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Abstract In this study, we show that the underlying physical driver for the decadal variability in the Gulf

Stream (GS) path and the regional biogeochemical cycling is linked to the low frequency variability in the

Atlantic meridional overturning circulation (AMOC). There is a significant anticorrelation between AMOC

variations and the meridional shifts of the GS path at decadal time scale in both observations and two Earth

system models (ESMs). The chlorophyll and nutrient concentrations in the GS region are found significantly

correlated with the AMOC fingerprint and anticorrelated with the GS path at decadal time scale through

coherent isopycnal changes in the GS front in the ESMs. Our results illustrate how changes in the large-scale

ocean circulation, such as AMOC, are teleconnected with regional decadal physical and biogeochemical

variations near the North American east coast. Such linkages are useful for predicting future physical and

biogeochemical variations in this region.

1. Introduction

The Gulf Stream (GS) transports warm salty water from the subtropical region to midlatitudes, affecting the

entire troposphere [Minobe et al., 2008]. Changes in the GS path can induce changes in winter synoptic atmo-

spheric variability [Joyce et al., 2009] and have a strong impact on changes in the marine ecosystem/fisheries,

such as the spatial distribution of silver hake over the last 40 years [Nye et al., 2011].

The interannual migration of the GS path has been linked to the winter North Atlantic Oscillation (NAO)

[De Coetlogon et al., 2006; Frankignoul et al., 2001; Joyce et al., 2000; Taylor and Stephens, 1998], the deep

western boundary current (DWBC) [Thompson and Schmitz, 1989], and the entrainment of the upper DWBC

[Spall, 1996]. The NAO can affect the GS path through both wind-driven gyre circulation and buoyancy-driven

overturning circulation [Marshall et al., 2001; Kwon et al., 2010]. The meridional shift of the GS path in the

open ocean and the strength of the cyclonic northern recirculation gyre (NRG) north of the GS are found linked

to the strength of the deep branch of the Atlantic meridional overturning circulation (AMOC) through interac-

tion with bottom topography and the associated bottom vortex stretching, in both high and coarse resolution

Geophysical Fluid Dynamics Laboratory (GFDL) models [Zhang and Vallis, 2007; Zhang et al., 2011]. Similar

results are also found in the National Center for Atmospheric Research ocean general circulation model

[Yeager and Jochum, 2009]. These modeling results are supported by observations showing the latitude

of the GS path significantly anticorrelated with the AMOC fingerprint [Joyce and Zhang, 2010].

Previous studies suggested that the nutrient supply around the GS is caused by the along-isopycnal nutrient

advection in the GS [Jenkins and Doney, 2003; Pelegri and Csanady, 1991; Schollaert et al., 2004] and originates

from the nutrient-rich subsurface waters in the western Sargasso Sea [Csanady, 1990]. This is consistent with

Kremeur et al. [2009], showing that the nutrient distribution and primary production were largely driven by

the advection through gyre circulation. Other studies [Williams et al., 2006; Palter and Lozier, 2008] suggest

an alternative tropical source for the GS nutrients.

Satellite observations reveal an anticorrelation between sea surface temperature (SST) and ocean surface

chlorophyll concentrations [Behrenfeld et al., 2006; Martinez et al., 2009]. In regions with abundant light,

increased (decreased) vertical mixing can bring more (fewer) nutrients to the phytoplankton population

and enhance (reduce) the phytoplankton bloom [Doney, 2006; Follows and Dutkiewicz, 2002]. In addition to
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changes in SSTs, vertical mixing and phytoplankton biomass can also be strongly impacted by changes in

wind and buoyancy forcing [Lozier et al., 2011].

In this study, we revisit the linkage between themeridional migration of the GS path and the AMOC variability

at decadal time scale, using both observed data and the control simulation from two Earth system models

(ESMs). We also investigate the impact of AMOC variability on themarine biogeochemical cycle in the GS region

using the two ESMs.

2. Data and Methods

The observed data are from the objectively analyzed data sets of ocean temperature anomalies from 1955

to 2014 [Levitus et al., 2005], and the model outputs are from 500 year control simulations of two EMSs

(GFDL ESM2M and ESM2G) [Dunne et al., 2013, 2012]. The main differences between the two ESMs are

the vertical coordinates in the ocean components; ESM2M employs z coordinates, while ESM2G uses

isopycnal coordinates.

A classic measure for the GS path is the latitude of the 15°C isotherm at 200m [Cornillon and Watts, 1987;

Fuglister and Voorhis, 1965]. Here for both simulated and observed results, our estimates for the GS path are

obtained from zonally averaged locations of the annual mean 15°C isotherm at 200m between 75°W and

55°W, similar to that used in previous studies [Joyce and Zhang, 2010; Joyce et al., 2009]. This observed GS index

is detrended over the entire period (1955–2014). It correlates well with the GS index used in Joyce and Zhang

[2010] (both are normalized, detrended, and 5 year smoothed for their overlapping period) (Figure S1 in the

supporting information; r=0.82, significant at 99% level). Because there were no continuous observations of

AMOC before the RAPID program started in 2004 [Cunningham et al., 2007], we use an AMOC fingerprint

(the leading mode of the detrended annual mean ocean subsurface temperature at 400m in the extratropical

North Atlantic) for both observed and simulated results as suggested in previous studies [Mahajan et al., 2011;

Zhang, 2008]. A positive AMOC fingerprint corresponds to warming in the subpolar gyre and cooling in the GS

region (Figures 1b and 1d in Zhang (2008)). The principal component of this leading mode (PC1) is highly cor-

related with the volume transport-based AMOC index [Zhang, 2008]. The PC1 explains 30%, 20%, and 25% of

variance in observation, ESM2M, and ESM2G, respectively. For reference, we note that the volume transport-

based AMOC index (here defined as the maximum of the zonally integrated Atlantic meridional overturning

streamfunction in depth-space at 26°N) and the AMOC fingerprint, both with the 5 year running smooth, have

a zero-lag correlation of 0.73 and 0.85 in ESM2M and ESM2G, respectively, statistically significant at 99% level.

The impact of AMOC variability on the marine biogeochemical cycle in the GS region is also investigated

using the two ESMs. The index for the biogeochemical variables in the GS region are derived using EOF analysis

over the subdomain, 80°W–50°W and 35°N–45°N. The chlorophyll index in the euphotic zone is defined as PC1

of the annual mean chlorophyll concentrations at 35m depth over the subdomain. The chlorophyll response to

changes in the GS path was found to be largest at 25m in ESM2M and at 35m in ESM2G, respectively. In

ESM2M, the chlorophyll response at 35m is slightly smaller but very similar to that at 25m. Hence, 35m was

the chosen depth for chlorophyll index in both ESMs. Correspondingly, the nutrient index at the base of the

euphotic zone is defined as the PC1 of the annual mean phosphate (PO4) concentrations at 150m depth over

the subdomain. For both ESMs, themaximum anticorrelation between nutrient and GS path was found to be at

150m; hence, 150 m was the chosen depth for the nutrient index.

To focus on the variability at decadal time scale, all indexes (both physical and biogeochemical variables) in

this paper are smoothed with a 5 year running mean unless otherwise specified. The equivalent uncorrelated

sample size (n′) for the degrees of freedom (i.e., df= n′� 2) in a serial correlation is defined here as

n’ ¼
n

1þ
Xn�1

i¼1
2 1� i

n

� �

rir
’

i

where n is the original number of data in each series and ri and r′i are the autocorrelations at lag i in the two
data series, respectively.

2.1. Decadal Variability of Observed and Modeled GS Path and AMOC Fingerprint

The observed GS path and AMOC fingerprint show anticorrelated variations at time scales longer than

5 years (Figure 1a; r =�0.81 at zero lag, significant at 95% level). The observed AMOC fingerprint exhibits

Geophysical Research Letters 10.1002/2015GL066262

SANCHEZ-FRANKS AND ZHANG IMPACT OF AMOC ON GS AND CHL/NUTRIENTS 9890



two strengthening periods, one from

1955 to 1965 and the other from

1993 to 2005. The strengthening

of the AMOC is coincident with the

southward shift of the GS path

(Figure 1a). Similarly, for the two

periods of AMOC weakening from

1965 to 1974 and from 2005 to pre-

sent, the GS path shifted northward.

The weakening of the AMOC since

2005 indicated by its fingerprint

(Figure 1a) is consistent with the

recent direct observational studies

[Robson et al., 2014; Smeed et al.,

2014] and the statistical prediction

using the AMOC fingerprint [Mahajan

et al., 2011]. These findings are con-

sistent with that found in Joyce and

Zhang [2010] using unfiltered data,

and here the anticorrelation between

the 5 year smoothed observed GS

path and AMOC fingerprint derived

from the same objectively analyzed

ocean temperature data sets [Levitus

et al., 2005] is much higher. Because

the 5 year smooth reduces degrees

of freedom for the limited observed

time series, we also look into the

squared coherence between the un-

smoothed observed inverted GS

path (where inverted means the sign

of the GS path is reversed) and the

AMOC fingerprint. There is significant

high (at 95% level) squared coherence

between the observed inverted GS

path and AMOC fingerprint at decadal

time scale and longer (Figure S2a).

Analogous to the observed results,

the GS path and the AMOC fingerprint

in the ESM2M and ESM2G control

simulations show similar anticorre-

lated variability at decadal time scale

(Figures 1b and 1c). The anticorre-

lation coefficient is r=�0.80 and

�0.56 (significant at 99% level) in

ESM2M and ESM2G, when the enhanced (weakened) AMOC is leading southward (northward) GS path by ~2

and ~1 years, respectively. There is significant (at 95% level) squared coherence between simulated inverted

GS path and AMOC fingerprint near decadal time scale in both ESMs (Figures S2c and S2e), similar to the

observed (Figure S2a). In ESM2G, the peak of coherence is at a slightly higher frequency (~8 years). The ESMs

simulate much lower coherence at multidecadal time scale than the observed (Figure S2); hence, the models

are mainly used for understanding decadal variability. In ESM2M the variability of the AMOC/GS path is domi-

nated by decadal time scale and is too small atmultidecadal time scales (Figures 1b and 1c). In ESM2G, although

the AMOC/GS path exhibits more variability at much longer (centennial) time scale (Figures 1b and 1c), the

increase in the power spectra of AMOC/GS path variability from interannual to centennial time scale is much

Figure 1. Observed and simulated anomalies of the GS path (red) and AMOC

fingerprint (blue). (a) Observed, (b) ESM2M, and (c) ESM2G. Both observed

andmodeled variables are filtered with a 5 year runningmean and normalized

by their standard deviations.
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greater than the increase in their squared cross-spectral density toward lower frequency (not shown), resulting

in decreased squared-coherence from ~8year to centennial time scales.

There is a difference in the frequency dependence of time lead betweenmodels and observations (Figures S2b,

S2d, and S2f). At decadal time scale, unlike the in-phase relationship between the AMOC fingerprint and

the inverted GS path in the observations (Figure S2b), the AMOC fingerprint leads the inverted GS path

by ~2 years in ESM2M (Figure S2d) and by ~1 year in ESM2G (Figure S2f) due to the model bias. The GS region

temperature anomaly in the simulated AMOC fingerprint in ESM2M is located too far east (near 50°W)

compared with that in the observed AMOC fingerprint (near 75°W), and it takes ~2 years for this simulated

temperature anomaly to propagate westward to 75°W. On the other hand, both modeled and observed GS

path are dominated by temperature anomalies around 75°W; thus, the inverted GS path lags the AMOC

fingerprint by ~2 years at decadal time scale in ESM2M (Figure S2d), while the inverted GS path is in phase

with the AMOC fingerprint in the observations (Figure S2b). In ESM2G, the bias is not as far east as in ESM2M;

hence, the inverted GS path only lags the AMOC fingerprint by ~1 year (Figure S2f). To verify the above model

bias causing the difference in the time lead, we define an alternative GS path as the position of 200m 15°C

isotherm at 50°W in ESM2M and the position of 200m 15°C isotherm averaged for 70°W–50°W in ESM2G,

respectively, instead of the average of 75°W–55°W in the originals. Similar to that observed (Figures S2b and

S3b), the inverted alternative GS path is almost in phase with the AMOC fingerprint in both ESMs, and there

is not much frequency dependence (Figures S3d and S3f). The squared coherence at low frequency using

the alternative GS path is also enhanced for both models (Figures S3c and S3e).

As discussed in previous studies [Zhang, 2008; Zhang and Vallis, 2007; Zhang et al., 2011], a stronger (weaker)

AMOC is associated with a stronger (weaker) North Atlantic deep flow, which interacts with the steep bottom

topography near the North American east coast, and induces positive (negative) vorticity anomalies through

bottom vortex stretching effects, resulting in a strengthening (weakening) of the cyclonic NRG and a southward

(northward) shift of the GS path.

2.2. Decadal Variability of Chlorophyll and Nutrient Concentrations in the GS Region

This section analyzes the impact of AMOC variability on the chlorophyll and nutrient concentrations in the GS

region. In ESM2M, both the chlorophyll index and the nutrient (PO4) index are anticorrelated with the GS path

at zero lag (r=�0.93,�0.97, respectively, significant at 99% level; Figures 2a and 2e). The AMOC fingerprint is

positively correlated with both the chlorophyll index and the nutrient index with a 2 year lead (r= 0.81, 0.81,

respectively, both significant at 99% levels) (Figures 2c and 2e). The leading mode of nutrient (PO4) concen-

trations exhibits its highest anomalies along the GS path, especially in the region between 70°W and 55°W

(Figure 3a). The leading mode of chlorophyll concentrations (Figure 4a) exhibits positive anomalies around

the GS path as well as east of Georges Bank.

In ESM2G, the GS path is also anticorrelated with the chlorophyll index and the nutrient (PO4) index at zero

lag (r=�0.83, �0.82, respectively, both significant at 99% levels; Figures 2b and 2f). Meanwhile, the AMOC

fingerprint is positively correlated with the chlorophyll index at zero lag (r= 0.51, significant at 99% level)

and positively correlated with the nutrient (PO4) index with a 1 year lead (r= 0.62, significant at 99% level)

(Figures 2d and 2f). The leading mode of nutrient (PO4) concentrations in ESM2G also shows positive anoma-

lies along the GS path (Figure 3b) but has smaller amplitudes and extends further north than those in ESM2M

(Figure 3a). In ESM2G the leading mode of chlorophyll concentrations exhibits strongest positive anomalies

right north of the GS path (Figure 4b). Both ESMs results (Figure 2) suggest that the increases in chlorophyll

and nutrient (PO4) concentrations in the GS region occur when the GS path is shifted southward and the

AMOC fingerprint is positive, and vice versa. The chlorophyll and nutrient variability in ESM2M is mainly

at decadal time scale, whereas in ESM2G there is more biogeochemical variability at centennial time scale,

consistent with the difference of AMOC variability in the two ESMs (Figure 2).

2.3. Mechanisms for Decadal Variability of Chlorophyll and Nutrient Concentrations

The climatological mean nutrient (PO4) concentrations increase with latitude and depth in the GS region

(Figures S4 and S5). For both ESMs, the anomalous nutrient (PO4) concentrations regressed on the inverted

GS path (Figures 3c and 3d) show very similar spatial patterns as the corresponding leading modes in PO4

concentrations (Figures 3a and 3b), indicating the variability of the GS path dominates the anticorrelated

variability of nutrient concentrations in the GS region. The region north of the GS path typically features high
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climatological chlorophyll concentrations associated with the spring bloom (Figure S6). For both ESMs, the

anomalous chlorophyll concentrations regressed on the inverted GS path (Figures 4c and 4d) exhibit very

similar spatial patterns to the corresponding leading modes in chlorophyll concentrations (Figures 4a and

4b), indicating that the variability of chlorophyll concentration in this region is strongly linked to the anti-

correlated variability in the GS path. Next, mechanisms for the above linkages are explained; i.e., nutrient

reservoirs vary with isopycnal changes in the GS front induced by the AMOC variability, resulting in variations

in chlorophyll concentrations in this region.

Figures 3e and 3f show the anomalous annual mean potential density at 150m regressed on the inverted GS

path in ESM2M and ESM2G, respectively. The GS path-centric pattern is strikingly similar to the spatial distri-

bution in the corresponding leading modes in nutrient concentrations in both ESMs, although it is more

Figure 2. Simulated physical and biogeochemical variables from two ESMs (Left—ESM2M, and right—ESM2G). (a–d) Inverted

GS path (red), AMOC fingerprint (blue), chlorophyll index (green), and PO4 index (purple). A 5 year running mean is applied

and all variables are normalized by their standard deviations. (e and f) Cross correlations among the variables shown in

Figures 2a–2d the dashed lines are 99% significance levels for each pair of variables with the two-tailed Student’s t test.
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apparent for ESM2M than for ESM2G. This implies that the GS path-centric pattern in the variability of nutrient

concentrations is closely tied to changes in isopycnals. In both ESMs, there are strong correlations between

anomalous nutrient concentrations and potential density in the region of the mean GS path, indicating a

robust direct relationship between them (Figure S7). The positive potential density anomalies at this depth

(i.e., shallowing of isopycnals) are associated with southward shifts in the GS path, and vice versa. A stronger

AMOC leads to steepened isopycnal slopes in the GS front (mainly due to the strengthening of the cyclonic

NRG cooling the region north of the GS path), as well as a southward shift of the GS front. Hence, the isopyc-

nals are shallower and nutrient concentrations are higher along the climatological mean GS path as well as

Figure 3. Spatial pattern of variability in PO4 concentrations and potential density. (a) ESM2M and (b) ESM2G EOF1 of the

annually averaged PO4 concentrations (μmol/l) at 150m (explained 52% and 47% of variance respectively). (c) ESM2M and

(d) ESM2G annually averaged PO4 concentrations at 150m regressed onto the corresponding unfiltered, inverted GS

path. (e) ESM2M and (f) ESM2G annually averaged potential density (kg m
�3

) at 150 m regressed onto the corresponding

unfiltered, inverted GS path. The black lines indicate the location of the climatological mean GS path in ESM2M and

ESM2G, respectively.
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north of it, and the isopycnals are deeper and nutrient concentrations are lower in the south. Note that

the amplitude of the anomalous potential density near the GS path is smaller in ESM2G than in ESM2M

(Figures 3e and 3f); consequently, the amplitude of the anomalous nutrient concentrations near the GS path

is also smaller in ESM2G than in ESM2M (Figures 3c and 3d).

Levy et al. [2009] found that the subsurface nutrient concentrations in the western North Atlantic change with

the isopycnals; i.e., higher nutrient concentrations (shallowing of nutriclines) are associated with shallowing

isopycnals in the region north of the subtropical gyre, and lower nutrient concentrations (deepening of nutri-

clines) are associated with the deepening of isopycnals in the subtropical gyre as a result of the gyre boundary

shifting south. Here we specifically found that the variability of the subsurface nutrient distribution in the GS

region is linked to the variability of the AMOC/GS path through isopycnal changes in the GS front.

The enhanced nutrient in the GS region has contributed to the enhanced chlorophyll concentrations around

the GS path. However, the spatial patterns of anomalous chlorophyll concentrations do not match the spatial

patterns for anomalous nutrient concentration exactly (Figures 3c and 3d and Figures 4c and 4d); i.e., the

maximum anomalies in chlorophyll concentrations are located slightly south in ESM2M and slightly north

in ESM2G than the locations for the maximum anomalies in nutrient concentration. This is because the

response of chlorophyll concentrations to changes in nutrient concentrations is nonlinear and depends on

the climatological mean nutrient concentrations [Follows and Dutkiewicz, 2002]. In regions with relatively high

climatological mean nutrient concentrations, chlorophyll concentrations are less sensitive to the increase

in nutrient concentrations, and other factors such as light limitation dominate the response. In regions with rela-

tively low climatological mean nutrient concentrations, chlorophyll concentrations aremore likely to be affected

by nutrients and are thus more sensitive to the increase in nutrient concentrations. In ESM2M, the region with

Figure 4. Spatial pattern of variability in chlorophyll concentrations. (a) ESM2M and (b) ESM2G EOF1 of the annually

averaged chlorophyll concentrations (kg m
�3

) at 35 m (explained 34% and 28% of variance respectively). (c) ESM2M

and (d) ESM2G annually averaged chlorophyll concentrations at 35m regressed onto the corresponding unfiltered, inverted

GS path. The black lines indicate the location of the climatological mean GS path in ESM2M and ESM2G, respectively.
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relatively low climatological mean nutrient concentrations at 150m shifts southward compared with that in

the observed (Figure S4); hence, the region with the maximum anomalies in chlorophyll concentrations

shifts southward to slightly south of the GS path (Figure 4c). In ESM2G, the region with relative low climatolo-

gical mean nutrient concentrations at 150m shifts northward compared with that in the observed (Figure S4);

hence, the region with the maximum anomalies in chlorophyll concentrations also shifts northward to slightly

north of the GS path (Figure 4d). In addition, the positive anomalies in chlorophyll concentrations east of

Georges Bank in ESM2M (Figure 4c) are mainly induced by the stronger upwelling north of the GS path,

as diagnosed from stronger vertical mass transport in this region associated with the southward shift of

the GS path (not shown). An increase in upwelling would lead to increased nutrient supply, consequently

increasing the chlorophyll concentrations for this region. The vertical mass transport/vertical velocity variables

are not available from ESM2G outputs, so changes in the upwelling could not be revealed by ESM2G.

Schollaert et al. [2004] and Saba et al. [2015] found that at interannual time scale, a northward shift in the GS

position coincides with an increase in the spring bloom over the U.S. shelf/Slope Sea region using satellite

data. Here our modeling results are focused on chlorophyll concentrations further south (away from the

U.S. shelf break) around the GS path, and satellite data indeed show anticorrelations between the GS

path and spring chlorophyll concentrations around the GS path at interannual time scale (Vincent Saba,

personal communication), consistent with our modeling results. The currently available observed data

for chlorophyll/nutrient concentrations in the GS region are still too short to verify the decadal variability

discussed here.

3. Conclusions and Discussions

To summarize, results here suggest that the underlying physical driver for the decadal variability in the GS

path and the regional biogeochemical cycle is linked to the low frequency variability in the AMOC. An

enhanced AMOC leads to a stronger cyclonic NRG thus cooling in the Slope Sea, as well as a southward shift

of the GS path, results in steepened isopycnal slopes in the GS front. Nutrient reservoirs in the GS regionmove

along with the steepened isopycnals in the GS front induced by the enhanced AMOC; hence, nutrient con-

centrations are higher along the GS path in response to the shallower isopycnals there. The enhanced nutrient

concentrations in the GS region have contributed to the enhanced chlorophyll concentrations around the

GS path. These results suggest that physical processes are a significant driving mechanism for the simulated

decadal biogeochemical variability in the GS region. The impact of the AMOC and the GS path on the decadal

variability of another nutrient, nitrate (NO3), is very similar to that found for phosphate (PO4). The analysis of the

full biogeochemical cycle in the GS region is beyond the scope of this paper.

Our results have shown how changes in basin wide ocean circulation, such as AMOC, are teleconnected with

regional scale physical and biogeochemical variations near the U.S. eastern seaboard at decadal time scales;

such connections are useful for understanding and predicting future physical and biogeochemical variations

near the North American east coast. Further, AMOC-induced decadal variability in chlorophyll and nutrient

concentrations in the GS region might be important for changes in the localized carbon cycle and fisheries

at decadal time scale.

Last, we note that differences in the simulated chlorophyll and nutrient concentrations in the GS region

between ESM2M and ESM2G might be attributed to differences in the oceanic physical components between

the two ESMs. Nevertheless, the simulated impact of the AMOC and the anticorrelated GS path on the decadal

variability in chlorophyll and nutrient concentrations in the GS region are generally consistent between the

two ESMs, suggesting the robustness of the results. However, caution is advised when linking the GS varia-

bility and biogeochemical cycling in coarse resolution models with biased mean states [Henson et al., 2009].

The ESMs results here need to be compared with high resolution ESMs in the future.
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