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Recombinant protein production for medical, academic, or industrial applications
is essential for our current life. Recombinant proteins are obtained mainly through
microbial fermentation, with Escherichia coli being the host most used. In spite of
that, some problems are associated with the production of recombinant proteins
in E. coli, such as the formation of inclusion bodies, the metabolic burden, or the
inefficient translocation/transport system of expressed proteins. Optimizing transcription
of heterologous genes is essential to avoid these drawbacks and develop competitive
biotechnological processes. Here, expression of YFP reporter protein is evaluated under
the control of four promoters of different strength (PT7 lac, Ptrc, Ptac, and PBAD) and two
different replication origins (high copy number pMB1′ and low copy number p15A). In
addition, the study has been carried out with the E. coli BL21 wt and the ackA mutant
strain growing in a rich medium with glucose or glycerol as carbon sources. Results
showed that metabolic burden associated with transcription and translation of foreign
genes involves a decrease in recombinant protein expression. It is necessary to find
a balance between plasmid copy number and promoter strength to maximize soluble
recombinant protein expression. The results obtained represent an important advance
on the most suitable expression system to improve both the quantity and quality of
recombinant proteins in bioproduction engineering.

Keywords: Escherichia coli, recombinant protein, expression system, promoter, origin of replication, microbial
factory

INTRODUCTION

Expression of heterologous and autologous genes is a routine method employed in several
biotechnological fields such as metabolic engineering, in vivo biocatalysis, or in recombinant
proteins or other high-value metabolite production (Sanchez-Garcia et al., 2016; Badenhorst
and Bornscheuer, 2018; McCarty and Ledesma-Amaro, 2019). Thus, the strategy followed in a
biotechnological process usually includes the expression of enzymes or complete biosynthetic
pathways necessary to achieve the compound of interest (Assenberg et al., 2013; Gallego Jara et al.,
2015). E. coli has traditionally been, and still is, the most used host microorganism in biotechnology.
E. coli has several advantages to be employed to express heterologous proteins such as fast growth,
variety of culture broths, or high number of biology tools designed to obtain genetical modifications
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(Huang et al., 2012; Blount, 2015; Vargas-Maya and Franco, 2017;
Chandran Sathesh-Prabu and Lee, 2018; Xu et al., 2020).

The expression of recombinant proteins is influenced by both
physical and transcriptional conditions, such as temperature,
shaking, promoter strength, or number of copies of the
expression vector used (Aristidou et al., 1999; Balzer et al., 2013;
Niu et al., 2014; Bernal et al., 2016; Lozano Terol et al., 2019;
Wu et al., 2019). In spite of the advantages, some problems
are also associated with the production of recombinant proteins
in E. coli: the formation of inclusion bodies, the inefficient
protein translocation, or the metabolic burden (Mairhofer et al.,
2013; Baig et al., 2014; Marschall et al., 2017). Some current
strategies developed to solve these drawbacks are focused on
supplementation of essential precursors or use of co-cultures
(Gurramkonda et al., 2018; Slouka et al., 2019; Chiang et al., 2020;
Kumar et al., 2020; Wang et al., 2020). Metabolic burden relates
to imbalance suffered by a host cell when a heterologous gene is
expressed. The metabolic burden is associated with energetic and
precursor constraints due to the transcription and translation of
non-essential proteins for the host cell. This limitation is reflected
in the alteration of physiological parameters, such as growth
rate, and in the downregulation of several essential metabolic
pathways for the cell (Mairhofer et al., 2013; Tan et al., 2020;
Li and Rinas, 2021). In order to minimize metabolic imbalance,
several commercially available plasmids have been engineered to
design each biotechnological process, choosing between different
promoters and origins of replication, both responsible for the
expression level of the gene/s of interest (Zaslaver et al., 2006; De
Mey et al., 2007; Wang et al., 2009; Rosano and Ceccarelli, 2014;
Yang et al., 2016; Jervis et al., 2019; Rosano et al., 2019).

One of the main factors affecting metabolic burden is
promoter strength. lac-derived promoters (PT7lac, Ptrc, and
Ptac) are all based on the negative regulation by LacI, and the
expression is induced by lactose or non-metabolizable isopropyl
β-D-1-thiogalactopyranoside (IPTG), used as analogous
molecule of lactose, while pBAD plasmids carry a BAD promoter
(PBAD) positively induced by L-arabinose (Müller-Hill et al.,
1968; Silverstone et al., 1970; Terpe, 2006; Brautaset et al., 2009).
Ptrc and Ptac promoters are considered as strong promoters and
are well characterized. Genes regulated by PT7 promoter are
transcripted by the bacteriophage t7 RNA polymerase present
in some E. coli strains, such as BL21 (DE3) (Phue et al., 2008).
This polymerase is five times faster than E. coli RNA polymerase,
so PT7lac is considered a very strong promoter (William Studier
et al., 1990; Mertens et al., 1995). Although the induction
system is different from lac, the PBAD promoter is considered a
medium-strong promoter, with a lower force of expression than
Ptac, Ptrc, and PT7lac (Guzman et al., 1995).

Replication origin (ori) of the replicon is the main component
influencing the copy number of an expression vector and
therefore in cell metabolic burden (Smolke and Keasling, 2002;
Wang et al., 2009). There are many different origins including
prokaryotic, eukaryotic, viral, and others unidentified (Wang
et al., 2009). Specifically for enterobacteria, there are large
differences in the number of copies related to the different
origins (Jahn et al., 2016). For example, pMB1 (also known as
pBR322) is related to medium copy number plasmids (15–20

copies/cell), some pMB1 derivatives have high copy number
plasmids (500–700 copies/cell), while p15A is related to low PCNs
(10 copies/cell) (Lin-Chao et al., 1992).

In this study, expression of the Kringle recombinant yellow
fluorescent protein (KrYFP) has been evaluated in E. coli BL21
(DE3) using different expression systems. Thus, PT7lac, Ptrc, Ptac,
and PBAD were selected as promoters to control YFP expression.
Differences between these promoters have been studied in many
works, although in most of them, the expression study has been
carried out in different vector backbones (Lee and Keasling, 2005;
Choi et al., 2010; Wu et al., 2010; Balzer et al., 2013). In the present
work, selected promoters were cloned into a pet backbone with
two different replication origins (high and low copy number).
Induction was studied with two different carbon sources: glucose
and glycerol. Moreover, protein expression system was tested in
an E. coli BL21 1ackA strain, which shows higher recombinant
protein production with respect to the BL21 wild-type strain due
to the low acetate produced and excreted to the extracellular
medium (Kim and Cha, 2003; Kim et al., 2015; Lozano Terol
et al., 2019). Hence, we also expect to observe an increase
in YFP expression.

Together, the results try to shed light on the process of
expression vector and strain selection to optimize a recombinant
protein production process, essential to achieve a successful
yield. Moreover, results contributes to increase the metabolic
burden knowledge to obtain synthetic biology models that allow
predicting the behavior of the host cell and develop robust
biofactory cells (Wu et al., 2016; Mühlmann et al., 2018).

MATERIALS AND METHODS

Expression Vector Constructions
All primers and strains used in this study are listed in Table 1,
and plasmids constructed and employed as templates are listed in
Table 2. To construct expression vectors, the pSF-pA-PromMCS-
KrYFP (pSF-pMB1′-YFP) plasmid was employed as a template.
In order to replace the pMB1-derived ori (denoted as pMB1′ in
this study), the pSF-pMB1′-YFP vector was amplified, except the
original pMB1′ region, by using the pair of primers pSFYFP SwaI
Fwd and pSFYFP PacI Rev. The p15A ori was amplified from
the pZ8-pTac plasmid employing p15A PacI Fwd and p15A SwaI
Rev primers. Both amplification products were digested with PacI
and SwaI restriction enzymes and ligated to obtain the plasmid
pSF-p15A-YFP with the replication origin p15A. Construction
of vectors were carried out with these two backbones, pSF-
pMB1′-YFP and pSF-p15A-YFP, by inserting the promoter with
regulator section in the multicloning site region of the plasmid.
The PT7 promoter region and lac regulatory operator (lacIq
promoter, lacO, and lacI gene) were amplified from pet28a-MBP
employing PT7 SalI Fwd and PT7 HindIII Rev primers, amplified
region and vectors were digested with SalI and HindIII restriction
enzymes, and ligated to obtain pSF-pMB1′-T7-YFP and pSF-
p15A-T7-YFP vectors. Sequence coding Ptrc promoter and lac
regulatory operator was amplified from pTrcECT using PTrc
SalI Fwd and PTrc EcoRI Rev; both plasmids and PCR product
were digested with SalI and EcoRI restriction enzymes and were
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TABLE 1 | Primers and strains used in this study.

Primer Sequence 5′ → 3′

PT7 SalI Fwd GGTGGTGTCGACTCACTGCCCGCTTTCCAGT

PT7 HindIII Rev GGTGGTAAGCTTAGAGGGGAATTGTTATCCGC

PTrc SalI Fwd GTTGTTGTCGACGACACCATCGAATGGTGCAA

PTrc EcoRI Rev GTTGTTGAATTCTTGTTATCCGCTCACAATTCC

PTac SalIFwd GTTGTTGTCGACGACACCATCGAATGGTGCAA

PTac HindIII Rev GTTGTTAAGCTTCCGGGAATTCTGTTTCCTGT

PBAD SpeI Fwd GTTGTTACTAGTTTATGACAACTTGACGGCTAC

PBAD EcoRI Rev GTTGTTGAATTCAAAAAAACGGGTATGGAGAAACAG

p15A PacI Fwd GGTGGTTTAATTAAGGAAGATGCCAGGAAGATACT

p15A SwaI Rev GGTGGTATTTAAATTTTTCGTTCCACTGAGCGTCA

pSFYFP SwaI Fwd GGTGGTATTTAAATTTCCGAACTCTCCAAGGCC

pSFYFP PacI Rev GGTGGTTTAATTAAGTTTCGATAGCCCAAGGTAACCAA

Strain Description Source

Top10F′ F′[lacIq Tn10(tetR)] mcrA
1(mrr-hsdRMS-mcrBC) ϕ80lacZ1M15
1lacX74 deoR nupG recA1
araD1391(ara-leu)7697 galU galK
rpsL(StrR) endA1 λ−

Invitrogen

BL21 (DE3) F− ompT gal dcm lon hsdSB(rB− mB−)
λ(DE3)

Promega

BL21 (DE3) 1ackA F− ompT gal dcm lon hsdSB(rB− mB−)
λ(DE3) ackA:KanR

Lozano Terol
et al., 2019

Restriction nuclease sites are resalted and are in bold.

ligated to generate pSF-pMB1′-trc-YFP and pSF-p15A-trc-YFP
vectors. Construction of pSF-pMB1′-tac-YFP and pSF-p15A-tac-
YFP was carried out by Ptac promoter and regulatory lac operator
from pZ8-pTac PCR using PTac SalI Fwd and PTac HindIII
Rev primers. Amplified sequence and backbone vectors were
digested with SalI and HindIII restriction enzymes and ligated
to generate complete plasmids. The PBAD promoter and araC
regulatory gene were amplified from pBAD24 vector employing
PBAD SpeI Fwd and PBAD EcoRI Rev. The PCR product was
digested and inserted in both digested plasmids through SpeI and
EcoRI restriction enzyme sites to generate pSF-pMB1′-BAD-YFP
and pSF-p15A-BAD-YFP plasmids.

Growth and Expression Analysis
Escherichia coli BL21 (DE3) wild type or ackA-deficient strains
were made competent by the rubidium chloride method
(Hanahan, 1983). Chemically competent cells were transformed
by heat shock at 42◦C with the constructed pSF-pMB1′-YFP
or pSF-p15A-YFP vectors. Transformed cells were grown in
a Synergy H1 Hybrid Multi-Mode Reader to simultaneously
measure growth at 600 nm (optical density OD600) and
fluorescence, at 520 nm excitation and 542 nm emission. Then,
96-well sterilized plates were filled with 200 µl of complex TB7
medium with glucose (20 mM) or glycerol (40 mM) as carbon
sources. To prevent evaporation and permit aeration, 96-well
multiplates were covered with an adhesive gas-permeable sheet
(Sigma Aldrich). Cultures were inoculated with precultures to
an initial OD600 of 0.05 U and induced at 0.5 U with 0–2 mM
IPTG or L-arabinose. TB7 composition was 10 g/L tryptone

TABLE 2 | Plasmids used and constructed in this study.

Plasmid Description Source

pet28a-MBP pMB1 ori, lacI PT7 promoter, KanR,
Maltose Binding Protein (MBP) Phusion
tag

Lab deposit

pTrcECT pMB1 ori, lacI, Ptrc promoter, AmpR.
ectABC (Ectoine biosynthetic operon
from Halomonas elongate) expression

pTrcECT was a gift
from Xixian Xie
Ning et al., 2016

pZ8-pTac p15a ori, lacI, Ptac promoter, KanR pZ8-Ptac was a gift
from Timothy Lu
Cleto et al., 2016

pBAD24 pMB1 ori, L-arabinose PBAD promoter,
AmpR.

Lab deposit

pSF-pA-
PromMCS-
KrYFP
(pSF-pMB1′-
YFP)

pMB1′ ori, promotorless, AmpR. Kringle
YFP (Yellow Fluorescence Protein)
expression

Oxgene

pSF-p15A-YFP p15A ori, promotorless, AmpR. Kringle
YFP (Yellow Fluorescence Protein)
expression

This study

pSF-pMB1′-t7-
YFP

pMB1′ ori, lacI PT7 promoter, AmpR.
Kringle YFP (Yellow Fluorescence
Protein) expression

This study

pSF-pMB1′-
trc-YFP

pMB1′ ori, lacI, Ptrc promoter, AmpR.
Kringle YFP (Yellow Fluorescence
Protein) expression

This study

pSF-pMB1′-
tac-YFP

pMB1′ ori, lacI, Ptac promoter, AmpR.
Kringle YFP (Yellow Fluorescence
Protein) expression

This study

pSF-pMB1′-
BAD-YFP

pMB1′ ori, L-arabinose PBAD promoter,
AmpR. Kringle YFP (Yellow
Fluorescence Protein) expression

This study

pSF-p15A-T7-
YFP

p15A ori, lacI PT7 promoter, AmpR.
Kringle YFP (Yellow Fluorescence
Protein) expression

This study

pSF-p15A-trc-
YFP

p15A ori, lacI, Ptrc promoter, AmpR.
Kringle YFP (Yellow Fluorescence
Protein) expression

This study

pSF-p15A-tac-
YFP

p15A ori, lacI, Ptac promoter, AmpR.
Kringle YFP (Yellow Fluorescence
Protein) expression

This study

pSF-p15A-
BAD-YFP

p15A ori, L-arabinose PBAD promoter,
AmpR. Kringle YFP (Yellow
Fluorescence Protein) expression

This study

buffered at pH 7.0 with 100 mM K2HPO4. Cultures were grown
in triplicate with double orbital shaking at 37◦C for 48 h. The
specific growth rate was determined as previously described
(Lozano Terol et al., 2019).

YFP Concentration Determination
In order to quantify YFP produced, cultures at stationary growth
step were harvested at 4,000 × g for 15 min at 4◦C. Cells
were disrupted by sonication for 2 min (40 s each pulse) using
a Vibra Cell sonicator (Sonicator Sonics & Materials, Newton,
United Kingdom). Lysates were analyzed by electrophoresis
SDS-PAGE with 10% acrylamide gels using Mini-PROTEAN
Tetra Cell (Biorad, California, CA, United States) followed by
Coomassie staining (Fisher Scientific, Madrid, Spain). Standard
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pSF-p15A-YFPpSF-pMB1-YFP

pSF-pMB1’-t7lac-YFP

pSF-pMB1’-trc-YFP

pSF-pMB1’-tac-YFP

pSF-pMB1’-BAD-YFP

pSF-p15A-t7lac-YFP

pSF-p15A-trc-YFP

pSF-p15A-tac-YFP

pSF-p15A-BAD-YFP

p

FIGURE 1 | Scheme of expression vectors constructed in this study. PMCSR, promoter multicloning site region; KSD, Kozak Shine-Dalgarno; YFP, yellow
fluorescent protein; AmpR, ampicillin resistance.

curve was constructed to calculate YFP concentration by
densitometric analysis using ImageJ Gel Analyzer software
(Rueden et al., 2017).

Recombinant Protein Solubility Study
To evaluate the solubility of the overexpressed YFP protein,
chemically competent cells harboring constructed pSF-pMB1′-
YFP or pSF-p15A-YFP vectors were grown overnight in batch
mode at 37◦C with orbital shaking (250 rpm). Culture medium
and inductor concentration were selected in expression analysis.
Pellets were harvested by centrifugation (20 min; 4,500 × g)
and resuspended in native buffer (50 mM K2HPO4, 500 mM
NaCl, pH 8). Cells were disrupted by sonication for 2 min (40 s
each pulse) using a Vibra Cell sonicator (Sonicator Sonics &
Materials, Newton, United Kingdom). The lysates were clarified
by centrifugation at 14,000 × g for 30 min at 4◦C to obtain
supernatants (soluble protein extracts). Pellets were resuspended
again with denatured buffer (50 mM K2HPO4, 500 mM NaCl,
urea 6 M, pH 8) and incubated under shaking for 30 min.
Finally, cells were centrifugated at 14,000 × g for 30 min at 4◦C
to isolate supernatants (insoluble protein extracts). To analyze
YFP solubility, electrophoresis SDS-PAGE with 10% acrylamide
gels was carried out. Protein gels were run under denaturing
conditions using Mini-PROTEAN Tetra Cell (Biorad, California,
CA, United States) followed by Coomassie staining (Fisher
Scientific, Madrid, Spain). ImageJ Gel Analyzer software was used
for densitometric quantification (Rueden et al., 2017).

RESULTS AND DISCUSSION

Construction of Two Different
Replication Sets of Expression Vectors
To evaluate the influence of replication origin on expression of
recombinant proteins in E. coli BL21, p15A (∼10 copies/cell)

and a high copy number derived from pMB1 ori (500–700
copies/cell), denoted as pMB1′, were selected (Selzer et al.,
1983; Lin-Chao et al., 1992). To avoid influence by other vector
components in expression, a common backbone was chosen
for all constructions with the same ribosomal binding site
sequence (Shine Delgarno sequence), the vector pSF-pMB1’-
YFP (pMB1’ origin) (Table 1). The pSF-p15A-YFP was built
from this, which was exactly the same as the previous one,
except for the origin (p15A). One of the most important aspects
to consider when designing a recombinant protein production
process is the choice of the promoter system. Together with the
replication system, it will be decisive for the level of expressed
recombinant protein. We selected the prokaryotic PT7lac, Ptrc,
Ptac, and PBAD promoters. The first three are based on the
negative regulation by LacIQ and the last induced by L-arabinose.
A scheme of the plasmids constructed for this study is shown in
Figure 1. The resulting plasmids were named pSF-pMB1′-T7lac-
YFP (6,131 bp), pSF-pMB1′-trc-YFP (6,059 bp), pSF-pMB1′-tac-
YFP (5,969 bp), pSF-pMB1′-BAD-YFP (5,815 BP), pSF-p15A-
T7lac-YFP (5,749 bp), pSF-p15A-trc-YFP (5,677 bp), pSF-P15A-
tac-YFP (5,587 bp), and pSF-p15A-BAD-YFP (5,433 bp).

Yellow Fluorescent Protein Expression
Under Different Induction Conditions
To know the behavior of an expression system under different
inductor concentrations is essential to optimize a protein
expression process. Here, to study how the constructed plasmids
expressed the recombinant YFP, different induction conditions
were evaluated. Thus, IPTG and L-arabinose 0 (control), 0.01,
0.05, 0.1, 0.5, 1, and 2 mM were tested, and maximal expressions
observed for each vector were normalized to 100% (Figure 2).
As shown in Figure 2, all lac-based systems showed the highest
YFP expression from 0.1 mM IPTG, while for the PBAD promoter,
it was necessary to have a 2 mM L-arabinose concentration.
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Moreover, induction profiles were similar in glucose and glycerol
cultures and for wt or ackA-deficient mutant of E. coli. Thus,
0.1 mM was selected as the optimal IPTG concentration for lac-
based vectors and 2 mM for vectors with PBAD. The difference
in optimal concentration of inducers is probably a consequence
of all-or-none expression. The PBAD and lac promoters give rise
to a gene expression known as all-or-none when induced with
natural lactose or L-arabinose, respectively. This phenomenon
refers to the fact that, at sub-saturated concentrations of inducer,
a homogeneous level of induction is not obtained, but rather
cultures in which there is a percentage of cells totally induced
and another that is not induced. The gratuitous inducer IPTG
is a non-metabolizable lactose analog that can freely cross the
cell wall and membrane. In this sense, using IPTG as inducer,
homogeneous cultures are achieved at different concentrations,
which allows us to optimize the expression in a tighter way,
and to use lower concentrations of inducer (Khlebnikov and
Keasling, 2002). However, at the moment, no analog to L-
arabinose is known that allows to eliminate this phenomenon
(Afroz et al., 2014).

As shown in Figure 2, in most conditions assayed, a basal
expression without inducer was observed at long culture times
(see also control expression in Figure 3A). This basal expression
was negligible in PBAD promoter-based vector because AraC
represses translation and L-arabinose is absolutely needed for
induction (Schleif, 2010). The highest basal expression was
observed for Ptrc and Ptac promoter vectors. lac promoters are
known to have leaky transcription, that is, transcription occurs
when the inducer is absent (Rosano and Ceccarelli, 2014). This
fact was observed in cultures transformed with Ptrc and Ptac
p15A vectors, in spite of carrying the LacQ improved version
(Penumetcha et al., 2010). However, PT7lac showed a low basal
expression, in spite of being a lac promoter, probably due to
double repression (both, PT7lac promoter and phage T7 RNA
polymerase). Basal expression observed in Ptrc and Ptac promoter
vectors could be a drawback when a toxic protein for cell is
overexpressed.

Inducer Concentration Influence on
Yellow Fluorescent Protein Expression
Time
In order to deepen the influence of inducer concentration on
YFP production, expression rates were calculated for all the
cultures (data not shown), but these rates were not affected
by inductor concentration. However, the inducer concentration
was fundamentally reflected in the decrease in the time of YFP
expression. Thus, in all cases, as the inducer concentration
increased, the expression of the recombinant protein was
observed earlier. In Figure 3A, the YFP expression of E. coli wt
carrying the pSF-pMB1′-tac-YFP and growing with glucose as
carbon source at different IPTG concentrations is shown. Basal
expression was observed in control culture (IPTG 0 mM) at
long culture times. However, when IPTG was present, expression
was observed earlier, although from IPTG, 0.1 mM differences
in the time of expression were almost negligible. The same
expression profile was observed for all cultures carrying lac
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FIGURE 2 | Percentage of yellow fluorescent protein (YFP) expression with
respect to maximal expression for each plasmid under different inductor
conditions. The YFP expressions selected were the highest achieved at
stationary growth phase. (A) E. coli wt growing with glucose as carbon
source. (B) E. coli wt growing with glycerol as carbon source. (C) E. coli
1ackA growing with glucose as carbon source. (D) E. coli 1ackA growing
with glycerol as carbon source.

vectors. In Figure 3B, expression time (in hours after the inducer
addition) is shown with respect to the concentration of inducer
added for E. coli wt transformed with the six constructed lac
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vectors growing in TB7 supplemented with glucose. As can
be seen, in the absence of inductor, basal expression started
at 6–17 h post-induction, due to insufficient LacI expression.
However, at 0.1 mM IPTG, YFP expression was observed at 1–
4 h after induction. Cultures carrying PBAD vectors did not show
expression until L-arabinose was at 0.1 mM, due to the all-or-
none phenomenon (Figure 3C). Moreover, expression times were
much longer in PBAD than in lac vectors when glucose was the
sole carbon source due to catabolite repression (Figures 3D,E).
Hence, PBAD promoter is regulated by this phenomenon, in
addition to L-arabinose induction. Due to the non-PTS nature of
glycerol, catabolite repression is not observed when cultures are
supplemented with glycerol as carbon source (Figure 3E).

Effects of the Different Expression
Systems and Conditions on the Yellow
Fluorescent Protein Expression
In order to compare the expression of the recombinant protein
YFP under the selected induction conditions (0.1 mM IPTG
and 2 mM L-arabinose) with the different constructed vectors,
triplicates of each combination were carried out in the same
multiwell plate. In this way, it was possible to compare the
expression of YFP in E. coli wt and 1ackA mutant growing with
glucose or glycerol and transformed with each plasmid. Figure 4
shows the expression observed at stationary growth phase in each
culture. The expression is shown in percentage with respect to the
maximum expression reached (E. coli wt growing with glycerol as
carbon source transformed with the plasmid pSF-p15A-trc-YFP).
Moreover, YFP expressed was quantified, and the concentration
(mg of protein/L of culture) is also shown. Statistical testing

involving two-way ANOVA was carried out with Graphpad
Prism 7.0 in order to evaluate statistically significant differences
between maximal expression condition observed in each plasmid
with respect to the other conditions [p-value < 0.0001 (∗∗∗∗),
<0.001 (∗∗∗), <0.01 (∗∗), and <0.05(∗)].

Results showed that the highest expression was achieved
with the vectors with the lowest number of copies, which
contained the p15A origin. High copy number vectors have
been previously associated to a lower protein production
than medium and low copy plasmids (Jones et al., 2000;
Silva et al., 2012). On the contrary, PBAD showed higher
YFP expression with high copy plasmid, probably due to
the weaker strength of BAD promoter with respect to lac.
Thus, the combination of a high copy number origin of
replication and a strong promoter caused a metabolic mismatch,
which triggered a decrease in YFP production. This metabolic
burden has been, and continues to be, widely studied, since
it implies a loss of productivity (Wu et al., 2016). Thus, not
only the production of recombinant proteins but also the
presence of the plasmid in the host cell has several metabolic
and physiological consequences such as alterations in growth
rate or differential expression of essential metabolic enzymes
(Silva et al., 2012).

In order to increase the knowledge between YFP expression
and metabolic burden, growth rates were calculated for those
cultures with the highest YFP expression observed for each
promoter. Moreover, growth rate of wt and ackA mutant
without any plasmid and containing the expression vector
without any promoter were also calculated. Growth curves of
empty strains and containing promoterless vectors are shown
in Figure S1, and growth rates are shown in Table 3. Empty
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wt and ackA-deficient strains showed the highest rates. Strains
containing vector without any promoter showed a great decrease
in growth rate, revealing a metabolic mismatch due to replication
and maintenance of the additional plasmid DNA in the cell.
Comparing strains containing pMB1′ with p15A vectors, high
copy number plasmids caused a greater decrease in growth rate.
Knowledge about why this metabolic imbalance occurs is still
insufficient, certain studies point to a collapse in the cellular
translation machinery in the face of an excess of extrinsic mRNA
from the heterologous gene/genes, which is in concordance
with growth rates observed in this study (Mairhofer et al.,
2013; Tan et al., 2020). Moreover, decrease in growth rate also
showed a dependence on strength promoter although lower
than replication origin. This result highlights that metabolic
burden is mainly due to transcription and, to a lesser extent,
to recombinant protein translation, which has been recently
discussed (Li and Rinas, 2020).

Glycerol has become a potential alternative to glucose, the
traditional carbon source, due to its lower cost as a subproduct
of biodiesel production (Clomburg and Gonzalez, 2013). Results
observed in this study show a similar expression for cultures
growing with glucose or glycerol as carbon source, so glycerol
could be a better alternative without a decrease in the final
yield. Regarding the ackA-deficient mutant, expression with high
copy vectors was much lower than that observed for the wt
strain. However, when low copy plasmids were employed, 1ackA
showed a similar expression to wt. The low expression measured
with pMB1′ was probably due to an increase in the metabolic
burden caused by ackA gene depletion, which agrees with the
growth rates. Thus, ackA-deficient mutant showed approximately
half of wt growth rate. Previous studies have observed an increase
in recombinant protein expression when E. coli BL21 ackA
knockout strain was used as host. Thus, ackA depletion avoids
acetate overflow and energy waste associated to it. However, none
of these studies used a plasmid with such a high copy number as
pMB1′ (Kim and Cha, 2003; Kim et al., 2015; Lozano Terol et al.,
2019). To our knowledge, this is the first expression study carried
out in E. coli BL21 1ackA with a high copy number plasmid and
a strong promoter.

To compare all conditions, statistical testing involving two-
way ANOVA of the maximal YFP expression achieved with
each vector was carried out (Figure 5). Figure 5 shows
significant differences of maximal expression compared with
YFP expression with pSF-p15A-trc-YFP, the highest observed.
Quantitative analysis revealed a YFP maximal concentration of
53.09 mg/L, which agrees with other studies focused on GFP
production in E. coli (Chew and Tan, 2012; Fragoso-Jiménez
et al., 2019). All expressions, except the ones corresponding to
pSF-p15A-tac-YFP were significantly lower. Thus, for low copy
vectors, Ptrc promoter achieved threefold higher expression than
PT7lac and 5.5-fold than the PBAD. It is interesting to highlight
how the joint influence of the promoter strength and the number
of copies associated with each of the two replication origins
used is observed. Thus, for PT7lac, the strongest promoter of
the four studied, the expression of YFP is lower than for Ptrc
and Ptac, both in the low and high copy number vector. This
low expression might be due to the metabolic stress caused by

excess transcripts or to an insufficient expression of RNA T7
polymerase (Vethanayagan and Flower, 2005; Mairhofer et al.,
2013). These results indicate the need to find an adequate balance
between these two factors, which will need to be optimized for
each production process.

TABLE 3 | Growth rates calculated for empty strains and containing promoterless
vectors growing with glucose or glycerol as carbon sources.

E. coli strain Carbon
source

Expression
vector

Growth rate

wt Glu BL21 Glucose No vector
(empty strain)

0.99 ± 0.04

wt Gly BL21 Glycerol No vector
(empty strain)

0.72 ± 0.03

wt Glu
pMB1′

BL21 Glucose No
promoter-YFP
pMB1′

0.54 ± 0.05

wt Gly
pMB1′

BL21 Glycerol No
promoter-YFP
pMB1′

0.43 ± 0.03

wt Glu
p15A

BL21 Glucose No
promoter-YFP
p15A

0.63 ± 0.03

wt Gly
p15A

BL21 Glycerol No
promoter-YFP
p15A

0.53 ± 0.1

1ackA Glu BL21 1ackA Glucose No vector
(empty strain)

0.56 ± 0.05

1ackA Gly BL21 1ackA Glycerol No vector
(empty strain)

0.50 ± 0.07

1ackA Glu
pMB1′

BL21 1ackA Glucose No
promoter-YFP
pMB1′

0.19 ± 0.02

1ackA Gly
pMB1′

BL21 1ackA Glycerol No
promoter-YFP
pMB1′

0.18 ± 0.02

1ackA Glu
p15A

BL21 1ackA Glucose No
promoter-YFP
p15A

0.42 ± 0.03

1ackA Gly
p15A

BL211ackA Glycerol No
promoter-YFP
p15A

0.30 ± 0.03

PT7lac

pMB1′
BL21 Glucose PT7lac-YFP

pMB1′
0.31 ± 0.03

Ptrc pMB1′ BL21 Glucose Ptrc-YFP
pMB1′

0.21 ± 0.01

Ptac pMB1′ BL21 Glycerol Ptac-YFP
pMB1′

0.22 ± 0.01

PBAD

pMB1′
BL21 Glycerol PBAD-YFP

pMB1′
0.17 ± 0.02

PT7lac p15A BL21 1ackA Glycerol PT7lac-YFP
p15A

0.24 ± 0.03

Ptrc p15A BL21 Glycerol Ptrc-YFP p15A 0.5 ± 0.05

Ptac p15A BL21 Glucose Ptac-YFP p15A 0.65 ± 0.05

PBAD p15A BL21 1ackA Glycerol PBAD-YFP
p15A

0.28 ± 0.04

Growth rates of cultures with the highest YFP expression observed for each
promoter were also calculated. E. coli strain and carbon source of each
culture are shown.
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Study of Recombinant Yellow
Fluorescent Protein Protein Solubility
One of the greatest drawbacks to obtain high recombinant
protein yields with E. coli is the formation of inclusion bodies and
protein precipitation, due to high expression, incorrect folding,
aggregation, or low chaperone activity (Gopal and Kumar, 2013).
Recombinant protein precipitation involves, in addition to a
decrease in the yield of the production process, an alteration
in the gene transcription of the strain (Baig et al., 2014).
Hence, to optimize a large-scale recombinant protein production
process, it is essential to know what proportion of the protein
forms precipitates and what fraction remains in soluble form,
and therefore functional for most subsequent applications. In
order to know the percentage of soluble and insoluble YFP
protein, batch cultures were carried out with E. coli growing
under the conditions corresponding to the maximum expression
observed for each vector (Figure 5). When cultures reached
the stationary phase, soluble/insoluble fractions were analyzed
by electrophoresis SDS-PAGE and subsequent densitometric
analysis. Electrophoresis gels are shown in Supplementary
Figure 2. Figure 5 results showed that insoluble YFP protein
was present in all cultures. However, cultures where YFP was
expressed under PBAD promoter control showed lower insoluble
fraction. Moreover, cultures containing pSF-p15A-trc-YFP and
pSF-p15A-tac-YFP vectors, of which YFP expression was the
highest, showed a similar percentage of soluble and insoluble
protein. This difference observed in the amount of protein
precipitated according to the expression plasmid used is very
relevant, since it is useless to achieve a high expression if most of

the protein is precipitated together with the cell pellet. Therefore,
this aspect should be studied previously when selecting an
expression system, especially if we are faced with a protein with
limited solubility.

CONCLUSION

Production of recombinant proteins has become an essential
process to obtain drugs and other metabolites with high industrial
interest. E. coli, as a prokaryotic model, is often the host of choice
to produce proteins or other metabolites, especially when these
proteins do not require complex post-translational modifications
(Rosano and Ceccarelli, 2014). One of the advantages of E. coli
as a host is the wide variety of expression vectors available.
These expression vectors have different components, such as
promoters or origins of replication, which are essential to tune
the expression of our proteins of interest.

Metabolic burden associated to expression of heterologous
proteins in microbial hosts is known to be one of the main
drawbacks to achieve high recombinant protein yields. As has
been demonstrated in this study, the negative effects of this
imbalance can be minimized by tuning heterologous gene
expression through vector copy number-promoter strength
balance. Therefore, studies on plasmid copy number combined
with the type of replication origin and promoter characteristics
give important information to improve synthetic biology
in heterologous protein and metabolite production method
application (Koma et al., 2018; Shariati et al., 2021). In
conclusion, the results show the importance of the transcription
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system optimization according to the characteristics of each
process to achieve a successful result.
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