
Vol. 129 (2016) ACTA PHYSICA POLONICA A No. 5

Proceedings of the 8th Polish Symposium of Physics in Economy and Social Sciences FENS, Rzeszów, November 4–6, 2015
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Empirical studies suggest that word-of-mouth strongly influences the innovation diffusion process and is re-
sponsible for the “S” shape of the adoption curve. However, it is not clear how word-of-mouth affects demand
curves for innovative products and strategic decisions of producers. Using an agent-based model of innovation
diffusion, which links consumer opinions with reservation prices, we show that a relatively strong word-of-mouth
effect can lead to the creation of two separated price-quantity regimes, with a nonlinear transition between them.
A small shift of the product’s market price can result in a drastic change of the demanded quantity and, hence, the
revenues of a firm. Using Monte Carlo simulations and mean-field treatment we demonstrate that word-of-mouth
may have ambiguous consequences and should be taken into account when designing marketing strategies.
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1. Introduction

The ways and conditions influencing a successful dif-
fusion of a new product are of particular interest to
economists and analysts who design marketing strate-
gies [1–3]. Since it is either very costly or — in many
cases — impossible to conduct field experiments regard-
ing an innovation’s diffusion in the market, there are only
two plausible investigation approaches: collecting ex post
the information on the diffusion or designing ex ante a
model and performing simulations and/or analytical cal-
culations. In the latter case, investigators typically either
adopt the simplistic framework of the now-classical Bass
model or develop a tailor-cut agent-based model that al-
lows for (generally) realistic simulations of the diffusion
process [4].

In this paper we place ourselves within the simulation-
based ex ante approach. We utilize a relatively simple,
yet sufficiently rich agent-based model developed recently
by Kowalska-Pyzalska et al. [5], which links the opinions
of potential consumers† with their market behavior via
the concept of the reservation price — Pi, i.e. the high-
est price that agent i will accept and still purchase the
good [7]. We conduct the study from the supply point
of view and aim at providing a producer (a seller) of an
innovative good with advice on pricing and marketing
strategies. We assume that the producer operates in a
noncompetitive market and hence is able to set the mar-
ket price of the product, P ∈ [0, 1], at any desired level.
Note that the noncompetitiveness refers to the market
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†In the text, we use the words “consumer”, “agent” and “indi-
vidual” interchangeably with spinson, a term coined by Nyczka and
Sznajd-Weron [6] that nicely allows to go around gender issues and
reflects the dyadic nature of an agent’s opinion (→ spin) and the
object of study (→ person).

structure (there is just one producer or seller) and does
not restrict the number of products available in the mar-
ket in any way. In fact, the prices we consider — P and
Pi — are in relative terms (not nominal) and relate the
price of the innovation to the prices of existing goods of
similar nature. In order to comply with the commonly
accepted standard in the economic literature, we present
the results in terms of the demand curve, which considers
the market price of the product as a function of the quan-
tity sold, P (Q). However, we derive the demand curve
from the penetration rate or level [2, 3, 5], Q(·), i.e. the
percentage of adopted consumers as a function of model
parameters (in particular, of market price P ).

Using Monte Carlo simulations (for artificial and real
social networks from Facebook and Google+) and mean-
field (semi-)analytical treatment (for fully connected net-
works, i.e. complete graphs), we study the influence of
three micro (i.e. consumer) level components on the mar-
ket demand curve: (i) individual judgment, (ii) social in-
fluence (i.e. word-of-mouth, WOM) and (iii) mass-media
influence. By individual (or personal) judgment we un-
derstood the evaluation of the product according to its
non-financial costs and benefits, as well as the perception
of the behavioral difficulty connected with its adoption.
We assume that personal judgment is neither affected by
mass-media nor by WOM, hence it is closely related to
the concept of independent behavior [8–10]. In the model
it occurs with (independence) probability p ∈ [0, 1]. Al-
though innovative products are assumed to be beneficial,
it is possible that a spinson will reject it if the potential
behavioral costs outweigh the gains. In order to capture
the adoption difficulty [11], the probability of a negative
product evaluation is described by parameter f ∈ [0, 1].
On the other hand, with probability (1− f) the spinson
will evaluate the product positively, because the benefits
of adopting the innovation exceed its non-financial costs.
Word-of-mouth (WOM) is defined as informal advice

passed between agents, i.e. a form of social (or internal)
influence. It has been found to have significant impact on
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consumer behavior and innovation diffusion [2, 12, 15].
In the adopted here so-called situation approach [16],
each spinson behaves independently with probability p
and with probability (1 − p) is exposed to WOM from
a group of q neighboring (i.e. directly connected; in
this study we use q = 4, for a discussion see [5]) spin-
sons or advertising. When a spinson is confronted by a
unanimous group of q neighboring spinsons sharing the
opposite opinion, it will conform to peer pressure [10]
and choose a new reservation price (resulting in opinion
change). However, if at least one of the q neighbors shares
the opinion of the spinson, WOM will have no effect on
the reservation price and the spinson will be exposed to
advertising, i.e. an external influence. The impact of ad-
vertising is expressed by parameter h ∈ [0, 1], the proba-
bility that a spinson increases the product evaluation due
to new information obtained from mass media.

The contribution of this paper is twofold. Firstly, using
a relatively simple, yet sufficiently rich agent-based model
of opinion formation we show that a strong WOM effect
can lead to the creation of two separated price-quantity
regimes, with a nonlinear transition between them. Even
a small shift of the market price can result in a drastic
change of the demanded quantity and, hence, the rev-
enues of a firm. Moreover, strong WOM combined with
behavioral difficulty of adoption may hamper the diffu-
sion process and substantially reduce the demand even
for very low prices. Importantly, this result is obtained
both for fully connected networks, which can represent
cliques in the society, as well as sample Facebook and
Google+ social networks of variable sizes and character-
istics. Secondly, the results show that WOM may have
an ambiguous impact on the diffusion process, leading
to either an increase or a decrease of the total demand
depending on the system characteristics and the market
price. This observation substantially expands the find-
ings of [14, 15], that revealed only the negative influence
of WOM on innovation diffusion.

2. Economics of innovation diffusion
To the best of our knowledge, only a few authors have

used agent-based modeling for constructing the demand
curve and deriving market prices. In particular, Camp-
bell [14] models WOM as a percolation process on the
social network and assumes that agents engage in WOM
with a probability, which is a function of the agent’s valu-
ation of the good and the market price. Only these agents
who are willing to purchase the product are prepared to
pass on the information about it to others. The pa-
per concludes that demand is more elastic and prices
are lower under WOM. Cantono and Silverberg [17] ob-
serve that diffusion can reduce the market price. In their
model, the price becomes a function of the number of
previously adopted agents. Hohnisch et al. [18] find that
diffusion of new products can be delayed by a drift of
the percolation dynamics from a non-percolating regime
to a percolating regime, which occurs because the prob-
ability of buying increases over time with the cumula-
tive number of buyers. In their article, the heterogeneity

of reservation prices plays a central role and determines
whether diffusion takes place or not. Finally, Zeppini and
Frenken [15] show a percolation critical transition from a
diffusion to a no-diffusion regime, with a price threshold
value depending on the network structure.

In these papers the diffusion of innovation is condi-
tioned on information spreading and the authors do not
consider the potential influence of the opinion forma-
tion mechanism. However, the infection-spreading mod-
els, such as percolation and generalized contagion pro-
cesses, are not consistent with the experimental data [19].
On the contrary, approaches utilizing opinion dynamics
are able to reproduce the empirical data and are suit-
able for innovation diffusion modeling. In this study we
take the latter findings as a staring point and use an
opinion formation model proposed by Kowalska-Pyzalska
et al. [5] to investigate how the micro-level social inter-
actions influence the shape of the demand curve for in-
novative products and producer decisions. By doing so,
we fill the existing gap and contribute to the literature
on innovation diffusion.

3. Results

To study the influence of WOM, advertising and per-
sonal judgment on the demand curve we perform Monte
Carlo simulations (for artificial and real social networks
from Facebook and Google+) and a mean-field analysis
(for complete graphs, CG). The Monte Carlo simulations
are conducted for systems of variable sizes, ranging from
N = 338 to 4289 spinsons for Facebook and Google+
networks and from 102 to 104 spinsons for CG (only
the results for the largest CG are plotted later in the
text). All simulation results are averaged over 104 sam-
ples (or trajectories; not to be confused with the number
of spinsons, i.e. N). We use a random sequential up-
dating scheme with the time measured in Monte Carlo
steps (MCS). Namely, one MCS consists of N elementary
time steps ∆t in which one spinson is randomly selected
and undergoes the procedure visualized in Fig. 1 in [5].
To consider only the stationary states of the system we
collect the data after 103 MCS.

The mean-field approach (MFA) used here assumes
that the network is homogeneous (in the sense that the
local concentration of adopted agents is statistically equal
to the global, system-wide concentration) and of infinite
size (i.e. N = ∞). However, even for complete graphs
as small as 100 spinsons the mean-field and simulation
results coincide very well. For derivation and form of the
MFA formulae we refer to Eqs. (1)–(3) in [5].

3.1. Results for complete graphs
We use a simplified model without WOM as the bench-

mark for the analysis of social influence effects. In this
model there are only two factors influencing reservation
prices: individual judgment and advertisement. With
probability p a spinson will behave independently and
with probability (1 − p) will be exposed to the mass-
media influence. In the latter case, with probability h
the spinson will increase its reservation price.
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In the absence of WOM, there are two major factors
— the adoption difficulty and the mass-media influence
— which shift the demand curve in opposite directions.
When f = h = 0 then the demand is a linear function:
P (Q) = 1 − Q, where Q is the penetration rate. Gen-
erally, for models without the mass-media effect, it can
be easily shown that P (Q) = 1 − Q/(1 − f), compare
the top left and right parts in Fig. 1. For models with
advertising, i.e. with h > 0, the demand curve is always
concave, see the bottom right part in Fig. 1. It does not
have a closed, analytic form and therefore needs to be
calculated numerically.

Fig. 1. Demand curves P (Q) for models with different
independence probabilities (p = 0.1, 0.2, 0.5): without
the difficulty effect and advertising (f = h = 0; top
left), with the difficulty effect but without advertising
(f = 0.2, h = 0; top right) and without the difficulty ef-
fect but with advertising (f = 0, h = 0.2; bottom left).
For comparison, the results for the benchmark models
without WOM are also plotted (bottom right). Note,
that for the latter the mean-field approximation [5] does
not work that well for high P . Monte Carlo simulation
results for a complete graph consisting of N = 104 spin-
sons are denoted by symbols, whereas the corresponding
mean-field results for an infinite system by solid lines of
the same color.

Now let us consider the general model with WOM,
as proposed in [5], but without the difficulty effect and
advertising. When f = h = 0, the strength of WOM —
which increases with probability (1−p) — has a substan-
tial effect on the demand curve. For high market prices
it significantly reduces the demand quantity, whereas for
low market prices it boosts the consumption, see the top
left part in Fig. 1. These results expand the findings
of [2, 15], who have concentrated only on the negative
effects of WOM.

Moreover, it can be observed that for low values of
independence probability p, there are regions character-
ized by a very high demand elasticity. For example, for
p = 0.1 and market prices around P = 0.063, a small
change of the market price may result in a substantial

change of the market penetration level. For P = 0.065,
the demand is Q = 0.22, whereas for 0.063 it rises to 0.99!
Hence a decrease in the market price by 0.02 leads to a
huge demand increase of 0.77 (on a [0,1] scale). As a re-
sult, two price regimes can be identified: high price/low
adoption and low price/high adoption, with a nonlinear
transition between them. The switch is the more rapid,
the lower is the personal judgment effect, i.e. probabil-
ity p, and the stronger the WOM effect. This diffusion
feature has an important implication for producers, who
need to take into account the shape of the demand curve
when setting the market price of the product. A small
overestimation of the price could block the diffusion and
lead to large revenue losses.

It should be emphasized that a similar pattern has
been found in [15] within a percolation framework.
The main difference between our studies comes from the
fact that in [15] an (almost) full market penetration is
obtained only for prices close to zero. On the contrary,
our results show that a high adoption regime (with the
market penetration of around 90%) could be also reached
for moderate prices, e.g. for p = 0.2 and P = 0.4.

In order to isolate the difficulty effect, the demand
curves for f = 0.2 and h = 0 are plotted in the top right
part of Fig. 1. In the case of weak WOM, i.e. p = 0.5,
the demand curve does not differ significantly from the
benchmark, no WOM model. The adoption difficulty
reduces, but does not stop the diffusion. A totally dif-
ferent picture arises when a model with strong WOM,
i.e. p = 0.1, is considered. WOM combined with the
adoption difficulty blocks the diffusion, which reaches
only Q = 0.133, even for a market price very close to
zero! This result may help to explain, why some of the
innovations do not succeed and never reach a satisfac-
tory market penetration level. It provides a warning for
companies, which propose a new but difficult to adopt
technology. Regardless of the potential benefits, WOM
may stop the diffusion process. In such a case, producers
should aim at weakening the WOM effect by properly
designed marketing campaigns. When models with mod-
erate WOM (i.e. p = 0.2, 0.3) are analyzed, conditional
on the level of the market price, WOM may either in-
crease or decrease the effect of the adoption difficulty.
The largest differences occur around the transition price,
which marks the threshold separating full market pene-
tration from a low penetration regime. Finally, to better
illustrate the difficulty effect in the left part of Fig. 2 we
plot demand curves for the same level of independence
and advertising (p = 0.1, h = 0.2) but six different levels
of difficulty (f = 0, 0.1, ..., 0.5).

In the considered model, advertising is assumed to
have a positive impact on the diffusion process and the
demand. In order to focus on this phenomenon, we
now consider models with no difficulty effect, i.e. with
f = 0. First, it should be noticed that parameter p af-
fects both the advertisement and WOM effects. In the
case of no WOM, the lower the independence level p, the
stronger the mass-media influence, see the bottom right
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Fig. 2. Dependence of demand curves P (Q) on the dif-
ficulty effect (left part) and advertising (right part) for
the same level of independence p = 0.1. Only mean-
field results for an infinite system are plotted. Arrows
indicate the direction of changes in f or h, from 0 to 0.5
with ∆f = ∆h = 0.1.

part in Fig. 1. Hence, small values of p support the dif-
fusion. On the contrary, when WOM is allowed, a low
level of p increases the social pressure and may slow down
the diffusion, see the bottom left part in Fig. 1. It can
be observed that WOM significantly changes the shape
of the curve and the potential penetration levels. Similar
to the f = h = 0 case, the differences are more significant
for smaller independence probabilities p. Moreover, as in
the previously studied cases, the influence is not uniform
across the different market prices. For a high market
price, WOM reduces the effect of advertising, whereas
for a low price it supports the diffusion. For instance, for
p = 0.2 WOM reduces the demand by 0.361 when the
market price is P = 0.7, but when P = 0.6 it increases
the demand by 0.182. Finally, to better illustrate the
effect of advertising in the right part of Fig. 2 we plot
demand curves for the same level of independence and
difficulty (p = 0.1, f = 0.2) but six different levels of
advertising (h = 0, 0.1, ..., 0.5).

3.2. Results for sample Facebook
and Google+ social networks

Up to this point we have considered artificial, fully con-
nected networks. Although complete graphs can be used
to study cliques in the society, in general, they are not
suitable for modeling real social networks. Hence, now
we present the results for sample Facebook and Google+
networks. Due to space limitations we consider only four
networks (see Table I for their descriptive statistics) and
only one model type (with the difficulty effect, f = 0.2,
but without advertising, h = 0; as in the top right part
in Fig. 1). However, for other analyzed social networks
and model types the results were qualitatively the same
when compared with the results obtained for complete
graphs and corresponding models.

The network structures were downloaded from
the SNAP database (see http://snap.stanford.edu/
data). The four selected networks, two from Facebook
and two Google+, vary in size and other network charac-
teristics. Nevertheless, the general picture is very similar
to the one for the complete graphs, see Fig. 3. Namely, a
strong WOM effect can lead to the creation of two sepa-
rated price-quantity regimes, with a nonlinear transition

TABLE I
Descriptive statistics of the four social networks considered
in this study. The first two are “circles” (or “friends lists”)
from Facebook, the last two are “circles” from Google+.

Number Average Average Average
Network number of degree clustering path

nodes edges coefficient length
#107 1034 26749 51.74 0.5264 2.95
#1912 747 30025 80.39 0.6354 2.54

#106186407539128840569 4289 246379 114.89 0.5759 2.57
#110614416163543421878 338 10626 62.88 0.5418 1.98

between them, and even a small shift of the market price
can result in a drastic change of the demanded quan-
tity. There are, however, some quantitative differences.
In particular, strong WOM in the presence of adoption
difficulty blocks the diffusion, but at a slightly higher
market penetration level, as if the real network structure
was somewhat more resistant to this influence. This issue
definitely requires a more thorough investigation. Yet,
the general guidelines for designing an adequate market-
ing strategy remain the same as put forward previously.

Fig. 3. Demand curves P (Q) for models with differ-
ent independence probabilities p, with a difficulty effect
(f = 0.2) and without advertising (h = 0) considered
on two Facebook (upper parts) and two Google+ (lower
parts) networks. Monte Carlo simulation results for a
complete graph consisting of N = 104 spinsons are de-
noted by symbols, whereas the corresponding mean-field
results for an infinite system by solid lines of the same
color. Interestingly, the demand curves do not devi-
ate very much from the curves obtained for complete
graphs, at least for p ≥ 0.2. Note that model parame-
ters are the same as in the top right part in Fig. 1.

4. Conclusions
The micro-level interactions are typically transformed

into the market behavior via the reservation prices. Al-
though the concept of reservation prices is well known in
the literature, it has not been explored very extensively
in the context of agent-based models. There are only
a few papers that relate agent opinions with reservation
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and market prices. However, most of them [15, 17, 18] use
the percolation approach, which is not consistent with the
experimental data [19]. To our best knowledge, only one
paper [5] uses an opinion formation framework, which
has been found to be suitable for innovation diffusion
modeling.

We have used the latter methodology for deriving and
analyzing the demand curves of innovative goods. Our
results show that social influence can significantly alter
the impact of both adoption difficulty and advertising.
The influence is not homogeneous and depends on the
level of market prices. WOM associated with high mar-
ket prices discourages diffusion and hence reduces the
positive impact of advertising and strengthens the influ-
ence of the adoption difficulty. On the other hand, for
low market prices, WOM boosts the diffusion and leads
to higher demand. Moreover, it supports the positive
response to advertising and weakens the effects of the
adoption difficulty. This outcome may be considered as a
recommendation for companies offering innovative prod-
ucts. Conditional on the targeted penetration level and
the market price, the company should aim either at weak-
ening or strengthening the WOM effect. By doing so, it
can increase the demand and increase potential revenues.

Moreover, due to WOM, we could observe a switch
from the low penetration into the high penetration
regime. For strong social influence and low level of in-
dependence, there exists a price threshold, which sepa-
rates these two regimes. For prices above the threshold,
the diffusion is blocked and the penetration level remains
very low. On the other hand, a small change of the price,
which leads to the reduction of the price below the thresh-
old, results in the rapid boost of the diffusion and a very
high market share. Hence, the model predicts that there
is a price level, for which the demand is extremely elastic
and price miscalculation may have severe consequences
for sales revenues and firm profits. Although a similar
result was found by Zeppini and Frenken [15], two impor-
tant details make our study particularly valuable. Firstly,
in our setup, it is possible that the product will not dif-
fuse even for very low market prices and will stay in the
low penetration regime regardless of the price decisions
of the producer. This may happen when the innovation is
difficult to adopt and the social influence is strong. Sec-
ondly, our model predicts that it is possible to reach an
almost perfect market penetration regime for moderate
prices, which is not feasible in a percolation model.
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