance between the errors of a

pair of measurement variables. For example, C1,2 means the

covariance between the errors of z1 and z2. And C1,2 can

also be given by σ1σ2ρ1,2, where σ1 denotes the standard

deviation of the errors of z1, and ρ1,2 denotes the correlation

coefficient between the errors of z1 and z2. In most of the

state estimation related research, the errors of measurement
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variables are assumed to be uncorrelated, and R is assumed

to be a diagonal matrix. Therefore, only the diagonal elements

C1,1, C2,2, . . ., CZn−1,Zn−1 and CZn,Zn
are retained, where

an element actually denotes the variance of a corresponding

measurement’s errors. For example, C1,1 is given by σ1σ1.

In Section IV we will first show the accuracy of the DSSE

based on such diagonal R matrix. However, as described in

[11], measurements’ errors may be correlated, and taking into

account their correlations could improve the DSSE accuracy.

Therefore, in Section III we will show the process to specify

the correlation coefficients of measurements’ errors and to

construct the corresponding R matrix. Then we will show the

subsequent DSSE improvement in Section IV.

R =




C1,1 C1,2 · · · C1,Zn−1 C1,Zn

C2,1 C2,2 · · · C2,Zn−1 C2,Zn

...
...

. . .
...

...

CZn−1,1 CZn−1,2 · · · CZn−1,Zn−1 CZn−1,Zn

CZn,1 CZn,2 · · · CZn,Zn−1 CZn,Zn




(2)

Newton’s method is applied, in order to derive the optimal

solution of x. It initializes all nodes’ voltage magnitudes to

1 and phase angles to 0 and iteratively updates x through

x
k+1 = ∆x

k+1 + x
k in each iteration k, until J(x) in (1) is

minimized. The increment ∆x
k+1 is calculated through (3),

where H is the measurement Jacobian, and G(xk) is called

the gain matrix which equals HT (xk)R−1H(xk). For more

details of state estimation see [19], [20].

[G(xk)]∆x
k+1 = HT (xk)R−1[z − h(xk)] (3)

C. DSSE in a MV System

In this part, the implementation of the DSSE in the MV

system in Fig. 2 is introduced. First, the DSSE required

real and pseudo measurements are introduced. Second, these

measurements’ errors are specified for constructing the DSSE

required measurement error covariance matrix. As has been

discussed, different measurements’ errors are first assumed

to be uncorrelated. Under this assumption, the R matrix is

diagonal, where each of its elements is associated with the

variance of the errors of a measurement variable. Hereafter,

such an element is called a diagonal R element. Finally,

this section ends with the introduction of the evaluation

criteria for the DSSE results. To better illustrate the DSSE

implementation, a common situation for the MV system in

Fig. 2 is introduced as follows: first, only the substation has a

measurement device which measures the voltage magnitude at

node one and the active and reactive power flows from node

one to two; second, the standard deviation of the relative errors

(SDRE) of a substation measurement is assumed to be 0.5%.

Under this common situation, the inputs to the MV system

DSSE are those real measurements at the substation and
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Fig. 4. LV system power loss statistics. a), the distribution of RPL of active
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of reactive power of the LV system with the lowest maximum reactive RPL;
e), the averaged RPL of active power of each of the 320 LV systems; f), the
averaged RPL of reactive power of each of the 320 LV systems.

the active and reactive pseudo loads at MV/LV transformers,

where the pseudo loads are given by:

P̃ =
∑Sn

n=1
pn ≈ P −∆P (4a)

Q̃ =
∑Sn

n=1
qn ≈ Q−∆Q (4b)

where P̃ is the aggregated active load, p is the active power

measurement from a smart meter, n is the index of a household

downstream from this transformer, Sn is the total number of

households, P is the true active power and ∆P is the LV

system power loss. Q and q are for reactive power. These

substation measurements and the transformer pseudo loads are

the inputs to the MV system DSSE. The system state x of this

system is [θ̃2, . . . , θ̃i, . . . , θ̃33, Ṽ1, . . . , Ṽi, . . . , Ṽ33], where i
is the index of a node. θ̃1 is set as the reference angle which

equals zero, so θ̃1 is not involved in x and θ̃i is the angle

difference between node one and i.
That 0.5% SDRE is used to introduce errors into the true

electrical quantities (i.e., the power flow analysis calculated

voltage magnitude and power flow) to simulate the real mea-

surements at the substation. Provided that the value of a true

electrical quantity at the substation is given, the corresponding

real measurement is given by: Ã = A × (1 + ω), where A
is a true electrical quantity value, Ã is the simulated real

measurement, and ω is randomly generated by the Gaussian

function N (0, 0.5%). This 0.5% SDRE is also used to set this

measurement’s associated diagonal R element, which is given

by: (Ã× 0.5%)2.

Specifying the SDRE for transformers’ pseudo loads then

defining the corresponding diagonal R elements for them

is much more difficult. In the following, the error of the

pseudo load is assessed, then the diagonal R elements for

the pseudo load measurements are derived correspondingly. As

described, the first ten MV&LV s have different LV networks.

Consequently, we have 320 different LV systems for analyzing

the LV system power loss and defining the corresponding R
elements for pseudo loads. In graph a)-d) of Fig. 4 we show

the distributions of the Relative Power Loss (RPL) of either
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active or reactive pseudo load of four extreme LV systems

that are of the highest (lowest) maximum active (reactive)

RPL. The active and reactive RPL are given by ∆P
P

and
∆Q
Q

respectively, where P and Q denote the true active and

reactive power at a transformer and a time point, and ∆P
and ∆Q denote their respective power loss. We also highlight

the averaged value of each graph. The RPL distributions are

different among LV systems, which is led by their different

network configurations (i.e., network topology, cable lengths

and types and the number of residential consumers) and their

amounts of power consumption. For example, the active RPL

of the graph a) associated LV system is as high as 7%, but

the maximum value of graph c) is only 2.5%. Such difference

for the reactive power is more significant, which can be seen

from graph b) and d).

The average RPL of a transformer’s pseudo load may be

taken to describe this pseudo load’s SDRE in offline simu-

lations. Provided that the average RPL of the active pseudo

load and the reactive pseudo load of transformer b are given

by α and β, the diagonal R elements for this transformer’s

active and reactive pseudo loads (i.e., P̃ b
t and Q̃b

t ) at time t
may be defined as: (P̃ b

t × α)2 and (Q̃b
t × β)2 respectively.

However, this may not be applicable in a real-world scenario,

because the true loads of this system are not known, and the

averaged RPL of the pseudo load cannot be calculated. In other

words, the power loss situation for a specific transformer is

not known, so it is not available to specialize the diagonal

R elements for this transformer. Nevertheless, DNOs may be

able to install measurement devices at a limited number of

their owned transformers. As a result, these transformers may

be taken as samples, which allows DNOs to get a very general

idea about transformers’ power loss situation. Consequently,

all transformers’ active/reactive pseudo loads may be assigned

the same diagonal R element.

Therefore, in this study transformers’ active/reactive pseudo

loads’ diagonal R elements are assigned in a similar way to

reflect this truth of difficulty. All transformers’ active pseudo

loads are assigned the same SDRE, and their reactive pseudo

loads are assigned another SDRE. As shown in graph e),

the averaged RPL for the active pseudo loads of different

LV systems are shown. The mean value of this graph is

highlighted. Graph f) is for the reactive power. Therefore, the

SDRE assigned for active pseudo load and reactive pseudo

load of all LV systems are these two graphs’ mean values

which are 1.6% and 4.2% respectively. For example, the

corresponding diagonal R element for a transformer’s active

pseudo load could be given by: (P̃t×1.6%)2, where P̃t denotes

the active pseudo load of this transformer at time t.

As described, we also evaluate the investments of additional

measurement devices. In our study, a measurement device is

placed at a transformer when it is required. It measures the

voltage magnitude and loads at this transformer and the active

and reactive power flows into and out of this transformer.

A 0.5% SDRE is also defined for such measurements for

introducing errors and for defining the corresponding diagonal

R elements.

D. DSSE Evaluation Metrics and Criteria

The assessment metrics are the Maximum Absolute Rela-

tive Voltage Magnitude Error (|RME|max) and the Maximum

Absolute Voltage Angle Error (|AE|max). They are given by:

|RME|max = max
1≤i≤33

|Vi − Ṽi|/Vi (5a)

|AE|max = max
2≤i≤33

|θi − θ̃i| (5b)

where i is the index of a node.

The criteria of both |RME|max and |AE|max depend on the

subsequent DSSE application, so there are no fixed minimum

acceptable thresholds for these two metrics. We therefore

use those criteria as in previous references. In [21], the

performance of DSSE is acceptable if the |RME|max and the

maximum absolute relative voltage angle error of more than

95% of cases are under 1% and 5% respectively. In [22],

when more than 95% of cases’ |RME|max and |AE|max are

under 0.7% and 0.7 crad the state estimation performance is

satisfactory, where 1(crad)=0.01(rad). In [9], a 0.6% threshold

of |RME|max is used to determine if the DSSE result is

satisfactory.

For voltage magnitude, we assess the proportion of the cases

whose |RME|max are smaller than 1%, and also assess the

proportion of the cases whose |RME|max are smaller than

0.6%. And 95% is taken as the minimum acceptable threshold

of the proportion. For voltage angle, we use |AE|max as the

metric rather than the relative error of [21], because the true

voltage angles of node two, three and four of the system in

Fig. 2 are nearly zero for most of the time. This follows the

recommendation in [23]. We find that the 0.7 crad of [22]

is not to be trustworthy for our system. In our simulation,

the criterion for |AE|max is defined as 0.07 crad. This is

the maximum |AE|max for our initial simulation (i.e., only

the substation has real measurements with a 0.5% SDRE

and the pseudo load is by SM data aggregation without

further modification). The 0.07 crad is not the criterion for

determining if the DSSE results are satisfactory for real-world

applications. It is used to assess if the power loss estimation,

the error correlation specification, the increased substation

measurement accuracy and the adding of measurement devices

can make changes to DSSE.

III. DSSE IMPROVEMENT STRATEGIES

Two strategies which may be able to relax the impact of the

data aggregation restriction on the DSSE in MV systems are

studied in this paper, as discussed. In this section, these two

strategies are introduced in sequence. The process to define

the correlation between the errors of a pair of measurement

variables is first described. The proposed power loss estimation

method is then introduced.

A. Error Correlation Specification

The errors of the pseudo loads of different LV systems may

be correlated. More specifically, there may exist correlations

between two MV/LV transformers’ active pseudo loads’ errors

and between their reactive pseudo loads’ errors. Besides, the
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Fig. 5. The correlations of the errors of pseudo loads. a), the correlations of
the errors of active pseudo loads; b), the correlations between the errors of
active pseudo loads and the errors of reactive pseudo loads; c), the correlations
of the errors of reactive pseudo loads.

errors of active pseudo loads and the errors of reactive pseudo

loads at the same transformer may be correlated. And there

may also be correlations between the errors of active pseudo

loads at a transformer and the errors of reactive pseudo loads

at another transformer. In the following, such pseudo load

error correlations are specified, so a full error covariance

matrix rather than the diagonal R matrix could be constructed.

Besides, in this study, the real measurements are simulated by

randomly introducing errors into the true electrical quantities,

so any pair of real measurement variables’ errors are assumed

to be uncorrelated. The errors of a real measurement variable

and the errors of a pseudo measurement variable are assumed

to be uncorrelated as well.

The time series active/reactive pseudo loads at a node in the

MV system that is shown in Fig. 2 could be obtained by SM

data aggregation. However, the true loads at this node are not

known in a realistic scenario, because this node rarely has a

measurement device, as discussed. Therefore, it is impossible

to compute the true correlation coefficient between the errors

of two pseudo load variables. Nevertheless, it is reasonable to

assume that DNOs may be able to install measurement devices

at a limited number of their owned transformers. And this

assumption is the same as that has been used in Section II-C

when the diagonal R elements for pseudo loads are defined. As

a consequence, an averaged pseudo load error correlation may

be obtained by analyzing the measurements of the sampled

transformers. And this averaged value may be generally taken

as the correlation coefficient between the errors of any pair of

pseudo load variables in the MV system in Fig. 2.

As discussed, we have 320 different test LV systems, based

on which we obtain the averaged correlation coefficient values.

First, for any pair of LV systems, we calculate the correlation

coefficient between their active pseudo loads’ errors. And we

show the distribution of such correlation coefficients of all

pairs in graph a) of Fig. 5. The correlation coefficient distri-

bution for reactive pseudo load is shown in graph c). Besides,

for any pair of LV systems, we also compute the correlation

coefficient between the errors of reactive pseudo load of one

system and the errors of active pseudo load of the other system.

Graph b) shows such correlation distribution. The averaged

value in a graph has been highlighted, and we use these values

to model the full error covariance matrix. As shown in this

figure, we assume that the correlation coefficient between any

two transformers’ active pseudo loads’ errors is 0.937, the

correlation coefficient between the errors of active pseudo load

of a transformer and the errors of reactive pseudo load of

another transformer is 0.940, and the correlation coefficient

between any two transformers’ reactive pseudo loads’ errors

is 0.944. Note that in graph b) there are a few bars which are

close to 1. And this is the distribution when the correlation

coefficient is between the active pseudo loads’ errors and the

reactive pseudo loads’ errors at the same transformer. We sim-

ply assume such correlation coefficient to be 1. Additionally,

we assume that the correlation coefficient of the errors of two

real measurement variables is 0, and the correlation coefficient

between the errors of a real measurement variable and the

errors of a pseudo load variable is 0. Finally, any element in

the full error covariance matrix could be calculated by taking

into account measurement errors’ correlations.

The following is an example to compute the covariance

between the active pseudo loads’ errors of transformer b1 and

the reactive pseudo loads’ errors of transformer b2 at time

t, where the pseudo active load of b1 at t is P̃ b1
t , and the

reactive pseudo load of b2 at t is Q̃b2
t . First, the standard

deviation of the errors of the active pseudo load at b1 could

be given by: P̃ b1
t × 1.6%, and the standard deviation of the

errors of the reactive pseudo load at b2 could be given by:

Q̃b2
t × 4.2% (as discussed in Section II-C). Then as shown in

graph b) of Fig. 5, the averaged correlation coefficient between

these two kinds of errors is 0.94. Therefore, the corresponding

covariance between these two kinds of errors could be given

by: P̃ b1
t × 1.6%× Q̃b2

t × 4.2%× 0.94.

B. Power Loss Estimation

In a relatively large area (e.g., a country), there should be

LV systems where their MV/LV transformers are equipped

with measurement devices, so the power loss of these systems

are known. The general idea of our power loss estimation

method is to learn the power loss from these systems then

apply these statistics to represent the power loss for the LV

systems without transformer measurement devices. For a LV

system without a transformer measurement device, the time-

series aggregated active and reactive power of loads (i.e.,

pseudo loads) are the only known information. Therefore, we

use such limited information for power loss estimation and

pseudo load modification. We first describe the power loss

estimation in a LV system with a measurement device at the

transformer. We then explain how this method can be made

applicable to a system without such a measurement device.

The voltage magnitude of a MV/LV transformer’s secondary

side commonly remains in a narrow range (i.e., plus or minus

2% or 5% of the rated value). Besides, we assume that the

network configuration of a LV system is not changeable.

Therefore in a LV system the power loss is mostly affected by

all consumers’ total power consumption. In graph a) of Fig.

6, we show the loss of active power in accordance with the

aggregated active load in a randomly simulated LV system. We

can see that they are highly correlated. The correlation between



7

Aggregated Active Power (MW)

0 0.1 0.2 0.3 0.4 0.5

P
 L

o
s
s
 (

M
W

)

0

0.01

0.02

0.03

0.04
a

The Square of Aggregated Active Power (MW
2
)

0 0.05 0.1 0.15 0.2 0.25

P
 L

o
s
s
 (

M
W

)

0

0.01

0.02

0.03

0.04
b

Aggregated Reactive Power (MW)

0 0.05 0.1 0.15 0.2 0.25 0.3

Q
 L

o
s
s
 (

M
V

A
R

)

0

0.02

0.04

0.06
c

The Square of Aggregated Reactive Power (MVAR
2
)

0 0.02 0.04 0.06 0.08

Q
 L

o
s
s
 (

M
V

A
R

)

0

0.02

0.04

0.06
d
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the square of the aggregated active load and the active power

loss becomes linear, which can be seen in graph b). The same

applies to the reactive power as well, which can be seen in

graph c) and d). Provided that a LV system’s transformer has a

measurement device, the historical time-series true loads and

aggregated loads of this system are known, so is the time-

series power loss. Therefore, we can learn how the power loss

correlates with the aggregated loads and use such information

to estimate the power loss when a new value of the aggregated

load is known. A simple method is as follows. Provided that

the active and reactive power loss ∆Pt and ∆Qt at time t are

to be estimated, the aggregated loads P̃t and Q̃t are known, we

find the pair of P̃t′ and Q̃t′ of a previous time point t′ where

P̃t′ and Q̃t′ is the nearest pair to P̃t and Q̃t. ∆Pt is then given

by ∆Pt ≈ ∆Pt′ = Pt′ − P̃t′ , where Pt′ is the true active load

at t′. The modified pseudo active load is P̂t = P̃t+∆Pt. ∆Qt

and Q̂t are estimated in the same way.

This method is not applicable to a LV system that does

not have a transformer measurement device because both of

the time-series true loads and the time-series power loss are

unknown. However, we modify the above method such that we

learn the power loss from the LV systems with measurement

devices then use such information to estimate the power loss

of the other systems without such devices. It also involves the

procedure to define the diagonal R element for the modified

pseudo load. This method is shown in Fig. 7.

Provided that two LV systems have measurement devices at

transformers, we call them the training and validating systems

respectively. There is another one without such device, which

is called the testing system. They are distinguished by the

‘L’, ‘V’ and ‘E’ superscripts. Fig. 7 shows how to use system

‘L’ to estimate the power loss (∆PE
t , ∆QE

t ) and to get the

modified pseudo loads (P̂E
t , Q̂E

t ) of system ‘E’ at time t.
It also shows how to use system ‘V’ to define the modified

pseudo loads’ errors’ standard deviations (std P̂E
t , std Q̂E

t ).

The inputs include the aggregated loads of system ‘E’ at t
(P̃E

t , Q̃E
t ), the time-series aggregated loads (P̃L, Q̃L, P̃V,

Q̃V) and true loads (PL, QL, PV, QV) of systems ‘L’ and

‘V’, where a time-series variable P is given by {P1, . . . , Pb,

. . . , Pt}
T (T means matrix transpose).

To get (∆PE
t , ∆QE

t ) given (P̃E
t , Q̃E

t ), we aim to find the

1: Inputs: P̃E
t , Q̃E

t , P̃L, Q̃L, P̃V, Q̃V, PL, QL, PV, QV

2: Outputs: ∆PE
t , ∆QE

t , P̂E
t , Q̂E

t , std P̂E
t , std Q̂E

t

3: procedure PQ ESTI

4: t′ =K Nearest({P̃E
t , Q̃E

t }, {P̃L, Q̃L}, 1)

5: ∆PE
t = PL

t′ − P̃L
t′

6: ∆QE
t = QL

t′ − Q̃L
t′

7: P̂E
t = P̃E

t +∆PE
t

8: Q̂E
t = Q̃E

t +∆QE
t

9: K =K Nearest({P̃E
t , Q̃E

t }, {P̃V, Q̃V}, 100)

10: where K = {K1, . . . ,Ka, . . . ,K100}
11: for all Ka of K do

12: K Nearest({P̃V
Ka

, Q̃V
Ka

}, {P̃L, Q̃L}, 1)

13: calculate ∆PV
Ka

, ∆QV
Ka

, P̂V
Ka

, Q̂V
Ka

as above

14: Err PV
Ka

= PV
Ka

− P̂V
Ka

15: Err QV
Ka

= QV
Ka

− Q̂V
Ka

16: end for

17: std P̂E
t =std(Err PV

Ka

), a ∈ [1, 100]

18: std Q̂E
t =std(Err QV

Ka

), a ∈ [1, 100]
19: end procedure

20: x = {x1, . . . , xi, . . . , xm}
21: Y = {y1, . . . ,yi, . . . ,ym}
22: yi = {yi1, . . . , y

i
j , . . . , y

i
n}

T

23: procedure K NEAREST(x, Y, Nk)

24: for all i ∈ [1,m] do

25: normalize {xi;yi} through {xi;yi}/max({xi;yi})
26: get {xi;yi}
27: end for

28: for all j ∈ [1, n] do

29: calculate Distj=
∑m

i (xi − yi
j
)2

30: end for

31: return the indexes of the top Nk biggest Distj .

32: end procedure

Fig. 7. The method for power loss estimation.

time index t′ such that among all (P̃L, Q̃L), (P̃L
t′ , Q̃L

t′ ) is

the pair that is nearest to (P̃E
t , Q̃E

t ). We then take (∆PL
t′ ,

∆QL
t′ ) as (∆PE

t , ∆QE
t ). The pseudo loads are then modified

as P̂E
t = P̃E

t +∆PE
t , Q̂E

t = Q̃E
t +∆QE

t .

(PE
t , QE

t ) is not known, so we cannot calculate the errors

of (P̂E
t , Q̂E

t ) directly. We therefore assess how accurate if

we use system ‘L’ to modify the pseudo load for system ‘V’.

We first find 100 pairs of (P̃V , Q̃V ) from (P̃V, Q̃V) such

that they are the nearest to (P̃E
t , Q̃E

t ). For each pair of (P̃V ,

Q̃V ), we use system ‘L’ to get the corresponding (P̂V , Q̂V )

and record their errors. The standard deviations of the errors of

the 100 pairs of (P̂V , Q̂V ) are taken as the standard deviations

(std P̂E
t , std Q̂E

t ) for DSSE. For example, the R element of

DSSE for the measurement P̂E
t is (std P̂E

t )2. Note that when

the power loss estimation is involved in the DSSE process,

the error covariance matrix is assumed to be diagonal. As

discussed, the error covariance matrix may be constructed as a

full matrix rather than a diagonal matrix when measurements’

errors are correlated. We have found that pseudo loads’ errors

are correlated due to the power loss in LV systems. However,

with the above power loss estimation method, the power loss

could be estimated and taken into account when modelling the
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Fig. 8. Power loss estimation performance. a) the |RE| distribution of active
power of system ‘A’ by learning from system ‘C’; c) the |RE| distribution
of active power of system ‘C’ by learning from system ‘A’; b) the |RE|
distribution of reactive power of system ‘B’ by learning from system ‘D’; d)
the |RE| distribution of reactive power of system ‘D’ by learning from system
‘B’; e), the averaged active power |RE| for each of the 320 LV systems when
learning from the two systems ‘A’ and ‘C’; e), the averaged reactive power
|RE| for each of the 320 LV systems when learning from ‘B’ and ‘D’;

pseudo load. For this case, the errors of a pseudo load variable

are not caused by the power loss anymore but are introduced

by the power loss estimation method. Therefore, with the use

of this method, the pseudo load errors are not correlated.

The above uses a single ‘L’ system and a single ‘V’ system.

Actually, multiple training and validating systems can be used.

We simply take multiple systems’ data as the data from one

system. For example, PL={PL1 ,PL2}={PL1

1 , . . . , PL1

b , . . . ,

PL1

t , PL2

1 , . . . , PL2

b , . . . , PL2

t }T , where ‘L1’ and ‘L2’ are two

training systems.

It is obvious that the similarity between the chosen training

systems and the testing system will determine how accurate

the estimation of the power loss will be. The similarity

between the chosen validating systems and the testing system

will determine how well the defined (std P̂E
t , std Q̂E

t ) is.

Therefore, some initial network configuration information of

the testing system helps choose better training and validating

systems. However, such information is not taken into account

in our study. In the following, we show the accuracy of the

pseudo load after power loss estimation. We highlight the cases

when the chosen training systems are extremely different from

the testing system. In the simulation section, we will show that

the defined error standard deviation for the modified pseudo

load is also appropriate.

The active or reactive power loss of four extreme systems

have been shown in Fig. 4. For the sake of simplicity, they

are called system ‘A’, ‘B’, ‘C’ and ‘D’ in accordance with the

graph ID. Let us recall that ‘A’ and ‘C’ have the highest and

lowest maximum active power loss respectively among all 320

systems, and ‘B’ and ‘D’ are extreme for their reactive power

loss. We use system ‘C’ to modify the pseudo active load

of system ‘A’ then swap these two. The distributions of the

Absolute Relative Error (|RE|) of their modified pseudo loads

are shown in graph a) and c) of Fig. 8. We do the same for

system ‘B’ and ‘D’ for their reactive power, where the results

are shown in graph b) and d). As we can see, our method

can lead to obvious improvement in terms of the pseudo load

accuracy even for these extreme cases when the training and
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Fig. 10. The condition of the MV system of MV&LV11. a) voltage
magnitude profiles; b) voltage angle profiles; c) active power loss in 32 LV
systems; d) reactive power loss in 32 LV systems.

testing systems are significantly different. For example, the

averaged RPL(|RE|) of system ‘A’ before and after the power

loss estimation are 2.1% and 0.7% respectively. Furthermore,

we use system ‘A’ and ‘C’ as the training systems to modify

the pseudo active load of all 320 systems. The averaged |RE|
of different systems are plotted in graph e), and we highlight

the mean value which is only 0.33%. Graph f) is for the

reactive power when system ‘B’ and ‘D’ are used as training

systems, where the mean value is 0.28%. These two values are

1.6% and 4.2% respectively before the power loss estimation,

which is shown in graph e) and f) of Fig. 4.

IV. EXPERIMENTS

We first show the performance of the MV system DSSE for

the common situation: only the substation has a measurement

device; a real measurement’s SDRE is 0.5%; the pseudo

load is modelled by SM data aggregation without power loss

estimation; and the measurement error covariance matrix is

assumed to be diagonal. We then show the improved DSSE

accuracy with each of the previously discussed strategies.

Followed by this, we show the performance of DSSE with

different accuracies of substation measurements or different

numbers of additional measurement devices.



9

A. DSSE under the Common Situation

For assessing the performance of the DSSE under the com-

mon situation, we execute DSSE for each MV&LV for each

one of the 2400 (i.e., 50 (days) × 48) time points. The results

are shown in Fig. 9. We find that all test systems show similar

results. First, the probabilities when |RME|max is smaller than

0.6% and 1% are around 65% and 88% respectively, which

is shown in graph a). This is not satisfactory because we

expect that 95% of cases’ |RME|max can be smaller than 1%

or even 0.6%. This is caused by the low accuracy of either

the measurements at the substation or the pseudo transformer

loads. Second, the |AE|max of more than 99.5% of cases are

smaller than 0.07 crad, which is shown in graph b). The 0.07

crad is the maximum angle error of system MV&LV11, which

can be seen in graph d) where the voltage angle errors of all

nodes of a time point are shown as a line. We also show the

details of the voltage magnitude relative errors in graph c).

Because all MV&LV systems show similar results, we only

use MV&LV11 for the following simulations. And the 0.07

crad is taken as the criterion for assessing the improvement of

DSSE.

To better understand the results, we also show the condi-

tion of MV&LV11 for the time point where the maximum

|RME|max occurs. In graph a) of Fig. 10, the voltage mag-

nitudes of all nodes at different time points are shown with

green lines. The profile of the time of the maximum |RME|max

and its estimates are highlighted. In graph b), the profiles for

voltage angles are shown. In graph c) and d) the active and

reactive power loss for the 32 LV systems for that time point

is shown. We detail the system total loss, the loss along LV

cables and the power absorbed by transformers. As we can

see, in a LV system the active power loss is mostly caused

by cables, but the reactive power loss is mostly caused by the

impedance of the transformer.

B. Improving the DSSE Performance

We first estimate LV systems’ power loss and modify their

pseudo loads for DSSE. As described, fifteen LV networks that

are called BLVNs are modelled, where ten of them are used for

modelling MV&LV systems. For power loss estimation we

use three of the remaining systems as training systems and the

other two as validating systems. The modified pseudo loads

and the pseudo loads from SM data aggregation are compared

in terms of their accuracies. We show such comparison results

for active and reactive power in graph a) and d) of Fig. 11

respectively. In each graph, the averaged |RE| of all nodes

for each kind of pseudo loads are shown. We can see that the

|RE| of the modified pseudo loads are significantly lower for

both active and reactive power.

This power loss estimation method can also define the

standard deviations of the errors of the modified pseudo loads.

In graph b) we demonstrate in a LV system of MV&LV11

how our defined and the true errors of the modified pseudo

active load appear in pairs along time. As we can see, there is

clear correlation between both. In other words, our defined

error standard deviation can effectively reflect the error of

the modified pseudo load. To go beyond this, we show the
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Ṽ

V
(%

)
-2

-1

0

1

2

3

a

Node ID

5 10 15 20 25 30

θ
−

θ̃
(c
r
a
d
)

0

0.05

0.07

0.1

b

Fig. 12. DSSE with error correlation specification. a) relative errors of voltage
magnitude of all nodes and time points of MV&LV11; b) errors of voltage
angle of all nodes and time points of MV&LV11.

coefficients of such correlation for all 32 LV systems for both

active and reactive power in graph e). More than 75% of

cases’ coefficients are higher than 0.7. The subsequent DSSE

performance is shown in graph c) and f). By comparing Fig. 9

and 11 we find significant improvement on the voltage angle

estimates, where the maximum |AE|max changes from 0.07

to 0.05 which is reduced by 30%. However, there is not an

obvious change of |RME|max though the quality of the pseudo

load has been improved significantly. It seems like the data

aggregation restriction only shows clear impact on the angle

but not magnitude estimates’ accuracies.

In Fig. 12 we show the performance of the DSSE when the

correlations among pseudo load errors are taken into account.

As shown, with this strategy the maximum |AE|max equals

0.046 crad which is even slightly lower than the maximum

|AE|max with the power loss estimation strategy. It is also

found that the resultant |RME|max with these two strategies

are similar. Therefore, with either strategy, the DSSE voltage

angle estimation results could be improved significantly.

To further improve the accuracies of the voltage magnitude

estimates, real measurements’ accuracies should be increased.

We therefore assess the DSSE performance with different real

measurement accuracies. We assume that the SDRE of real

measurements decreases from 1% to 0.1% with a 0.1% decre-

ment. For each SDRE setting the performance of the DSSE

of the following three situations are evaluated: the original

situation - without error correlation specification and without

power loss estimation; the situation with error correlation

specification; and the situation with power loss estimation.



10

Real Measurement SDRE

1e-2 9e-3 8e-3 7e-3 6e-3 5e-3 4e-3 3e-3 2e-3 1e-3P
r(

|R
M

E
| m

a
x
<
Ψ

) 
(%

)

95

a

Probability When Ψ =0.6%

Probability When Ψ =1%

Real Measurement SDRE

1e-2 9e-3 8e-3 7e-3 6e-3 5e-3 4e-3 3e-3 2e-3 1e-3

M
a

x
 |
A

E
| m

a
x
 (

c
ra

d
)

0

0.07
0.1

0.2

c

Original

With Correlation

Power Loss Estimation

Node ID

5 10 15 20 25 30

V
−
Ṽ
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Fig. 13. DSSE performance with different real measurement accuracies.
a) voltage magnitude estimates’ accuracies with different real measurement
accuracies (the bars from the left to the right of a x-axis unit denote the original
situation, the situation with error correlation specification and the situation
with power loss estimation); c) voltage angle estimates’ accuracies with
different real measurement accuracies; b) relative errors of voltage magnitude
of all nodes and time points of MV&LV11 when real measurements’
SDRE are 0.1%; d) errors of voltage angle of all nodes and time points of
MV&LV11 when real measurements’ SDRE are 0.1%.

The results are shown in Fig. 13. As shown in graph a),

to make sure 95% of cases’ |RME|max to be lower than

1% and 0.6%, real measurements’ SDRE should be increased

to 0.4% and 0.2% respectively for all three situations. And

to ensure all cases’ |RME|max to be lower than 0.6% the

real measurements’ SDRE should be 0.1%. The maximum

|AE|max of different real measurement accuracies can be seen

in graph c). As can be seen, with the decrease of SDRE,

the results of the DSSE of all three situations are improved

significantly. Besides, regardless of the SDRE setting, the

results of the situations with either power loss estimation

or error correlation specification are much better than the

results of the original situation. Furthermore, when SDRE is

relatively small (i.e., smaller than 0.5%), the DSSE results

of the situation with error correlation specification are slightly

better than the situation with the other strategy. The maximum

|AE|max of the situation with error correlation specification for

the 0.4%, 0.2% and 0.1% real measurement SDRE settings are

0.043, 0.020 and 0.013 crad respectively which are reduced by

39%, 71% and 81% relative to the 0.07 crad. For the situation

with error correlation specification, the details of the DSSE

results of the 0.2% real measurement SDRE setting are shown

in graph b) and d).

Increasing the real measurement accuracy to a certain level,

like the 0.1% SDRE setting, may be technically difficult, so

DNOs may consider the adding of additional measurement

devices as an alternative for the DSSE improvement. We

thereby also assess the impact of the number of additional

measurement devices on DSSE. We add such devices to

MV&LV11 one after another. A device is placed at a trans-

former that is chosen by the meter placement method described

in [24]. It first identifies the top five branches with the biggest

voltage error variances. The branch voltage is a complex

value with both magnitude and angle, which is the difference

between the voltages of two connected nodes. It then identifies

one transformer from the nodes that are connected by these

five branches such that this transformer has the biggest power

flow error variance. This transformer will be the place for
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Fig. 14. DSSE performance with different numbers of additional real mea-
surement devices. a) voltage magnitude estimates’ accuracies with different
numbers of devices (the bars from the left to the right of a x-axis unit denote
the original case, the case with error correlation specification and the case with
power loss estimation); c) voltage angle estimates’ accuracies with different
numbers of devices; b) relative errors of voltage magnitude of all nodes and
time points of MV&LV11 with three additional real measurement devices;
d) errors of voltage angle of all nodes and time points of MV&LV11 with
three additional real measurement devices.

placing the measurement device.

Let us recall that this device measures voltage magnitude

and active and reactive loads at the transformer and active

and reactive power flows into and out of this transformer. The

SDRE of these measurements is assumed to be 0.5%. Same

as the above simulation, for all of the three DSSE situations,

we show their results with respect to different numbers of

additional measurement devices in Fig. 14. As shown in graph

a), for 95% of cases’ maximum |RME|max to be lower than

1% or 0.6%, only one or three more measurement devices

are required for all these three situations. Graph b) shows

the results for voltage angle. The results are similar to the

results demonstrated in Fig. 13: with the increase of the

number of additional measurement devices, the DSSE voltage

angle estimation accuracy could be significantly improved; the

results of the original situations are always significantly worse

than the results of the other situations; the DSSE results of

the situation with the error correlation specification strategy

are better than the situation with the power loss estimation

strategy. When one or three additional devices are installed,

the maximum |AE|max for the situation with error correlation

specification is 0.043 or 0.023 crad which is reduced by 38%

or 67% relative to the 0.07 crad. Details of the DSSE results

of this situation with three additional measurement devices are

shown in graph b) and d).

C. DSSE with Smart Meter Errors

Finally, we introduce errors into those CER active power

consumption records and our simulated reactive power mea-

surements by adding errors according to an additive Gaussian

function. We then aggregate the modified SM data to get

pseudo transformer loads and proceed with DSSE. MV&LV11

is used for this evaluation. This evaluation is under the

common situation described in II-C - only the substation

has real measurements (i.e., voltage magnitude and active

and reactive power flow measurements) that are with a 0.5%

SDRE. In this simulation, we only consider the original
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Fig. 15. DSSE performance when the smart meter data is with different
levels of errors. a) pseudo loads’ relative errors; b) relative errors of voltage
magnitude; c) errors of voltage angle.

situation that is without error correlation specification and

power loss estimation.

The errors are introduced as follows. We assume SM data’s

relative errors follow Gaussian distribution N (0, η), then we

use the Gaussian function to introduce errors for all time points

and smart meters. We consider eleven separate situations with

different η that are from 0% to 10% with a 1% increment.

The accuracies of the subsequent pseudo transformer loads

are first assessed. A point in graph a) of Fig. 15 shows the

average RPL of either pseudo load (i.e., active or reactive load)

over multiple transformers and time points. With the increase

of η, the RPL increases, while the increment is small. When

η = 0%, the SM data is 100% accurate, and the RPL is caused

by LV system power loss only. Therefore, compared with the

power loss, the SM data errors show less impact on pseudo

loads’ accuracy.

As discussed in II-C, we have used 1.6% and 4.2% as

the SDRE of active and reactive pseudo loads for getting the

corresponding diagonal R elements for DSSE, when η = 0%.

For the DSSE with other η values, we also use the same two

SDRE settings. Graph b) shows the DSSE results on voltage

magnitude. As we see, by increasing η, the voltage magnitude

accuracy is not changed. For voltage angle, we only show the

maximum |AE|max over time for each η, where the results

are shown in graph c). With the increase of η, the maximum

|AE|max increases, but the results are in a narrow range which

is between 0.072 and 0.085 crad. The results show that the SM

data errors have insignificant impact on DSSE.

V. CONCLUSIONS

The SM data can benefit various grid applications, but

the data access may be restricted for reasons, e.g. for the

concern of consumer privacy. It is worthwhile to study if

there exists conflict between the data access and the functional

requirements. Therefore, in this work the impact of the SM

data aggregation restriction on the DSSE performance in terms

of the voltage magnitude and angle estimation accuracies

has been assessed. Our results show that this restriction has

insignificant impact on voltage magnitude estimation. Though

the voltage magnitude estimates are not satisfactory under the

common situation, it is mainly caused by the low substation

measurement accuracy rather than this restriction. However,

this restriction shows significant impact on voltage angle

estimation.

Therefore, one should either relax this restriction or provide

affordable solutions to improve the voltage angle estimation

accuracy. With regard to affordable solution, the following

two strategies have been considered. The first is to take into

account pseudo load error correlations in the state estimation

process, and the other is to estimate and involve the LV

system power loss. The results show that both strategies can

improve the voltage angle estimation accuracy significantly.

Additionally, we have evaluated the DSSE performance with

additional investments in terms of either increasing the ac-

curacy of real measurements or adding more measurement

devices. Our results show that a few investments can lead to

significant DSSE improvement, so from the DSSE perspective

it is not necessary to relax this data aggregation restriction.

DNOs’ concerns on the SM data aggregation restriction have

been addressed and it has been seen that these problems can

be solved satisfactorily.
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