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ABSTRACT: The role of model resolution in simulating geophysical vortices with the characteristics of realistic tropical cyclones

(TCs) is well established. The push for increasing resolution continues, with general circulationmodels (GCMs) starting to use sub-

10-km grid spacing. In the same context it has been suggested that the use of stochastic physics (SP) may act as a surrogate for high

resolution, providing some of the benefits at a fraction of the cost. Either technique can reduce model uncertainty, and enhance

reliability, by providing a more dynamic environment for initial synoptic disturbances to be spawned and to grow into TCs. We

present results from a systematic comparison of the role of model resolution and SP in the simulation of TCs, using EC-Earth

simulations from project Climate-SPHINX, in large ensemble mode, spanning five different resolutions. All tropical cyclonic sys-

tems, including TCs, were tracked explicitly. As in previous studies, the number of simulated TCs increases with the use of higher

resolution, but SP further enhances TC frequencies by;30%, in a strikingly similar way. The use of SP is beneficial for removing

systematic climate biases, albeit not consistently so for interannual variability; conversely, the use of SP improves the simulation of

the seasonal cycle ofTC frequency.An investigation of themechanismsbehind this response indicates that SPgenerates both higher

TC (and TC seed) genesis rates, and more suitable environmental conditions, enabling a more efficient transition of TC seeds into

TCs. These results were confirmed by the use of equivalent simulations with the HadGEM3-GC31 GCM.

KEYWORDS: Tropical cyclones; Numerical weather prediction/forecasting; Climate models; General circulation models;

Stochastic models; Interannual variability

1. Introduction

The simulation of tropical cyclones (TCs) in contemporary cli-

matemodels remains a challenge, with a systematic underestimation

of both the number of TCs and their intensity (Shaevitz et al. 2014;

Walsh et al. 2015; Roberts et al. 2020). While the importance of

atmosphericmodel resolution in reducing these biases has long been

recognized (CamargoandWing2016;Emanuel 2018)and increasing

the horizontal resolution has been demonstrated to improve the

representationofTCs in climatemodels (Junget al. 2012;Murakami

et al. 2012; Strachan et al. 2013;Murakami et al. 2014; Knutson et al.

2013;Manganello et al. 2014;Roberts et al. 2015; Bhatia et al. 2018;

Bacmeister et al. 2018; Roberts et al. 2020), alternative stochastic

approaches have been put forward in recent years [see Palmer

(2019) for a motivational discussion]. Stochastic approaches ac-

count for unresolved processes and variability in models, and have

the potential to complement some of the benefits of resolution.

Moreover, these ideas explicitly acknowledge themultiscale nature

of the atmosphere and the role of scale interactions forweather and

climate variability. In this studywe analyze the statistics of TCs in a

systematic set of ensemble climate simulations, carried out at

varying horizontal resolutions—with and without the inclusion of

stochastic schemes—inorder to quantify and compare their impact.

a. Stochastic physics and uncertainty in climate prediction

Traditional parameterization schemes rely on the assumption

that the physics of the unresolved processes is uncoupled from the

dynamics of the flow. However, in the presence of upscale energy

cascades (e.g., through convection) the assumption clearly does not

hold and nonlinear interactions between different scales [i.e., from

meso-a to meso-g (2–20km)], comprising mesoscale convective

systems to TCs, as well as organized convection like theMadden–

Julian oscillation, cannot be adequately modeled. Stochastic

physics (SP) parameterization schemes aim to account for the

missing nonlinear interactions between unresolved processes, as

well as their impacts on the large scale, and thus to account for

some of the missing scale interactions in models (Palmer 2001;

Williams 2005; Khouider et al. 2010; Slingo and Palmer 2011).
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The development of SP schemes for weather and climate

models was pioneered by the numerical weather prediction

community and motivated by the need to explicitly represent

uncertainty due to model errors on subgrid scales (Buizza et al.

1999; Shutts and Palmer 2007; Plant and Craig 2008; Teixeira

and Reynolds 2008; Berner et al. 2009; Bengtsson et al. 2013;

Sanchez et al. 2014). However, they are now commonly used in

many operational forecasting centers; see Leutbecher et al.

(2017) for a recent overview. In the context of atmospheric

seasonal forecasts, Berner et al. (2012) argue that, for tropical

precipitation biases and tropical variability, increasing the hori-

zontal resolution has a rather small impact compared to the use

of stochastic schemes or improved physical parameterizations.

SP schemes have also become increasingly relevant for climate

simulations,mainly due to their potential role inmodifying themean

state, via noise-induced drift processes, and thus reduce intransigent

biases [see Berner et al. (2017) for a review and Palmer (2019) for a

more recent comprehensive perspective]. A common theme in all

these studies is the crucial role played by nonlinear interactions of

the stochastic schemewith convective processes, which allow even a

zero-mean perturbation to profoundly impact the model climate

attractor. It is thus expected that SP also influences tropical storms in

general and TCs in particular [see Stockdale et al. (2018) for an

assessment of the SP impact on ECMWF’s seasonal forecasts].

It should be stressed that the computational costs of adding

SP to state-of-the-art climate models are very small indeed:

while the doubling of resolution typically causes costs to rise

by a factor of 8–10, stochastic perturbations such as those used

in this study increase the costs by only ;5%.

b. TCs and prediction uncertainty

The simulation of TCs challenges all our current capabilities:

their multiscale nature has justified the use of any and all af-

fordable resolutions (e.g., Jung et al. 2012; Roberts et al. 2015,

2020). Their low annual frequency and large variability, from

days to decades, require the use of ensembles and long simula-

tions, including for predictions under climate change (Yoshida

et al. 2017; Mei et al. 2019). Their sensitivity to the large-scale

environment requires minimal model biases, which depends on

the quality of model dynamics and physical parameterizations

(LaRow 2013; Murakami et al. 2014; He and Posselt 2015;

Kepert 2012; Camargo et al. 2020).

There are many challenges and opportunities in the simu-

lation of large-scale TC drivers: the governing nature of El

Niño–Southern Oscillation (ENSO) on TC location and fre-

quency has been known for a long time (e.g., Gray 1984; Chan

1985; Lander 1994; Camargo et al. 2007b; Bell et al. 2014), but it

is also increasingly evident that the presence of strong TC ac-

tivity in the northwest Pacific can affect the Niño-3.4 index

three months later (Wang et al. 2019). Thus the simulation of

TCs could benefit from the improved simulation of ENSO

using SP (e.g., Christensen et al. 2017); conversely, a better

simulation of TC location, intensity, and frequency, particu-

larly interannual variability, could benefit the prediction of

ENSO in global seasonal and climate simulations [e.g., as im-

plied by Wang et al. (2019)].

Prediction of TCs on decadal and climate time scales is also

important to provide longer-term mitigation planning, in

particular for coastal communities, which are particularly

vulnerable to changes in TC track and intensity in a changing

climate [see quantification of TC-related precipitation in Guo

et al. (2017) and Franco-Díaz et al. (2019)].

There is consequently considerable uncertainty between

climate models as to the climatology, variability, and changes

in TCs with climate change (Camargo andWing 2016; Knutson

et al. 2020). Vecchi et al. (2019) have shown, in the context of

the prediction of future changes in TCs, that pre-TC synoptic-

scale disturbances (which they call ‘‘TC seeds’’) are the main

drivers of the simulated response (see also Sugi et al. 2020;

Yamada et al. 2021), where they also discuss changes in the

large-scale environment governing their origins and develop-

ment. Such disturbances are substantially weaker than the fully

formed TCs, so that their representation in GCMs is evenmore

uncertain [Slingo et al. 1994; see also the conclusions ofHodges

et al. (2017) with regard to the skill in current reanalyses].

Other recent papers, such as the downscaling study of Emanuel

(2021), use prescribed seeding, implicitly suggesting that this

process is of secondary importance in the study of climate change

and that what matters are changes in the TC environment.

c. TCs and GCM resolution

For the past 20 years the climate modeling community has

been investigating the role of model resolution in the simula-

tion of TCs; for example, Bengtsson et al. (1995), building on

the work of Broccoli and Manabe (1990) and inspired by

questions in Evans (1992), successfully simulated the clima-

tology of TCs (then called tropical cyclone like vortices) with

ECHAM3 at Tq106 truncation (’125-km Dx on a quadratic

Gaussian grid). A comprehensive history of these studies has

been traced in a review paper (Camargo and Wing 2016) that

spans NWP and seasonal applications; Walsh et al. (2013) and

Emanuel (2018) also summarize the impact of resolution on

TCs in the context of climate simulations.

More recently, the modeling community has organized a

number of intercomparison projects focusing on TC simulation

[see, e.g., results from the U.S. CLIVAR Hurricane Working

Group in Shaevitz et al. (2014)]. TCs are also one of the target

phenomena in PRIMAVERA-HighResMIP project (Haarsma

et al. 2016), which aims to systematically understand the role of

model resolution in the context of climate simulations.

Based on previous studies, the current consensus is that real-

istic TCs ‘‘emerge’’ in climate models at sub-100-km resolution,

and their track densities, as well as interannual variability by

basin, start to look credible at about 20-km resolution (less so for

theAtlantic basin), as shown for instance in Shaevitz et al. (2014)

and Roberts et al. (2020). GCMs have also demonstrated in-

creased skill in simulating interannual variability of TCs as res-

olution is increased (Zhao et al. 2009; Strachan et al. 2013;

Roberts et al. 2015), but large intermodel and intra-ensemble

uncertainties remain, so that ensemble sizes of at leastO(10) are

required (Yoshida et al. 2017; Mei et al. 2019; Roberts et al.

2020). Credible simulations of TC intensity remains elusive

(for surface winds, but some GCMs simulate TCs that are too

deep; Manganello et al. 2012). Roberts et al. (2020) demon-

strate that only one of the PRIMAVERA GCMs (CNRM)

presents a credible pressure–wind relationship, and even a few
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of the DYAMOND (i.e., Dynamics of the Atmospheric General

Circulation Modeled on Non-hydrostatic Domains) GCMs

(Stevens et al. 2019), with an average resolution of 5 km, struggle

with this aspect [see further details in Judt et al. (2021)].

SP thus seems to be particularly well suited for the simulation

of TCs because it targets unresolved variability, delivering some

of the benefits of resolution, while enabling the use of large

ensembles by being parsimonious. The focus of the present study

is to investigate the relative impact of enhancing resolution and/

or using SP on the representation of TCs in climate simulations.

The main questions of this study are the following: Can SP be

an efficient surrogate for model resolution, and, specifically, can

it be beneficial for the simulation of tropical cyclones?Therefore

two hypotheses will be considered with regards to the role of SP:

1) SP injects flow-dependent noise into the simulations, increasing

the initial number of (cyclonic) tropical disturbances that can

possibly grow intoTCs [i.e., TC seeds, as inVecchi et al. (2019)].

2) SP creates a more favorable large-scale environment for

genesis and development of TCs, revealed as increased

likelihood of TC seeds transitioning into TCs.

It is also possible that both hypotheses are valid in tandem,

and we use explicit tracking, as well as an empirical approach

(index-based), to investigate both. The specific aspects under

investigation are the climatology of TC numbers and geo-

graphical distribution, as well as their interannual variability;

TC intensity, while briefly analyzed in this study, will be the

focus of a follow-on paper, including the analysis of Climate-

SPHINX (i.e., Stochastic Physics HighResolution Experiments)

coupled (ocean–atmosphere) and climate change simulations.

The paper continues with a description of the models and

analysis methods in section 2, and the results are presented in

sections 3–5, spanning means and variability of TCs, including

its drivers. A discussion is given in section 6 and a summary and

final conclusions in section 7.

2. Models and methods

a. EC-Earth configuration, and the Climate-SPHINX

project campaign

In the present work, EC-Earth version 3.1 is used, exploiting

a set of atmosphere-only simulations carried out within the

Climate-SPHINX project [see Davini et al. (2017), which also

provides details of the scientific configuration].

All the simulations span the period from 1979 to 2008 (30

years) where well-mixed GHGs, stratospheric ozone, and

volcanic aerosol concentrations follow the CMIP5 (phase 5 of

the Coupled Model Intercomparison Project) protocol (his-

toric forcing ending in 2005, then RCP8.5; Moss et al. 2010).

Sea surface temperatures (SSTs) and sea ice concentration

used as boundary conditions have been obtained from the

HadISST2.1.1 dataset (Titchner and Rayner 2014), modified to

provide daily increments suitable for high resolution (Kennedy

et al. 2017, the same used in HighResMIP).

The hydrostatic EC-Earth atmospheric component is based

on the Integrated Forecasting System (IFS) and has been tuned

and improved for climate purposes by the EC-Earth Consortium

(Hazeleger et al. 2010). It is important to stress that, for a clear

interpretation of the sensitivity studies in this paper, model

tuning has been performed only for the T255 deterministic

(hereafter referred to as BASE) configuration, and all other

simulations are performed without retuning, in order to enable a

clear understanding of the role of resolution and SP. Therefore,

energy budgets at resolutions different from T255 present small

biases [see Davini et al. (2017) for details].

The Climate-SPHINX simulations comprise several en-

semble members over a range of five resolutions from TL159

(’125 km) to TL1279 (’16 km; see also Table 1) but retain the

same vertical grid configuration (L91), as hybrid sigma levels

with the last full level at 0.01 hPa. For each resolution—which

is defined by the spectral truncation—half of the ensemble

members have the stochastic physics parameterizations acti-

vated (STOC) and half are run with only the BASE configu-

ration. The prefixes for each experiment are shown in the last

column of Table 1, and the suffix B indicates BASE experi-

ments, while S stands for STOC, so that ‘‘CAB’’ is the BASE

experiment at COARSE resolution and ‘‘CAS’’ is the corre-

sponding STOC experiment. The number of ensemble mem-

bers starts at 10 for the lowest resolutions, for each of BASE

and STOC, and decreases to 1 for the highest resolution (see

Table 1), due to computational costs. The stochastic parame-

terizations used within EC-Earth comprise two different

schemes: the stochastically perturbed parameterization ten-

dencies (SPPT) and the stochastic kinetic energy backscatter

(SKEB) scheme (Berner et al. 2009; Palmer et al. 2009; Davini

et al. 2017). Both schemes are always used together in all

STOC experiments in SPHINX; the SPPT configuration is

exactly the same across all model resolutions, while SKEB uses

different backscatter ratios at each resolution.

The SPPT scheme focuses on the uncertainty arising from

the existing subgrid parameterization schemes (including ra-

diation, clouds, convection, turbulence and boundary layer

processes, and gravity wave drag) using a multiplicative noise

TABLE 1. The experimental configuration in SPHINX.

Truncation Equivalent resolution (m)

No. of ensemble members

(base 1 stochastic) Label Prefix

TL159 125 150 10 1 10 COARSE CA

TL255 80 600 10 1 10 LOW LA

TL511 40 200 6 1 6 MEDIUM MA

TL799 25 150 3 1 3 HIGH HA

TL1279 16 100 1 1 1 ULTRA-HIGH UA
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approach. The SPPT scheme perturbs the total diabatic

tendencies for T, U, V, and q at each time step, using the same

perturbation field e, which is the sum of three independent

random fields with horizontal correlation scales of 500, 1000,

and 2000 km. These fields are evolved in time using an auto-

regressive process with lag 1 [AR(1)] on time scales of 6 h,

3 days, and 30 days, with fields standard deviations of 0.52, 0.18,

and 0.06, respectively (Leutbecher et al. 2017).

The SKEB scheme (Berner et al. 2009) was developed for

the ECMWF IFS model, which is a spectral model, and com-

putes the backscatter of kinetic energy based on the dissipation

rates from deep convection, numerical dissipation, and gravity

mountain wave drag. This upscale transfer of energy is ob-

served in the real atmosphere, albeit absent in traditional

(deterministic) climate simulations. The kinetic energy lost in

the model at the smallest scales, due to dissipation, is scattered

upscale through perturbation of the streamfunction at the

largest scales. The SKEB scheme streamfunction perturba-

tions are modulated using the same stochastic spectral pattern

as for SPPT, except that the perturbations vary in height as well

as in space.

The relative contributions and total dissipation rates are

shown in Berner et al. (2012) in their Fig. 1. The dominant

contributor is deep convection in the tropics. Numerical dis-

sipation is the second largest contributor. Berner et al. (2012)

pointed out a weak resolution dependence of these calcula-

tions and suggested, based on the apparent underdispersion of

the forecast ensembles, that there are additional sources of

model uncertainty that are not captured by the scheme.

The analysis of initialized seasonal forecasts with the IFS

model in Weisheimer et al. (2014) revealed that the SKEB

scheme had almost no impact, while a positive impact was

found for the SPPT scheme, in particular in regions where deep

convection plays a major role, such as the western tropical

Pacific. In the same study, SPPT also shows a positive impact

on the Madden–Julian oscillation (MJO) amplitude distribu-

tion and ENSO forecast quality.

b. The unified model

The configuration of the global coupled model HadGEM3-

GC3.1, submitted to the CMIP6 HighResMIP (Haarsma et al.

2016), is described in Roberts et al. (2019): it incorporates a

global atmosphere–land configuration calledGA/GL7.1 (Walters

et al. 2019), forced by the same SSTs and sea ice used for the

SPHINX experiments. The HighResMIP protocol was followed,

which recommends the use of the MACv2-SP scheme (Stevens

et al. 2017) for simplified and standardized aerosol forcing. This

specifies the change of anthropogenic aerosol optical properties

over time, enabling easier comparison between different models,

while retaining the model’s own aerosol mean background cli-

matology and therefore requiring little or no additional tuning. It

is used here in place of the prognostic GLOMAP-mode scheme

(Mulcahy et al. 2018).

The nonhydrostatic atmospheric model uses a regular

latitude–longitude grid, and has 85 levels extending to 85 km.

The HadGEM3 simulation analyzed in this study has a Dx ’

60 km at midlatitudes (N216). Compared to the spectral IFS,

this formulation brings with it substantial differences in

numerics, the effective resolution (see Klaver et al. 2020),

and in particular the dissipation rates (convective and nu-

merical dissipation only).

We use simulations with and without SP: the three ensemble

members taken as control correspond to the official GA/GL7.1

scientific configuration, using SP, while three sensitivity ex-

periments disable SP entirely or else use an individual SP

scheme at a time. The GA/GL7.1 scientific configuration en-

codes SP schemes similar to EC-Earth, albeit following en-

tirely independent implementations, including their parameter

settings: stochastic perturbation of parameters (SPT) and

SKEB-type [SKEB2; see Sanchez et al. (2016) for details].

Tennant et al. (2011) describe the SKEB2 system as developed

for the Unified Model (UM; the parent of HadGEM3).

Differences in the dissipation rates of theUM, compared to the

IFS, are ascribed to differences in the convection schemes

between the models. Another noteworthy difference between

the schemes is that the SKEB2 scheme not only provides a

forcing for the streamfunction (as in the IFS), but also acts as a

forcing to the velocity potential [see Fig. 1 in Sanchez et al.

(2016) for details], which represents an important difference

from the SKEB scheme used in Climate-SPHINX.

The same Climate-SPHINX period was extracted from each

for the purpose of TC tracking in this paper.

c. Tracking and TC identification

TCs are tracked and identified on an annual basis (January–

December in the NH and July–June in the SH), using 6-hourly

data from each individual simulation using the same method-

ology as in Hodges et al. (2017), there applied to reanalyses,

and previously used in several other model-based studies of

TCs (e.g., Manganello et al. 2012; Strachan et al. 2013; Roberts

et al. 2015). Initially all cyclonic systems are tracked using the

vertical average of relative vorticity in the layer 850–600 hPa,

at a common resolution of T63, between 608S and 608N. This

initial step, bringing all model fields to a common low-

resolution truncation (here T63), has been used for the past

20 years in order to enable a fair comparison between models

with different formulations and resolutions, and has been

shown to reduce noise and to produce more coherent tracks

and more complete TC life cycles, including their very early

stages. Cyclonic disturbances (TC precursors) are initially

identified as grid point maxima (NH) or minima (SH), exceeding

amagnitude of 53 1026 s21 at each time step (scaled by21 in the

SH), and the off-grid locations are then obtained using B-spline

interpolation and steepest ascent maximization, resulting in

smoother tracks. Tracks are initialized using a nearest neighbor

method and are then refined by minimizing a cost function for

track smoothness, subject to adaptive constraints for track

smoothness and displacement distance within a time step.

Following the tracking, tracks are filtered to retain those

that last longer than 2 days. To allow warm core criteria to be

applied, the T63 vorticity maxima (minima in the SH) are

recursively added to the 2-day tracks at levels 850, 700, 600,

500, 400, 300, and 200 hPa, using the B-spline interpolation

and maximization to assign a value if the maximum is within

a 58 radius of the center at the previous level. Also added to

the tracks are the full-resolution MSLP minima and 10-m
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maximum wind speeds. For MSLP, B-splines and steepest

descent are used using the 850-hPa vorticity center as the

starting point for the minimization and assigning minima if

they are within a 58 radius of the tracked vorticity center. For

the 10-m winds a direct search for the maximum wind of the

grid points within 68 radius of the tracked center is performed.

TCs are identified from among all the tracked cyclonic sys-

tems (TC precursors) using incremental criteria:

1) tracks must start within a latitudinal band (308S–308N) and

last for at least 2 days (TC seeds);

2) the T63 relative vorticity at 850 hPa must attain a threshold

of at least 6 3 1025 s21;

3) the difference in vorticity between 850 and 250hPa (at T63

spectral truncation) must be greater than 6 3 1025 s21, to

provide evidence of a warm core (via thermal wind balance);

4) the T63 vorticity center must exist at each level between 850

and 250 hPa for a coherent vertical structure; and

5) criteria 2–4 must be jointly attained for a minimum of four

consecutive time steps (one day) and only apply over

the oceans.

Note that the initial vorticity thresholds are very low by

design [e.g., two orders of magnitude smaller than what is used

in Hsieh et al. (2020)], as the TRACK approach to identifica-

tion is in the use of the structural criteria described above. A

common identification procedure based on a small set of cri-

teria is also beneficial, in that it reduces the number of sub-

jective choices to be made, such as resolution-dependent

thresholds, and removes the identification as an uncertainty in

comparing the results from different models. Some of these

aspects, including comparison to other tracking methods, are

covered in Roberts et al. (2020).

Following the tracking, spatial statistics including the track

and genesis densities are computed using spherical kernel es-

timators (Hodges 1996).

The benefit of this approach is that the full life cycles of TCs

are identified, including the precursor stage (e.g., easterly

waves; Thorncroft and Hodges 2001; Serra et al. 2010; Yang

et al. 2019), as well as other precursors (Fine et al. 2016) and

post-TC stages (Sainsbury et al. 2020; Baker et al. 2021). After

all TCs have been identified with the criteria above, TC pre-

cursors are further split, via an additional analysis stage, and

only for the specific goal of the tables in section 3b, into tropical

(308S and 308N) and extratropical (poleward of 308S or 308N).

TRACK follows a Lagrangian approach that identifies each

cyclonic feature explicitly, and is complementary to the work

on TC seeds inVecchi et al. (2019), who used instead bandpass-

filtered variances, with a period of 3–10 days. A more recent

paper by Hsieh et al. (2020), continuing previous studies of TC

seeds, used explicit tracking, as in this study, albeit performed

on the original model grid.

d. The genesis potential index and its terms

To complement the understanding of what controls TC

formation, distribution, and lifetime, both in terms of climate

means and variability, we have computed the genesis potential

index (GPI; see e.g., Emanuel and Nolan 2004; Camargo and

Wing 2016) as

GPI5 j105hj3/2
�

H

50

�3�V
pot

70

�3

(11 0:1V
shear

)22,

where h is the absolute vorticity at 850 hPa, H is the 600-hPa

relative humidity, Vpot is the potential intensity, and Vshear is

the magnitude of 850–200-hPa wind shear. All GPI terms were

computed by following the methodology of Bister and Emanuel

(2002), as implemented in thePython script providedonline.1All

relevant variables, as monthly means for each ensemble mem-

ber, were transferred from CINECA (Bologna, Italy), and cli-

matologies, as well as basin time series, were built for each

experiment. The same analysis was carried out by applying the

algorithm to the ERA5 reanalysis, in order to provide an ob-

servational foundation.

3. Mean climatology of TC frequencies, distributions,

and their response to the large-scale environment

a. Basin statistics

Figure 1 shows the number of tropical depressions, tropical

storms (combined), and tropical cyclones, by category, iden-

tified by TRACK in each hemisphere. We have used a classi-

fication based on MSLP, as in Klotzbach et al. (2020), because

of their strong arguments with regard to the study of the impact

of TCs. This classification also enables us to identify TD1TS in

IBTrACS, and at the same time it avoids the peculiarities of

surface layer extrapolation of model level winds, a problem

that has been particularly evident in recent intercomparisons

(see, e.g., Roberts et al. 2020). Figure 1 shows the different

SPHINX simulations (BASE with B suffix and STOC with S

suffix), organized with increasing resolution (from left to right)

and each SP experiment (S) inserted between each pair of

resolutions (B). The height of the bars for each category sug-

gests that SP is equivalent to an in-between model resolution

when it comes to how many TCs are produced in each hemi-

sphere. The results compare well to past studies, indicating

that, as model resolution is increased, more TCs are produced

in the climate simulation, with an initial steep increase for the

weaker categories, up to T255, then tending to reach a plateau.

As in previous GCM intercomparison studies (e.g., Roberts

et al. 2020), a realistic simulation of the frequency of TC cat-

egories 4 and 5 is still elusive, even at the highest resolution

(T1279), which nonetheless demonstrates a tendency for res-

olution and SP to both be beneficial. A recent intercomparison

study by Judt et al. (2021), in which the PRIMAVERA-

HighResMIP IFS model participated, albeit with convection

explicitly represented, indicates that the full spectrum of TC

intensities (both winds and central pressure) does become

more realistic at 5-km resolution for that particular model

configuration.

The climatology of the spatial distribution for the cyclonic

disturbances counted in Fig. 1 confirms that these are indeed

tropical cyclones, with spatial signatures that bear strong re-

semblance to observations. Figure 2 shows the track density

1 See ftp://texmex.mit.edu/pub/emanuel/TCMAX/.
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climatologies from IBTrACS observations (Knapp et al. 2010),

for the 1979–2008 period, and is provided as the reference

against which all simulated TC density maps should be as-

sessed. To verify this, Fig. 3 shows the (ensemble mean) track

density climatologies simulated in Climate-SPHINX for each

resolution (rows) and for the two experiments BASE and

STOC (first and second columns). The information is pre-

sented in the form of TC track densities (color mesh) and

supplemented in each basin by average storm counts per year

[domains defined as in Hodges et al. (2017)]. The coarsest

resolution in each experiment is shown at the top.

Tables 2 and 3 also provide some overall statistics that are

useful to interpret the information in the track density maps

(Fig. 3), as well as the ensemble spread and the systematic

differences between resolutions, which are significant, given

the small ensemble spread.

The comparison of Figs. 2 and 3 demonstrates two things:

first, similar to previous studies (Zhao et al. 2009; Strachan

et al. 2013; Roberts et al. 2015), enhancing resolution increases

the number of simulated TCs, which is reflected in the en-

hanced track density and better agreement with observations.

The results in Fig. 3 are quite unique in terms of their robust-

ness, afforded by the large ensemble and the five different

resolutions. The resolution effect is apparent in each of the

major TC basins and is consistent in both sets of simulations,

BASE and STOC, as each column is inspected individually.

For the southwest Pacific domain, it is obvious that all models

at moderate to high resolution, independent of the use of SP,

overestimate the track densities and counts, as compared to

observations. This is a common feature in GCMs, particularly

for AGCMs, but also partially reflects observational uncer-

tainty, due to how TCs are counted in different basins, as dis-

cussed in Hodges et al. (2017). Similar errors occur over the

north Indian and South Atlantic domains, and have been am-

ply discussed in previous publications (e.g., Hodges et al. 2017;

Roberts et al. 2020).

Additionally, and similar to the resolution effect, SP en-

hances the number of simulated TCs, which is revealed by

comparing the first and second columns, as well as their dif-

ferences in the third column. A striking resemblance between

the STOC plot in each row and its companion BASE plots in

the left column (same row and one row down) supports a

strong and systematic finding for TC simulation: the use of SP is

equivalent to an increase in resolution, albeit not quite

equivalent to a full doubling of resolution. By inspection of the

panels in Fig. 3, the model response is spatially coherent across

resolutions, with the track densities tending to increase rather

than shift, with few local exceptions. The individual ensemble

members are also coherent with each other (not shown).

Further, the differences between STOC and BASE are shown

to be robust in the TC-active regions, as indicated by theWelch

test (Wilk 2011).

The SP effect is most pronounced and consistent in the

northwest Pacific, and presents a local maximum in the south-

west Pacific, to the east of Australia. In other basins (e.g., the

North Atlantic, where most GCMs still struggle to simulate a

FIG. 2. TC track densities from the IBTrACS dataset for the

Climate-SPHINX simulation period (1979–2008). Track density units are

number per month per unit area, where the unit area is a 58 spherical cap.

FIG. 1. The (top) NH and (bottom) SH TC counts per category,

for the SPHINX period, 1979–2008, together with the corre-

sponding IBTrACS observations (shown at the far right). Units are

number per year. The vertical black lines indicate the ensemble

spread.
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realistic number of TCs), the response to SP is not consistent at

all resolutions, with a decrease at COARSE, then an increase at

LOW, and a dipole response, reflecting differences in the eastern

versus western North Atlantic, for MEDIUM, HIGH, and

ULTRA-HIGH resolutions. In terms of significance, there is an

interplay between information provided by the large ensemble

sizes at COARSE resolution and the stronger signal at HIGH

and ULTRA-HIGH resolutions. In other words, taking the

FIG. 3. TC track densities for the EC-Earth (IFS) model, Climate-SPHINX campaign. Blue numbers in each panel indicate the number

of storm transit per months for each sector, while black numbers in the top row are the IBTrACS observations. Stippling indicates the

significance at the 5% level; track density units are number per month per unit area, where the unit area is a 58 spherical cap.

TABLE 2. All NH TC precursors, TC seeds, TCs, number per year.

All TC precursors TC seeds TCs

TRUNC BASE STOC % DIFF BASE STOC % DIFF BASE STOC % DIFF

TL159 9283 6 158 11 800 6 185 27 2895 6 57 3603 6 69 24 18 6 4 24 6 5 30

TL255 9958 6 165 12 291 6 189 23 3201 6 57 3837 6 68 20 31 6 5 42 6 6 36

TL511 10 111 6 191 13 053 6 182 29 3375 6 66 4120 6 64 22 52 6 7 67 6 8 28

TL799 10 145 6 158 12 791 6 176 26 3399 6 59 4079 6 76 20 57 6 7 70 6 6 22

TL1279 10 186 6 223 12 809 6 212 26 3419 6 62 4062 6 62 19 59 6 7 76 6 8 29
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ensemble mean of the larger ensembles at COARSE to

MEDIUM resolution plays less of a role than the stronger

signal found in HIGH and ULTRA-HIGH, which is further

supported by the larger numbers seen in Tables 2 and 3.

An additional question arises as to whether increased track

density is due to changes in the TC to area ratio (e.g., larger

number of TCs in the same area) or to unchanged numbers,

albeit with longer-lasting tracks. Examining the genesis density

statistics in Fig. 4, as well as the information on interannual and

seasonal variability shown in later sections, it is clear that the

use of SP enhances genesis by up to 30%, thus reflecting the

first mechanism. However, the genesis density change is not

uniform in all basins: the northwest Pacific and north Indian

basins show increases that are consistent across resolutions and

rather widespread. The eastern North Atlantic also shows a

consistent increase at the first three resolutions, at the location

where easterly waves encounter the ocean (Thorncroft and

Hodges 2001), as well as the western North Atlantic region just

north of Colombia, which is important for Gulf TC tracks and

east Pacific TCs (Serra et al. 2010). Other locations, such as the

eastern Pacific, see a reduction in genesis at MEDIUM and

HIGH resolution, which could be a response to the represen-

tation of the mountains in Central America, which have in-

creased height and complexity at high resolution, affecting the

propagation of atmospheric waves from the Caribbean.

b. Statistic of transition from precursors to TC seeds and

to TCs

We now turn to addressing the two complementary hy-

potheses on the role of seeding and the role of environments

favorable for cyclogenesis. Table 2 shows the TC precursors,

TC seeds, and full warm-core TC counts for the Northern

Hemisphere (including ensemble spreads) and their differences,

as percentages; Table 3 shows the counts for the Southern

Hemisphere. In both hemispheres we start with around 10 000

TC precursors per year [an equivalent number of extratropical

cyclone (ETC) precursors are found poleward of 308]; next,

around 3000 TC seeds (2-day systems) are found, finally ending

upwith less than 100 TCs, in broad agreement with observations.

The ensemble spread is very small at each resolution, around

2%, and independent of the use of SP.

Both tables show that TC precursors and seeds increase

systematically with resolution in both BASE and STOC, but

the increase from BASE to STOC is larger than the increase

caused by enhancing resolution (even across all five resolu-

tions); this is true in both hemispheres. Further, the relative

increase in TCs caused by the use of SP is seen both in the

number of precursors, compatible with the first hypothesis, as

well as in the last transition, to full warm-core TCs, supporting

the second hypothesis.

Comparing the numbers in terms of percentages, the SP-

induced increase in precursor generation is between 23% and

29% (23%–27% in the SH), with lower-resolution simulations

showing a larger percentage increase. However, the last col-

umn of data shows that the extra transition into full TCs is in

the range of 22%–36% (19%–42% in the SH). The impact of

SP on the final transition towarm-core TC further increases the

initial probability of generating a TC from precursors, and is

less systematically dependent on resolution, although it ap-

pears to increase overall in the SH. This spatially dependent

resolution response (hemispheric here, and basin-dependent in

later sections) is counterintuitive, as the (dominant) SPPT

scheme perturbations are the same at all resolutions, and this

requires careful interpretation (see section 6).

TRANSITION FROM PRECURSORS TO 2-DAY CYCLONES

IN THE EXTRATROPICS

Given the fact that SP has been shown in Watson et al.

(2017) to preferentially impact the tropics in terms of moisture

availability, and given previous studies on the effects of SP on

ETCs, it is interesting to contrast TC and ETC transition rates

in the context of a single study. The statistics for ETCs, shown

in Tables 4 and 5, indicate that we start from a number of pre-

cursors almost identical to what has been found in the tropical

region, still accompanied by small ensemble spreads. However,

for the ETC precursors, differences between 10% (12% in SH)

for COARSE and 7% (5% in the SH) for ULTRA-HIGH were

found in terms of sensitivity to SP; for the (2-day) ETCs, the

differences are even smaller (1%–4%), indicating that SP plays

some role in seeding, albeit only a limited role in conditioning the

ETC environment, as ETC dynamics is different from TC dy-

namics, and less dependent on convection.

c. Probability of cyclogenesis and its environmental control

The probability of cyclogenesis [PC; similar to survival rate

(SR) in Yamada et al. (2021, their Eq. (1)] is the local ratio

between the frequency of TCs and that of TC seeds: PC 5

TC/TCseed.

We computed the spatial distribution of PC by taking the

ratio of track density for TCs and TC seeds at each grid point.

All PCs are computed separately for each of the 60 simulations

and then combined as ensemble and multiyear averages, in

order to illustrate the regional impacts of SP (columns) and

resolution (rows).

TABLE 3. All SH TC precursors, TC seeds, TCs, number per year.

All TC precursors TC seeds TCs

TRUNC BASE STOC % DIFF BASE STOC % DIFF BASE STOC % DIFF

TL159 9509 6 168 12 045 6 178 27 3016 6 53 3720 6 58 23 28 6 5 34 6 5 19

TL255 10 334 6 171 12 801 6 198 24 3374 6 50 4041 6 63 20 34 6 6 43 6 6 24

TL511 10 671 6 174 13 502 6 193 27 3611 6 54 4311 6 65 19 42 6 6 57 6 7 34

TL799 10 716 6 193 13 295 6 204 24 3644 6 63 4277 6 60 17 46 6 7 61 6 7 33

TL1279 10 693 6 178 13 193 6 205 23 3665 6 53 4290 6 77 17 48 6 6 68 6 9 42
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Figure 5 shows that PC for track density is as high as 30% in

large regions of TC activity: the highest values are found in the

northwest Pacific and the largest changes correspond to the

change in resolution, with SP showing a similar (albeit smaller)

response. A few cases of reduction in PC when using SP are

found, as large as 210%, as seen for instance in the eastern

Pacific. These results are comparable with those in studies

considering developing versus nondeveloping tropical synoptic

disturbances identified in reanalyses in both the Atlantic and

northwest Pacific (Fu et al. 2012; Peng et al. 2012; Brammer

and Thorncroft 2015; Hankes et al. 2015), where PC can be as

high as 30% or more.

Figure 5 also shows the GPI, computed from the Bister–

Emanuel algorithm (Bister and Emanuel 2002) as shaded

colors. The GPI fields shown here indicate that the mean TC

environment responds less to the introduction of SP, or increase

of resolution, than the PC itself. The figure also indicates thatGPI

peaks at the point of entry of the most active TC regions [e.g., in

the North Atlantic main development region (MDR)]. The

subtler aspects of the response ofGPI to SP and resolutionwill be

explored in a later section, particularly for variability.

d. Location and relative magnitude of seeding and

cyclogenesis

To better understand the SP response of TCs seen so far,

DTC, we break it into two terms at each resolution: (i) extra

formation of TCs due to an increase in the number of TC seeds,

versus (ii) extra transition from TC seed to TCs, due to cyclo-

genesis. These terms are directly related to our two hypotheses

and we call them the seeding term and the cyclogenesis term:

FIG. 4. TC genesis densities for the EC-Earth (IFS) model, Climate-SPHINX campaign. Stippling indicates the significance at the 5%

level. Genesis density units are number per month per unit area, where the unit area is a 58 spherical cap.
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Ideally, the two rightmost terms should add to the leftmost

exactly, but in practice this is an approximation, as the seeding

term will tend to affect the genesis stage of TCs, while the

cyclogenesis term applies to their entire lifetime, so that the

contributions from the two terms cannot be expected to be

exactly collocated, even for relatively large regions, as resolved

by the COARSE simulations. For the large sample size used in

this paper, however, the approximation holds well (also veri-

fied by plotting the difference between left-hand side and the

sum of the right-hand side terms; not shown). Figure 6 shows

the DTC in response to SP at each resolution for the ensemble

means and the breakdown into the contribution of TC seeding

term versus the contribution of the cyclogenesis term. The

seeding response to SP is mostly positive and largest in areas

where TCs spend most of their lifetime, as well as slightly

sensitive to resolution. The cyclogenesis term has a stronger

response to SP, and it can result in either an increase or de-

crease of TCs in each region, most notably with a decrease in

the eastern Pacific and over most of the Indian Ocean. The

cyclogenesis term also responds to resolution more vigorously,

and in an apparently linear way.

It can be said in summary that SP acts to enhance TC seeding

overall, and this effect is slightly sensitive to resolution; how-

ever, cyclogenesis is more important for transition, and more

sensitive to both resolution and SP, able to cause both an in-

crease and a decrease of TCs simulated in a region. This jus-

tifies turning our attention to the TC environment simulated by

the SPHINX models.

e. GPI terms and their control on the climatology of TCs in

each basin

To understand systematically the location and magnitude of

changes due to resolution or SP, a number of difference fields

for TCs and their environment are computed. We have orga-

nized the plots so that the leftmost column in each of the four

panels of Fig. 7 shows the response to the introduction of SP

at each resolution (STOC 2 BASE), while the rightmost

column shows the response to one increment of resolution (e.g.,

LAB 2 CAB, MAB 2 LAB, and so on), while retaining the

BASE model formulation (no SP is used).

The DPC values are plotted as contours overlaid onto changes

in environmental conditions as used in the calculation of GPI

(shear, relative humidity, vorticity, potential intensity), shown in

Fig. 7. The convention is that signs for GPI terms are presented

exactly as shownby theGPI equation, so that, for instance, a large

GPI shear term corresponds to a smallmagnitude of vertical wind

shear and a positive change in the GPI shear term corresponds

to a decrease in vertical wind shear. For potential intensity, we

have also computed all terms, in particular the thermodynamic

efficiency. We plotted GPI and the three most significant GPI

terms in Fig. 7: for GPI itself, SP acts to reduce PC in the eastern

Pacific and around the Maritime Continent, while acting to in-

crease PC in theNorthAtlanticMDR, in the SPCZ, in the Indian

Ocean, and in the northwest Pacific. Increasing the model reso-

lution acts to increase PC in the eastern Pacific, as well as in all

main TC activity regions. At LOW to MEDIUM resolution, the

spatial patterns for the regions where PC increases are very

similar to each other.

Considering the GPI terms individually, SP acts to moisten

the environment in the western part of each basin, mostly

where PC increases, while drying the environment in the

eastern Pacific, where PC decreases (e.g., for MEDIUM and

HIGH). Model resolution appears to cause more of a drying

effect at LOW to MEDIUM resolution, particularly around

the Maritime Continent, with the exception of the Bay of

Bengal and the northwest Pacific at MEDIUM resolution and

the eastern Pacific at LOW and MEDIUM resolution.

The use of SP causes a stronger shear term, which is clear in

the eastern Pacific and to the east of the Maritime Continent,

TABLE 4. All NH ETC precursors and ETCs, number per year.

All ETC precursors ETCs

TRUNC BASE STOC % DIFF BASE STOC % DIFF

TL159 8909 6 101 9825 6 98 10 2664 6 37 2746 6 38 3

TL255 9947 6 103 10 835 6 112 9 2818 6 40 2904 6 39 3

TL511 10 608 6 109 11 559 6 116 9 2909 6 42 3011 6 41 4

TL799 10 760 6 110 11 452 6 105 6 2940 6 42 3017 6 39 3

TL1279 10 786 6 102 11 558 6 136 7 2939 6 47 3035 6 39 3

TABLE 5. All SH ETC precursors and ETCs, number per year.

All pre-ETC features ETCs

TRUNC BASE STOC % DIFF BASE STOC % DIFF

TL159 7282 6 112 8168 6 125 12 2167 6 33 2236 6 37 3

TL255 8515 6 114 9313 6 133 9 2365 6 34 2413 6 38 2

TL511 9573 6 124 10 259 6 127 7 2515 6 40 2559 6 38 2

TL799 9807 6 128 10 329 6 134 5 2564 6 45 2586 6 36 1

TL1279 9940 6 147 10 396 6 109 5 2573 6 30 2603 6 47 1
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corresponding to reduced PC, and, to a lesser extent, a weak-

ened shear in the northwest Pacific, increasing PC. The reso-

lution enhancement reduces shear overall, and this is beneficial

to PC, particularly in the eastern Pacific.

The potential intensity maps show that the use of SP tends to

decrease the simulated PI, while an increase in resolution tends

to increase PI. The effect is rather widespread and, while lo-

cated predominantly in the tropics, it does not show any par-

ticular spatial correlation with the regions where PC changes.

Emanuel et al. (2013) identify three thermodynamic variables

useful to understand the formation of TCs: 1) the presence of

moist convection, 2) midtropospheric humidity, and 3) potential

intensity (PI). We have focused so far on the last two variables,

part of GPI, and their role in the conversion of TC seeds; our

findings are supportive of the conclusions in Vecchi et al. (2019)

and Yamada et al. (2021). The role of moist convection may not

be revealed byGPI, but can be investigated by the examination of

theOLRfields in the EC-Earthmodel. Results fromDavini et al.

(2017) (their Table 2), indicate that top-of-the-atmosphere

emitted longwave radiation is 238.71Wm22 for COARSE

BASE and 241.74Wm22 for ULTRA-HIGH STOC, with a

pattern of nearly linear increase. Examination of the OLR field

(not shown) reveals that both resolution and SP act, instead, to

reduce radiative loss at the locations where TCs are present, and

particularly so where PC rates are high. The overall model be-

havior is thus consistentwith deep convection being present at the

locations of TC activity, and strongest at the locations of maxi-

mum PC. The tropical impact of SP is in fact consistent with the

broad moistening of the tropical atmosphere shown by Watson

et al. (2017) for the same model. These two aspects of large-scale

versus local-scale response point to a potential feedback between

TCs and their environment, which may be enhanced or hindered

by SP, such as via the multiplicative nature of the SPPT scheme.

4. Interannual to seasonal variability and environmental

controls on TCs

Linking the interannual variability (IV) of TCs to the simulated

environment in each experiment can be used to understand what

themain drivers of the response to resolution and SP are, as well as

FIG. 5. The SPHINXmodels GPI (shaded color mesh) and the probability of cyclogenesis (PC%) from TC seeds

to TCs (contours), as a function of resolution (rows, with COARSE at top and ULTRA-HIGH at bottom) and SP

treatment (columns: BASE on the left and STOC on the right). Contour levels for PC are shown in the lower box.
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uncovering any improvements in predictability, defined as skill in

predicting year-to-year changes in TC frequency. The other reason

for focusing on IV is that predictive skill at this level provides an

important degree of trust in a model’s dynamics and physics, as it is

harder to tune for variability than for climate means, and IV

provides a stricter test for amodel to be deemed ‘‘fit for purpose’’ in

terms of climate change applications [see discussion in Vidale

et al. (2003)].

In this section, statistics for the interannual variability of TC

counts for the entire period are presented by basin, for all simula-

tions. First, Table 6 demonstrates how the use of SP increases

interannual variability across resolutions and basins, with few ex-

ceptions, mostly representing an improvement, with the notable

exception of the SWPAC, where IV is overestimated at truncations

of T255 (LAB) and above. This is an important result, as GCMs,

particularly at low resolution (as seen in COARSEBASE), tend to

underestimatevariability, and it is not clear apriori howanensemble

ofAGCMs, all driven by the same observed SSTs and sea ice,might

react to the addition of SP. It remains to be seen whether this ad-

ditional variability originates from signals contained in the SST/sea

ice and radiative (aerosols) forcings, potentially a sign of climate

predictability, or whether it is just internal variability (noise).

It is of particular interest and value to the community to improve

the prediction of interannual changes in TC frequencies by basin,

based on previous evidence of potential predictability (see Zhao

et al. 2009; Roberts et al. 2015, 2020). To this end, we focus on four

traditional basins: the NorthAtlantic (Fig. 8a), the northwest Pacific

(Fig. 8b), the south IndianOcean (Fig. 8c), and the southwest Pacific

(Fig. 8d), showing the time series of TC counts at each resolution, as

well as correlations with observed TC statistics (IBTrACS).

The counts and variability at COARSE resolution are both

underestimated but increase as we move to the bottom of

each panel, towardULTRA-HIGH. In theNorth Atlantic the

correlation between the IBTrACS counts and the number of

TCs identified in the Climate-SPHINXmodels increases from

0.23 to 0.35 (COARSE to HIGH), but is then reduced to 0.19

at ULTRA-HIGH. The correlations in STOC are mostly

lower, except for LOW resolution. It is particularly notice-

able how all models entirely miss the exceptional TC season

of 2005, but are able to capture some La Niña responses (e.g.,

in 1995). For the northwest Pacific, correlations are once

again modest, and slightly higher as we increase the resolu-

tion (range from 0.15 to 0.28); the addition of SP in STOC

would seem beneficial in COARSE, LOW, and MEDIUM.

There is moderate skill in the south Indian Ocean, with cor-

relations from 0.25 to 0.37, with some improvement from

COARSE to HIGH (also reflected in the means). SP im-

proves the IV correlations at COARSE toMEDIUM, but this

decays with HIGH and ULTRA-HIGH. BASE and STOC

also appear to be distinctly different at HIGH resolution in

the last 10 years of simulation, also based on the small en-

semble spread. For the southwest Pacific, it is clear that there

is a significant overestimate of the number of TCs, which had

also been observed in reanalyses (Hodges et al. 2017), and

made worse by SP; the representation of IV is similar to that

seen in the North Atlantic in the range COARSE to

FIG. 6. The relative roles of seeding and cyclogenesis in creating a TC response to SP at each resolution: (left) total count, (center) role of

seeding, and (right) role of cyclogenesis. Units are as in Fig. 3.
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MEDIUM, but decaying after that. SP seems to make no

significant improvement, or even to give a negative correla-

tion at HIGH resolution.

Overall, the interannual variability skill is poor when com-

pared to other models (see section 6); moreover, by using a

two-tailed Kolmogorov–Smirnov test (p 5 0.05) we cannot

state that any of the differences encountered, in any of the

basins, are significant, despite the sizable ensemble.

a. Seasonal variability

Figure 9 shows the mean annual cycle for the North Atlantic

(top) and northwest Pacific basins (bottom), defined as in

TABLE 6. TC variability (standard deviation of annual means) in selected basins: NATL 5 North Atlantic, NWPAC 5 northwest

Pacific; EPAC 5 eastern Pacific; NIND 5 northern Indian Ocean; SIND 5 southern Indian Ocean, and SWPAC 5 southwest Pacific.

Units are TCs per year.

Truncation/experiment NATL NWPAC EPAC NIND SIND SWPAC

TL159 CAB 1.60 3.15 1.21 1.61 2.85 4.11

CAS 1.63 3.90 1.30 1.78 2.87 4.24

TL255 LAB 1.88 3.99 2.01 2.07 3.43 4.59

LAS 2.51 5.13 2.29 2.48 3.82 5.15

TL511 MAB 2.29 5.25 2.88 2.82 4.12 5.89

MAS 2.79 5.44 2.81 3.44 4.10 5.57

TL799 HAB 2.61 5.42 3.18 3.06 4.29 6.33

HAS 3.00 5.59 2.81 3.27 4.47 5.55

TL1279 UAB 2.46 6.17 3.30 2.72 5.77 6.86

UAS 3.72 6.00 3.78 3.75 3.89 7.06

OBS 5.41 8.11 4.81 3.41 4.29 4.10

FIG. 7. The environment governing TC seed transition in the NH: (top left) GPI and its components (top right) RH, (bottom left)

vertical wind shear, and (bottom right) potential intensity. All are scaled according to the GPI equation. Superposed are contours of the

change in the probability of cyclogenesis (DPC). Contour levels are shown in the lower box.
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Hodges et al. (2017), for each of the SPHINX experiments,

averaged over the respective ensemble (see Table 1 for de-

tails). For comparison, the IBTrACSmean annual cycle for the

1979–2008 period is added on the right-hand side.

Figure 9 shows that, for the North Atlantic, the number of

TCs simulated in each month increases with resolution, as well

as with the use of SP, resembling more and more the IBTrACS

observations; further, for MEDIUM, HIGH, and ULTRA-

HIGH, the seasonal peak is reached in August without SP, but

in September using SP, providing a better match with obser-

vations. The start and end of the TC seasons are less sensitive

to the use of SP. For the northwest Pacific, all experiments

show a delay in the peak of the season, and a too late end, but

this error is mitigated by the use of the highest resolutions,

combined with SP.

A separate analysis (not shown) of North Atlantic basin

850–600-hPa humidity and 200–850-hPa vertical wind shear

shows that, in the August–September transition, both are

slightly more favorable in this basin, but no coherent spatial

pattern (e.g., associated with the positioning or magnitude of

the steering anticyclone) is found. The nature of this seasonal

response appears thus to be associated with individual TCs.

b. GPI terms and the modulation of the annual number of

TCs in each basin

We extended our GPI analysis to its temporal behavior, con-

sideringmonthlymeans ofGPI terms in eachbasin, using,wherever

possible, the same domain definitions as inWing et al. (2015), albeit

altering the seasons to July–November for the Northern

Hemisphere, andNovember–March for the SouthernHemisphere,

for two reasons: 1) these new definitions of season provide signifi-

cantly stronger correlations, when compared to those shown in

Wing et al. (2015); and 2) a longer, more homogeneous seasonality,

also closer to operational criteria, makes it possible to retain the

same definitions for the analysis of climate change experiments.

All GPI terms were computed for each ensemble member at

each grid point, and the results are shown as basin and en-

semble means, together with an envelope that shows the en-

semble spread. The figures contain both the seasonal evolution

and the annual means for the particular months considered in

FIG. 8. TC interannual variability for the (top left) North Atlantic, (top right) northwest Pacific, (bottom left) south Indian Ocean,

and (bottom right) southwest Pacific for each SPHINX simulation. BASE experiments are shown as continuous lines, while STOC

experiments are shown by the dotted lines. The ensemble spread, defined by adding shading the area between ensemble minimum

and ensemble maximum for each year, is shown by the shaded areas. IBTrACS observations are shown by the thick dashed lines.

The yearly Pearson correlation between ensemble mean and IBTrACS is reported for both BASE (rB) and STOC (rS) to the right of

each panel.
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each basin. To the right of each time series, four correlations

are shown: (i) model environment to model TCs (top left), (ii)

model environment to IBTrACS TCs (top right), (iii) model

environment to ERA5 environment (bottom left), and (iv)

model TCs to IBTrACS TCs (bottom right).

Figure 10 shows the temporal evolution of the GPI term for

each resolution in two basins: theNorthAtlantic and northwest

Pacific, superposed on the ERA5 estimates. All experiments

do a reasonable job of reproducing GPI, including seasonal to

multiannual temporal signatures. The SP experiments have a

small localized tendency to overshoot GPI at the peak of each

season in the North Atlantic (end of season in the northwest

Pacific), but overall it is hard to distinguish any strong response

to SP or resolution. This is also shown by the interannual

variability statistics on the right-hand side of each panel, which

show that all models have high and comparable skill in simu-

lating the IV of the environment, which is then reflected in high

correlations between the models GPI and the models TCs in

the North Atlantic (and south Indian Ocean, not shown), as

well as providing a reasonably good predictor for observed TCs

(r from 0.3 to 0.6). For the northwest Pacific, the correlation

between simulated and ERA5 GPI is high, and so is the cor-

relation between simulated GPI and TCs, but GPI is a poor

predictor for observed TCs; the same applies in the southwest

Pacific (not shown).

In terms of the PI terms, the thermodynamic efficiency

provides an interesting case. Previous studies [see discussion

in Camargo and Wing (2016) and Camargo et al. (2007a,b)]

include mention of PI and interannual variability of TCs.

Emanuel et al. 2013, Wing et al. 2015, and Bengtsson et al.

(1995) computed the thermodynamic efficiency term of PI,

(Ts 2 To)/To, where Ts is the surface temperature and To is the

temperature of the outflow layer,2 which was shown (Emanuel

et al. 2013; Wing et al. 2015) to explain up to 30% of the PI

trend in the North Atlantic, although virtually no signal was

found in the northwest Pacific. The time series presented in

both Emanuel et al. (2013) and Wing et al. (2015) contain, in

fact, evidence of substantial interannual variability. In terms of

seasonal variability of PI, Gilford et al. (2017) [also Gilford

et al. (2019) for along-track PI] found that, in most ocean ba-

sins, the air–sea enthalpy disequilibrium (part of PI) drives

seasonal variability, but in the western North Pacific, the only

basin in which outflow levels are above the tropopause

throughout the seasonal cycle, the seasonal cycle of lower-

stratospheric temperatures influences outflow temperatures

(and thus thermodynamic efficiency) and damps the season-

ality of PI.

Inspired by the discussion inWing et al. (2015)—‘‘Investigating

the contribution of tropical tropopause layer temperatures

to interannual variability in maximum intensity, rather than

trends, may therefore be a valuable extension of this work’’ (p.

8676)—we turn to the analysis of the interannual variability of

the thermodynamic efficiency term. In so doing, the ultimate

focus of this paper is the explicitly simulated TCs, rather than

just the indices, which are used in this study as guidance in the

investigation of potential predictors contained in the TC en-

vironment. The thermodynamic efficiency in the SPHINX

simulations is governed, in terms of sensitivity to resolution

FIG. 9. Area averaged TC seasonal variability by month (en-

semble climatologies), with IBTrACS observations shown in the

right column of each panel, for (top) the Atlantic basin and (bot-

tom) the northwest Pacific. With regard to the monthly split, a

tropical cyclone is attributed to a specific month according to its

date of genesis.

2Emanuel and Rotunno (2011) indicate that the temperature of

tropical cyclone outflow is approximately equivalent to the ambi-

ent tropopause temperature.
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or SP, by To variability, since SSTs are prescribed, and could

inject predictability at the interannual level.

Figure 11 shows the temporal evolution of the thermody-

namic efficiency term, based on monthly means. This term

seems to be overestimated for all SPHINX experiments, and

this error increases systematically as we reach the highest

resolution. The reason for this is a negative bias in the To term,

which is increasingly made worse by model resolution in all

domains; compared to this, the SP sensitivity is insignificant.

The seasonal (and even intraseasonal) signal is, however,

FIG. 10. (left) Time series ofGPI and (right) annual correlations with observed environment and

TCs, shown for the (top) North Atlantic and (bottom) northwest Pacific, with lowest resolution at

the topof each panel andhighest resolution at the bottom.A symbol to the left of each season in the

monthly time series indicates the annual mean, for each experiment and for ERA5 observations;

the shaded interval is a measure of the ensemble spread. Correlations are reported for both BASE

(rB) and STOC (rS) to the right of each panel, as four boxes: (i) model environment to model TCs

(top left); (ii) model environment to IBTrACS TCs (top right); (iii) model environment to ERA5

environment (bottom left), and (iv) model TCs to IBTrACS TCs (bottom right).
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captured rather well, and, by comparison to ERA5, the skill at

simulating interannual variability is the highest in the entire

set, reaching correlations of up to 0.8. The correlation with the

model TCs also shows that this is often the most important

term in GPI for this particular model formulation.

The correlations between the annual mean count of TCs,

using IBTrACS data, and the annual mean thermodynamic

efficiency term have been computed and are shown in Fig. 11.

The correlations for the ensemble mean and for each experi-

ment (BASE, STOC) are also shown in the right-hand boxes.

In general, correlations between the thermodynamic efficiency

term and the observed TC count for the North Atlantic are

surprisingly higher (;0.5) than have been found for Fig. 8 for

the correlation between simulated and observed TCs, albeit

nearly zero in the northwest Pacific, as also found, albeit lim-

ited to the trend, in Wing et al. (2015). For the North Atlantic

there is a slight increase in the correlations going from BASE

to STOC, except for theULTRA-HIGH resolution; STOC has

higher correlations in only two cases, COARSE andMEDIUM.

A survey of all possible plot combinations, both time series

and scatterplots (total of 108), indicates that the top governing

environmental variables for predicting TC IV in the North

Atlantic and south Indian Ocean are wind shear, thermody-

namic efficiency, PI, and GPI (in that order, but nearly with the

sameweights for wind shear and thermodynamic efficiency). For

the eastern Pacific, RH is the most important factor, followed by

FIG. 11. As in Fig. 11, but for the GPI thermodynamic efficiency term (part of PI).
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GPI and then PI and wind shear. For the northwest Pacific GPI

plays the largest role, while for the southwest Pacific it is vor-

ticity, but both basins have such low skill at representing IV that

this is hardly worth mentioning.

Once again, applying a Kolmogorov test, as in Fig. 8 reveals

that the differences between the different experiments are not

significant, but pooling all the results shown in Fig. 11 for the

Atlantic and northwest Pacific basin and contrasting with those

in Fig. 8 reveals that the improvement in skill provided by the

thermodynamic efficiency term is in fact significant.

c. Scatterplots of IV correlations

A metric of IV correlation is introduced in order to better

uncover any evidence of potential predictability, and to sum-

marize the relative importance of SP and resolution for each

field computed in the GPI diagnostic. While all correlations of

all GPI variables have been computed in each basin, only two

notable examples will be shown.

Figure 12 shows a summary of the correlations in Figs. 10

and 11. The set of correlations for BASE is plotted against the

set of correlations for STOC, providing information on each

resolution and on the potential of theGPI and its terms to provide

interannual predictability for the number of TCs in each basin. It

is clear that GPI is well simulated in both the Atlantic and the

northwest Pacific, and that neither resolution nor SP makes a

difference in the simulation of the interannual variability of GPI.

Further, GPI is important for predicting the number of simulated

TCs in a given year, albeit not a good predictor of observedTCs in

the North Atlantic. For the northwest Pacific, while GPI is not a

very good predictor of simulated TCs, PI is, and it is also in better

agreement with the PI estimates in ERA5. The thermodynamic

efficiency term is one of the two most important terms in the

North Atlantic, but it is not well simulated in the northwest

Pacific. PI is in fact not a good predictor for observed TCs in the

northwest Pacific, but is a reasonably good predictor of simulated

TCs (a moderately better predictor in this basin is in fact the GPI

vorticity term; not shown).

5. Investigation of SP sensitivity with an independent

GCM, HadGEM3-GC31

With regard to the reproducibility of the results based on the

Climate-SPHINX simulations, it can be useful to resort to

analyzing the simulations based on another model, with a

completely independent dynamical core and set of physical

parameterizations. Sensitivity experiments to test the impact of

SP were designed using an independent model, HadGEM3-

GC31 (see section 2) with comparable scientific configuration

(except for SKEB2 instead of SKEB), forcing, and resolution

of N216 (Dx ’ 60 km at 508N), comparable to the LOW reso-

lution in Climate-SPHINX. Contrary to the results from the

Climate-SPHINX approach, however, HadGEM3-GC31 was

tuned with the SP schemes enabled; therefore disabling SP is

bound to produce slightly worse results overall (e.g., in terms of

radiative balance).

Three ensemble members (control experiment, with full SP)

are compared in Figs. 13a–c to one ensemble member using

no SP (corresponding to the SPHINX BASE configuration;

Fig. 13d) and two further ensemble members (Figs. 13e,f),

which used only a single SP package: SKEB2 in one case and

SPT in the second case.

The results shown in Fig. 13 are fully consistent with

Climate-SPHINX: by comparison of the panels, the use of SP

increases the mean counts by up to 30% and does so in regions

that are directly comparable to those discussed earlier in this

study (see, e.g., Fig. 3). The sensitivity to the use of SP is clearly

larger than the ensemble spread, which can be estimated by

comparing Figs. 13a, 13b, and 13c. The fact that the response to

SP is far larger than the internal variability of the model

(spawned by perturbing initial conditions) also matches SPHINX

results well.

In terms of location and extent, the areas of strong sensitivity

also match what was found in the SPHINX experiments (e.g.,

for theNorthAtlantic, the northwest Pacific, and the southwest

Pacific, east of Australia). The sensitivity in the north Indian

Ocean is far less, but there is some sensitivity in the south

Indian Ocean, which partially matches SPHINX (at least

around Madagascar). The sensitivity in South America is a

well-known characteristic of HadGEM models, for instance

as a response to resolution enhancement, and has been shown

in multiple papers in the course of the last 10 years (Strachan

et al. 2013; Roberts et al. 2015). With that, these South Atlantic

systems tend to be tropical depressions or hybrid systems that

are included in observational counts in some other basins, al-

beit not all. In fact, the South Atlantic Ocean is not officially

classified as a tropical cyclone basin by theWorldMeteorological

Organization and does not have a designated regional specialized

meteorological center (RSMC).

These independent model results confirm our first finding:

that the use of stochastic physics reduces the mean error in the

simulation of TC track densities.

6. Discussion

The richness of the Climate-SPHINX ensembles enables a

robust comparative study of the effects of resolution and the

effects of SP, individually and combined, in the simulation of

TCs. Cyclonic disturbances from 3600 model years have been

extracted, with 10 000 TC precursors identified each year in

each hemisphere. As a result, we were able to study the char-

acteristics and evolution of 36 million cyclonic disturbances,

from TC precursors to warm-core TCs. Climate-SPHINX con-

firms other studies (Zhao et al. 2009; Strachan et al. 2013;

Roberts et al. 2015; Shaevitz et al. 2014) on the role of resolution

for TC simulation, but also offers important further insights. For

instance, the more recent PRIMAVERA simulations (Roberts

et al. 2020) took a multimodel heterogeneous ensemble ap-

proach, with individual centers submitting three ensemble

members each, and this was enough to show robust intermodel

agreement on the TC response to resolution. The small en-

semble spread found in Climate-SPHINX, for means and var-

iability of TCs, also supports the robustness of previous studies.

This finding should, however, not undermine the value of a

large ensemble, which will come into play once we start to

analyze extratropical transition, landfall, and most of all the

response of intensity to imposed climate change.
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The novelty of this study lies in the robust comparison of

the impact of the use of SP for the simulation of TCs, versus

the traditional focus on just increasing resolution, under the

premise that the two are to some extent equivalent (see Palmer

2019). The results of this study have indeed uncovered sensi-

tivity to SP that mimics the effects of increased resolution

(albeit with smaller amplitude) and is overall beneficial. This

claim is supported, for instance, by comparing the maps of TC

track and genesis density in both EC-Earth and HadGEM3-

GC31. The linear response to SP at each resolution in Climate-

SPHINX, and for each basin, as well as the remarkable

ensemble coherence, add to the robustness of our results.

FIG. 12. Scatterplots of the IV correlations, corresponding to the boxes in Figs. 10 and 11, for (top)GPI, (middle) PI, and (bottom) the PI

thermodynamic term for the (left) NorthAtlantic and (right) northwest Pacific basins. The size of the symbols corresponds to the different

resolutions, with the smallest symbols identifying COARSE and the largest symbols identifying ULTRA-HIGH.
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There is, however, some localized evidence (east and southwest

Pacific, despite substantial observational uncertainty; see Hodges

et al. 2017) that the increase of the number of TCs for the higher

resolutions may be excessive, and made worse by SP. SP has also

been shown to have a far larger impact on the simulation of TCs

than on the simulation of ETCs, which is important for the con-

figuration ofmodels used in operational prediction: Sanchez et al.

(2014) for instance also found a larger impact inNWPsimulations

of the tropics versus extratropics.

Analysis of the relative roles of seeding and of the envi-

ronment, via the cyclogenesis term, for the mean number and

distribution of TCs (e.g., in Fig. 7) indicates that the latter is

more important and more strongly responding to SP and res-

olution, but can lead to excessive transition, especially clear in

the southwest Pacific basin, seen as very large values of PC.

The smaller role played by the seeding term, and its lack of

sensitivity to resolution or SP, indicate that the relatively

smooth seeding used by, for instance, Emanuel (2021), is likely

adequate to study TC formation, as long as the significantly

variable nature of environmental controls of cyclogenesis are

then credibly taken into account. The finding, however, cannot

be reconciled immediately with the importance of seeding put

forward in Vecchi et al. (2019) in the context of climate change.

A follow-on study, in preparation, will therefore present results

from an identical Climate-SPHINX ensemble, forced by an

RCP8.5 scenario, as well as century-long coupled simulations

at MEDIUM resolution.

In terms of the interannual variability of TCs frequency, the

correlation between simulations and IBTrACS observations

for the EC-Earth configuration used in SPHINX is limited to

0.33 (HIGH-BASE) in the North Atlantic, which is a rather

poor number when compared to past findings, for example

FIG. 13. TC track densities for the HadGEM3-GC31 model, as configured and run for the PRIMAVERA/

HighResMIP campaign. Shown are (a)–(c) three ensemble simulations with full SP, and simulations with (d) SP

fully disabled, (e) SKEB2 disabled (SPT only), and (f) SPT disabled (SKEB2 only). Track density units are number

per month per unit area, where the unit area is a 58 spherical cap.
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between 0.6 and 0.7 as in Roberts et al. (2015) for the

UPSCALE campaign, or Roberts et al. (2020) for the

HighResMIP experiments, using the HadGEM3-GC31 cli-

mate model. The range of correlations in HighResMIP is 0.3–

0.7, and EC-Earth, in a configuration nearly identical to

Climate-SPHINX, with the same SST and sea ice (Kennedy

et al. 2017), albeit with some different forcings (e.g., MAC

aerosols;Mulcahy et al. 2018), shows correlation of IV between

observed and simulated TCs to be nearly identical to that

in Fig. 8.

The correlation of observed IV to TCs found in the north-

west Pacific is at most 0.27 (ULTRA-HIGHBASE); in the east

Pacific it is 0 at best (MEDIUM-BASE), and mostly negative.

Roberts et al. (2020) found in PRIMAVERA-HighResMIP,

using HadGEM3-G31 at 25-km resolution, a correlation of 0.3

in the northwest Pacific and 0.5 in the eastern Pacific. However,

at comparable resolution, HadGEM3-GC31 has substantially

more TCs than EC-Earth (and even too many in the northwest

Pacific), as seen in the multimodel intercomparison in Roberts

et al. (2020), which was already found, to a lesser extent, in an

earlier version of HadGEM3 at the same resolution (Roberts

et al. 2015) that did not use SP.

The small spread in the time series of TC counts in each

basin (e.g., Fig. 8) and the inability to accurately reproduce

observed variability suggests that the EC-Earth model, as

configured for the Climate-SPHINX campaign, is more

skillful at predicting itself than at predicting observed TC

counts in each year. This is also evidenced by the SNR results

(Fig. A1) and overall characterizes the models in Climate-

SPHINX as overconfident. These results are also in agree-

ment with what has been shown in Camargo and Barnston

(2009) in terms of model overconfidence, in the case of ini-

tialized seasonal forecasts, and stresses the fact that predic-

tion of TC IV continues to constitute a challenge at the basic

level of GCM formulation, which neither resolution nor SP is

able to fully overcome.

SP enables a better representation of the seasonal cycle of

TC frequency, particularly at the higher range of resolutions.

TheNorthAtlantic end of season response to SP is small, albeit

robust, as even a small change near the end of August would

impact the monthly means; this should be further investigated

in (larger) ensembles of seasonal forecasts. To explain the

seasonal skill, the simplest hypothesis would be that the re-

sponse is due to the multiplicative nature of SPPT: the impact

of the scheme should be larger when the variance of the de-

terministic tendencies is higher. It is reasonable to expect, a

priori, for this to coincide with the peak of the TC season, when

the variance is presumably higher, than at the tails of the sea-

son. This asymmetrymight project onto themean state changes

to humidity, with a greater expected change at the peak of the

seasonal cycle. For the northwest Pacific, however, the evolu-

tion of the seasonal anticyclone will also play a strong role at

the end of the season, when TCs track northward, transporting

much water vapor in the process, supplying other precipitation

systems inland (see Guo et al. 2017).

In terms of environmental controls of TC interannual vari-

ability, the extensive review in Camargo and Wing (2016)

pointed out that there is a stronger relationship betweenmodel

GPI and observed TC variability than with the model TC

variability. These conclusions still apply to the present study,

where we showed that the environment is in general very well

simulated, as compared to ERA5, and that the model GPI has

correlations to observed TCs interannual frequency often

twice as large as the correlation between simulated and ob-

served TCs. The relative roles of the individual terms of the

GPI are, however, moderately sensitive to resolution and to

SP, with some important distinctions, depending on the basin.

The role of shear for TC development is well established,

and the dependence of shear on model resolution in this con-

text has been discussed in Bell et al. (2013) and Roberts et al.

(2015), among others. The same relationship is apparent in

SPHINX, and vertical shear appears to respond to resolution

and SP in terms of climate means. For IV, it is an important

driver in the North Atlantic and south Indian Ocean, although

not so across the rest of the globe, which could be related to the

overall problems in storm structure (EC-Earth TCs are too large

compared to observations and other models; see Vanniere

et al. 2020).

The role of atmospheric moisture appears to be compara-

tively more prominent for simulations in which SP has been

activated; this sensitivity has also been pointed out in previous

studies by Bell et al. (2013) and Camargo et al. (2020). More

specifically, in the context of SP studies, this is consistent with

the idea put forward in Strommen et al. (2019b) that, by

broadening the distribution of humidity tendencies, SPPT has a

particularly strong impact on humidity, due to the nonlinear-

ities associated with condensation. For example, for a parcel of

air close to saturation, a tendency perturbation in one direction

may trigger condensation, increasing the total liquid water,

while the opposite perturbation will not. Changes in available

moisture might therefore be expected to be magnified in a

model with SPPT turned on, and for the specific problem of TC

simulation, with potential for local feedbacks. A cautionary

note is needed here with regard to lack of moisture conserva-

tion when using SPPT, which required a fix [see discussion in

Davini et al. (2017)]. The full impact of the moisture fix is not

known, since the model will not run without it, and yet sensi-

tivity to SP in SPHINX simulations shows a stronger impact of

the moisture field on TCs, while ETCs are less impacted,

possibly due the moisture response being limited to the tropics.

RH is, however, not a useful predictor in terms of IV.

The thermodynamic efficiency term shows promise in

explaining the different TC responses for the North Atlantic

and south IndianOcean domains. This is particularly evident in

the lower range of resolutions, in which SP is more active in

terms of changes in the probability of cyclogenesis (e.g., see

Fig. 7). The thermodynamic efficiency term shows correlations

with observed TC frequencies (IBTrACS) that are nearly twice

as large as the correlations between observed and model-

produced TC frequencies. It is reasonable to expect that this in

part reflects the use of observed SSTs and that the importance

of this term would be diminished in AOGCM simulations.

Future work on existing Climate-SPHINX data will in fact

exploit the coupled atmosphere–ocean experiments, with a

special focus on TC intensity, for which there was no space in

this paper, as well as the 2070–2100 (FUTURE) atmosphere-
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only simulations, expanding the investigation of TC

predictability.

While it is notable that thermodynamic efficiency is found to play

an important role in these simulations (and this reflects the impor-

tance of the outflow temperature variability), the SPHINX models

develop a substantial cold bias as resolution is increased, seen when

plotting the tropical tropopause layer temperature time series (TTL;

not shown), which is the reason for the errors seen in the PI terms.

This can in part be attributed to the choice of not retuning the

models at each resolution, so it is not a final statement of models

being ‘‘fit for purpose’’ in terms of climate change. In fact, this is very

important for our trust in future projections, asEmanuel et al. (2013)

(in the context of decadal to interannual TTL signals) suggest that

‘‘the failure ofmostGCMs to capture this coolingmust be addressed

before suchmodels can be used to project future changes in tropical

cyclone activity’’ (p. 2300). It should not be too hard to adapt EC-

Earth to more reliably simulate the future of TCs: to improve the

overall simulated environment, tuning TOA radiation is normally

easier than tuning surface layer similarity (often done for improving

TC wind–pressure relationships and air-sea fluxes). Given the

computational costs involved, exploiting IV for carefully selected

periods is more economical than running long climate simulations.

The apparent skill in GPI, particularly the thermodynamic effi-

ciency term in theNorthAtlantic and south IndianOceanprovides a

paradox, pointing to other types of model formulation uncertainty,

unaffected by resolution or SP, that seem to prevent themodel from

exploiting its own potential source of predictability. The fixed roles

of dynamics andphysics could beunsuitable for sucha large rangeof

resolutions [see discussion in Vanniere et al. (2020)], affecting their

interaction with the large-scale environment. Recent development

work with the IFS (e.g., Magnusson et al. 2019), on surface friction,

seems tohavealready improved theEC-Earthmodelwith respect to

TC simulation, and some of these advances are in fact evidenced by

the results in Roberts et al. (2020).

In terms of future directions, the resources used to produce the

T1279-BASE simulation could have enabled a further four to five

ensemblememberswithT799-STOC,bringing it to eight, or enabling

more sensitivity experiments. For instance, as a general recommen-

dation, we endorse Strommen et al. (2019a) in pointing out that

model tuning performed on SP configurations may benefit the pre-

diction ofTCs in anoperational setting; thismay require SPandeven

resolution-based tuning in the case of scale-aware SP parameteriza-

tions, such as SKEB2. This requires further research, as SKEB2 has

been shown to have a larger impact than SPT (as exemplified by

Fig. 13). It is important to remember that EC-Earth is a spectral

hydrostatic model, while HadGEM3 is a grid point nonhydrostatic

model: horizontal advection and wave propagation are, for instance,

substantially different, and so is the representation of tropical con-

vection, so that the superposedeffects of SP cannot beexpected tobe

the same. Moreover, the type of SP formulation (SKEB2 instead of

SKEB), as well as the individual parameter settings in HadGEM3-

GC31 are different fromwhat has been used in Climate-SPHINX,

as well as different from the parameter settings for EC-Earth in

PRIMAVERA-HighResMIP [the models analyzed by Roberts

et al. (2020) and Vanniere et al. (2020)], all of which points to

more fundamental aspects of model formulation to explain the

different responses, and a large number of individual sensitivity

studies would be needed for robustness.

All of the above does not detract from the strong finding

that the overall sensitivity of TC simulation to resolution

and SP is consistent across two entirely independent

CMIP6 GCMs.

7. Summary and conclusions

Statistics of TCs identified in Climate-SPHINX confirm past

and current findings that increasing model resolution sys-

tematically improves the simulated climatology—numbers and

distribution—in both hemispheres. The use of stochastic

physics further increases the number of TCs, by ’30%, when

compared to the base simulations, in a spatially realistic way,

thus representing a surrogate for resolution.

Analysis of the impact of SP as a cause of additional TC

seeding, versus increasing the probability of transition of TC

seeds to TCs, through modification of the TC environment,

points to the latter being the prevalent effect. Further analysis,

focusing on the interannual variability of TC numbers per year

indicates that it is larger overall, andmore realistic, when applying

SP and/or enhancing resolution. Unfortunately, the increased IV

of simulated TCs does not translate into significantly enhanced

skill in terms of predicting the annual number of observed TCs: if

anything, SP seems to be adding more noise than signal to the

problem of predicting the annual number of TCs. The represen-

tation of the seasonal cycle of TC frequency is however improved

by the use of SP at the higher range of resolutions.

From the point of view of TC predictors, the realistic per-

formance of the thermodynamic efficiency term (part of the

potential intensity calculation) applied to the EC-Earth simu-

lations provides a stringent test to strengthen our trust in the

use of EC-Earth (or similar GCMs) for the prediction of TC

responses to climate variability and change, even in the case of

models at moderate resolution. However, for this generation of

EC-Earth specifically, other aspects of simulation fidelity need

to be improved before this potential predictability can be

exploited. The parsimonious nature of SP can in fact be

exploited for further model development.
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APPENDIX

The Signal-to-Noise Ratio of Simulated TC Interannual

Variability

As a way to further interpret Fig. 8, we computed the signal-

to-noise ratio (SNR): s2
signal/s

2
noise. where s

2
signal is the signal

variance of themodel ensemblemean in time, while s2
noise is the

variance of the ensemble members about the ensemble mean

[the spread,A1 as in Eade et al. (2014)]. The analysis was made

more robust by resampling with bootstrapping, to get 1000

artificially generated ensembles (for each of the stochastic/

deterministic ensembles at each resolution). The 95% confi-

dence interval obtained in this way is used to test statistical

significance. Additionally, the three higher resolutions were

combined, in order to create an ensemble size comparable to

that of COARSE and LOW.

Figure A1 summarizes the findings so far, with STOC in red

and BASE in blue. In terms of signal, STOC is significantly

higher than BASE for theMEDIUM resolution, but otherwise

not distinguishable, with no significant differences overall.

Across the resolution it is hard to distinguish any two adjacent

resolutions from each other, but the (combined) high resolu-

tions are in fact significantly higher than the lowest resolutions,

suggesting that the increase is robust. For SNR, STOC is sig-

nificantly lower for the (combined)HIGHexperiment, and just

barely not significantly lower for the COARSE. No significant

difference in SNR were found for MEDIUM and no distin-

guishable change was found across all resolutions.

The clearest and most robust change across both resolution

and stochastic physics is in the noise component, shown in

Fig. A2. A significant increase in noise is seen for both basins,

with each successive increase of resolution, when pooling both

BASE and STOC (right column of Fig. A2). SP significantly

increases the noise in four of the six cases, with a particularly

pronounced impact in the North Atlantic. Because the SNR

metric does not experience a similarly robust increase, the data

suggest that the first-order impact of increased resolution, and,

to a lesser extent, SP, is mainly to increase internal variability.

Additional model tuning is likely required in order to obtain

comparable increases in the signal and associated improve-

ments in predictability.
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