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Research Questions

• How well do network distance prediction 
(NDP) algorithms perform within 
application contexts?

• How do NDP algorithms’ performance 
compare with on-demand measurement 
and optimal algorithms?



Background

• Landmark-based algorithms 
(triangulated heuristic)

• Coordinate-based algorithms 
(Global Network Positioning [GNP])

• Vector-based algorithms 
(Internet Distance Estimation Service [IDES])

• Server-based algorithms



Methodology

• Uses King, PlanetLab, and AMP datasets

• Compares relative prediction error and 
directional relative prediction error

• Accuracy predicting long and short links



Overlay Multicast

• Task: given a network of nodes, construct a 
peer-to-peer unicast tree to efficiently 
distribute content to multiple nodes

• Optimize on latency

• Evaluates using trees constructed by MST, 
ESM, and LGK algorithms



Evaluation

• Tree costs (MST, ESM): Sum of distances 
between tree nodes

• Delay stretch: Ratio of delay using tree vs. 
delay using direct unicast

• Results: Distance prediction algorithms 
produce poor trees, algorithm complexity 
does not help

• Cause: Poor prediction of close distances
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Fig. 16. The distribution of predicted distances between node pairs (N, A),
(N, B), and (N, C) respectively. The peaks of the bell shapes are the real
distances between (N, A), (N, B), and (N ,C) respectively. Node B will be
mistakenly predicted as the closest node to N if the sample of the predicted
distance for B is the smallest among the three samples (see the dots in the
figure).

chooses B as the closest node to N . Next, we calculate the
probability for this to happen given XA = s and XB = s+ e.
Fig. 16 is an illustration of the analysis process.

Given XB = s + e, the PDF of YB , i.e., the predicted
distance between N and B, is given by

g(w|(s + e)), (4)

where w denotes the predicted distance between N and B.
The neighbor selection algorithm chooses B as the closest
node to N only if w is smaller than YA, the predicted distance
between N and A. Hence, given XA = s and YB = w, the
probability that B appears to be a closer neighbor than A
based on predicted distances, is given by

Pr[YA > w|XA = s] =
∫ ∞

w
g(yA|s) dyA. (5)

For any other node C ∈ M, C "= A and C "= B, the
real distance between N and C must be larger than the
real distance between A and N . Hence, given XA = s, the
conditional PDF of XC , i.e., the real distance between N and
C, is given by

fC(xC |XC > s) =
f(xC)

Pr[X > s]
, xC > s. (6)

The prediction algorithm chooses B as the closest node to N
only if w is smaller than YC , the predicted distance between
N and C. Given XC = r and YB = w, the probability that C
appears to be further away than B in the prediction space is,

Pr[YC > w|XC = r, YB = w] =
∫ ∞

w
g(yC |r) dyC .

Let PfarB(s, w) denote the probability that C appears to be
further away than B in the prediction space conditioned on
YB = w and XA = s. Then,

PfarB(s, w) = Pr[YC > w|YB = w, XA = s]

=
∫ ∞

s

f(r)
Pr[X > s]

∫ ∞

w
g(yC |r) dyC dr. (7)

Combining Equations (4), (5), and (7), and noting that there
are k − 2 nodes in M other than A and B, we obtain the
probability that B is chosen by the prediction algorithm as the
closest node to N conditioned on XA = s and XB = s + e:

PselB(s, e) = Pr[select B|XA = s, XB = s + e]

=
∫ ∞

−∞
g(w|s + e) · Pr[YA > w|XA = s]

·{PfarB(s, w)}k−2 dw. (8)

We next remove the conditioning on XB . Given XA = s,
the real distance between N and B must be larger than s since
A is the closest node to N . The conditional PDF of XB , i.e.,
the real distance between N and B, is thus given by

fB(xB |XB > s) =
f(xB)

Pr[X > s]
, xB > s. (9)

Noting that any of the k − 1 nodes in M other than A
can take the role of B in the above analysis, and combining
Equations (8) and (9), we have the PDF of introducing error
e when selecting the nearest neighbor from a candidate pool
of size k conditioned on XA = s as:

hk(e|XA = s) = (k − 1)PselB(s, e)fB(s + e|XB > s).

Hence, using Equation (2),

hk(e) =
∫ ∞

0
hk(e|XA = s)pk

A(s) ds. (10)

Finally, the expectation of the error Z(k) in nearest neighbor
selection is then,

E[Z(k)]

=
∫ ∞

0
e · hk(e) · de

=
∫ ∞

0
de

{
e

∫ ∞

0
ds

{
k(k − 1)f(s)f(s + e)

·
∫ ∞

−∞
dw

{
g(w|s + e)

{∫ ∞

w
dl · g(l|s)

}

·
∫ ∞

s
dr

{
f(r)

{∫ ∞

w
dl · g(l|r)

}}k−2
}}}

, (11)

which is a function of the size k of the candidate pool, the
distribution f(x) of real distances, and the distribution g(y|d)
of predicted distances.

B. Analysis of the Impact of Prediction Inaccuracy on Overlay
Multicast

In this section, we analyze the quality of multicast trees
created under the guidance of distance prediction algorithms.
As a baseline for comparison, we first analyze the tree cost for
the modified ESM protocol with two assumptions: (i) the real
distance between any two nodes is known; (ii) a new node has
full knowledge of all the on-tree nodes. Let random variable
T (n) denote the cost of an n-node tree built by this protocol.
Below we calculate the expectation of T (n).
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Fig. 1. CDF of relative prediction error (King)
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Fig. 2. Average relative prediction error (King)
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Fig. 3. Distance to closest neighbor selected
based on IDES prediction (King)
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Fig. 4. Directional relative prediction error of
IDES (King)
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Fig. 5. Directional relative prediction error of
IDES optimal (King)
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Fig. 6. CDF of relative prediction error (AMP)

can be predicted with high accuracy, even for short links
(see [30]). One possible explanation is that the distances in
the AMP dataset lie inside a small range with a maximum
distance of 373 ms, as opposed to around 1000 ms for the
King and PlanetLab datasets. Note that the three prediction
algorithms perform equally well for the AMP dataset.

In summary, the prediction accuracy of a distance prediction
algorithm can vary widely for different datasets. In addition,
for each of the three latency datasets, the differences between
the three prediction algorithms (GNP, the default IDES, and
the triangulated heuristic) are minor in terms of the overall
prediction accuracy. In the rest of the paper, we study the
effects of the prediction inaccuracy on the performance of
Internet applications.

V. EVALUATION OF THE IMPACT OF PREDICTION
INACCURACY ON OVERLAY MULTICAST

The first application we investigate is overlay multicast. Our
goal is to answer the following question: how good is an over-
lay multicast tree constructed based on predicted distances,
compared to the tree constructed based on measurements?

There exists a rich body of work on overlay multicast
(e.g., [3], [4], [6], [12]). An overlay multicast algorithm
usually seeks to optimize some performance metric or a com-
bination of metrics. Since our problem domain is distance pre-
diction, we only consider the latency metric here. Compared
to other applications, the performance of overlay multicast is
potentially more sensitive to the prediction inaccuracy. For
instance, a mistake made earlier in building the tree can
potentially alter the entire tree topology.

To focus on the impact of distance prediction rather than
the artifacts of any particular multicast algorithm, we study

three simple, abstract algorithms for overlay tree construction:
minimum spanning tree (MST), modified ESM [12], and
LGK [4]. The MST is constructed using Prim’s algorithm.
We selected MST for our study because it reflects the ability
to correctly select the shortest links in the network by the
distance prediction mechanism.

The modified ESM algorithm is a variant of the broadcast
ESM protocol [12]. Specifically, a new node to join a multicast
tree obtains a partial list of on-tree nodes, and selects one
of them as its parent. The parent selection algorithm in [12]
chooses the shortest widest path to an on-tree node. We do not
consider link capacity or node degree here, and hence a new
node selects the closest node in the partial list as its parent.
In our evaluation, each new node uses a random sampling of
30 on-tree nodes [12].

The third algorithm, LGK [4], constructs a k-ary tree by
exploring node location information. First, the root of the
multicast tree selects the closest k nodes as its direct children
on the tree. Next, the rest of the nodes are grouped with the
k children according to proximity: each remaining node is
assigned to the closest of the k children. Ties are broken by
load balancing: the node is assigned to the smallest group.
In this way, each of the k children is the root of a sub-tree
consisting of those nodes close to it. The multicast tree is
formed as each subtree repeats the two steps of child selection
and clustering. It has been shown that k = 2 gives the
best tradeoff between the delivery delay and overhead of the
multicast tree.

We believe that the above three algorithms capture the two
essential building blocks of most overlay multicast protocols,
namely, shortest link selection and proximity-based clustering.
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Other Analysis

• Prediction algorithms add a cost to the tree

• Network distances are close to normally 
distributed



Selected Measurements

• Since close neighbor prediction is 
problematic, substitute measurement for 
close nodes

• Algorithm: Take the set of nodes with 
smallest predicted distances and replace 
predictions with measurements



MST + GNP
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Fig. 24. Tree cost (MST) based on GNP with
selective measurement (King)
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Fig. 25. Tree cost (ESM) based on GNP with
selective measurement (King)
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Fig. 26. Delay stretch (LGK) based on GNP
with selective measurement (King)
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Fig. 27. Tree cost (MST) based on triangulated
heuristic with selective measurement (King)
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Fig. 28. Tree cost (ESM) based on triangulated
heuristic with selective measurement (King)
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Fig. 29. Delay stretch (LGK) based on triangu-
lated heuristic with selective measurement (King)

In order to study the impact of distance prediction on struc-
tured overlays, we construct Pastry [20] networks based on
predicted distances. In Pastry, each node maintains a routing
table based on node identifier prefixes. When there is more
than one node satisfying the identifier prefix constraint, the
closest in terms of network distance can be selected (referred
to as “proximity-awareness”). For each Pastry overlay of size
n, n Ping messages are sent from randomly selected source
nodes towards randomly selected destinations. Fig. 35 reports
the average routing delay stretch when the Pastry overlay is
constructed using measured distances and predicted distances
respectively. The routing delay stretch is defined as the delay
along the overlay routing path divided by the delay of the
direct path from the source to the destination. The results
suggest that distance prediction works well in Pastry-like
structured overlay construction, as the increase in the routing
delay stretch is below 20%. The intuition behind this is as
follows. In Pastry, the latency of the last routing hop dominates
and the choices for the last hop routing are only a few at best.
Therefore, the prediction algorithms can do well in selecting
the shortest one from them. Our experiments with unstructured
and structured overlays further confirm that the outcome of
selecting the shortest links based on prediction varies with the
size of the candidate pool. All the three prediction mechanisms
work well when the candidate pool is small (as in structured
overlay construction).

IX. CONCLUSION

In this paper, we have considered Internet distance predic-
tion from an application’s perspective. We have studied the
impact of the inaccuracy of distance prediction algorithms
on Internet applications by systematically experimenting with
three types of representative applications (overlay multicast,

server selection, and overlay construction), three distance pre-
diction algorithms (GNP, IDES, and the triangulated heuristic),
and three Internet distance traces (King, PlanetLab, and AMP).
We have also developed an analytic framework to aid in
understanding the impact of the distance prediction error on
the application’s performance.

Our major findings can be summarized as follows.
• Existing distance prediction algorithms are inadequate for

the applications in terms of the prediction accuracy. The
performance of the prediction-based versions of the appli-
cations can be significantly worse than the measurement-
based versions.

• Both our analytical and experimental results suggest that
the prediction accuracy for short links has a major impact
on application performance. Unfortunately, existing pre-
diction algorithms are found to be inaccurate in predicting
these short links.

• Combining selective measurement with distance predic-
tion is very effective in improving application perfor-
mance. When selective measurement is used, we have
observed no major performance differences between the
selected distance prediction algorithms, and the choice of
the prediction algorithm itself becomes less important.

One possible direction for our future work is to study more
advanced distance prediction algorithms for improving the
prediction accuracy. We are also interested in solving practical
issues with distance prediction such as those discussed in [17].
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Fig. 24. Tree cost (MST) based on GNP with
selective measurement (King)
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Fig. 25. Tree cost (ESM) based on GNP with
selective measurement (King)

 0

 1

 2

 3

 4

 5

 6

 7

 50  100  200  400

de
la

y 
st

re
tc

h

tree size

GNP
GNP + measurement

measured

Fig. 26. Delay stretch (LGK) based on GNP
with selective measurement (King)
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Fig. 27. Tree cost (MST) based on triangulated
heuristic with selective measurement (King)
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Fig. 28. Tree cost (ESM) based on triangulated
heuristic with selective measurement (King)
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Fig. 29. Delay stretch (LGK) based on triangu-
lated heuristic with selective measurement (King)

In order to study the impact of distance prediction on struc-
tured overlays, we construct Pastry [20] networks based on
predicted distances. In Pastry, each node maintains a routing
table based on node identifier prefixes. When there is more
than one node satisfying the identifier prefix constraint, the
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the shortest one from them. Our experiments with unstructured
and structured overlays further confirm that the outcome of
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size of the candidate pool. All the three prediction mechanisms
work well when the candidate pool is small (as in structured
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tion from an application’s perspective. We have studied the
impact of the inaccuracy of distance prediction algorithms
on Internet applications by systematically experimenting with
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diction algorithms (GNP, IDES, and the triangulated heuristic),
and three Internet distance traces (King, PlanetLab, and AMP).
We have also developed an analytic framework to aid in
understanding the impact of the distance prediction error on
the application’s performance.

Our major findings can be summarized as follows.
• Existing distance prediction algorithms are inadequate for

the applications in terms of the prediction accuracy. The
performance of the prediction-based versions of the appli-
cations can be significantly worse than the measurement-
based versions.

• Both our analytical and experimental results suggest that
the prediction accuracy for short links has a major impact
on application performance. Unfortunately, existing pre-
diction algorithms are found to be inaccurate in predicting
these short links.

• Combining selective measurement with distance predic-
tion is very effective in improving application perfor-
mance. When selective measurement is used, we have
observed no major performance differences between the
selected distance prediction algorithms, and the choice of
the prediction algorithm itself becomes less important.

One possible direction for our future work is to study more
advanced distance prediction algorithms for improving the
prediction accuracy. We are also interested in solving practical
issues with distance prediction such as those discussed in [17].
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Conclusions

• Measurement gains are similar for server 
selection and network overlay applications

• Complexity of algorithm does not produce 
significant gains for applications

• Differences between algorithms are smaller 
than differences between prediction and 
prediction + measurement


