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Abstract: The analysis of consecutive reactions A→B→C in porous catalyst particles, where the
simultaneous processes of diffusion and chemical reactions take place and both reactant and products
are subjected to diffusion limitations, was performed for catalyst particles with non-uniform sizes, a
fact that has not been considered so far. The system comprises first-order consecutive irreversible re-
actions that proceed on spherical catalyst particles with a log-normal volume particle size distribution
(PSD), which is typical in many catalytic applications. Regardless of the prevailing diffusion regime
(chemical control, transition situation or intraparticle diffusion control), the yield of the intermediate
product (B) reaches a maximum value as a function of the conversion of reactant (A), then decreases
as a consequence of the prevalence of the secondary reaction that converts it into the secondary
product (C). If intraparticle diffusion resistances affect the reactant species, given the relationship
between the kinetic constants and the mean particle size, the selectivity to the intermediate product
is negatively affected by the dispersion in PSD. The larger the dispersion in PSD, the stronger the
negative impact.

Keywords: particle size distribution; consecutive reactions; selectivity; intermediate product

1. Introduction

Important examples of series reactions can be found in the chemical process industry,
where maximizing the yield of the intermediate product is intended, as it is more important
than the other products [1,2]. This concept includes multicomponent systems, where the
reactant(s) and intermediate and final product(s) are indeed very complex mixtures and
lumping methodologies are used [3]. Among them, for example, it is clear that intermediate
fuels or olefins are the product of interest in the processes of hydrocracking [4] or catalytic
cracking of hydrocarbons [5] and the conversion of methanol to hydrocarbons [6]. The
oxidation of n-butane to maleic anhydride in the petrochemical industry is a remarkable
illustration of consecutive reactions [1], with the primary product, maleic anhydride, being
the desired one instead of the final oxidation products. The partial oxidation of methane,
leading to the intermediate product of methanol, more extended oxidation products, such as
formaldehyde and formic acid, or final CO2 and H2O, represents another example [2]. The
selectivity issue in consecutive (series) reactions A→B→C, catalyzed by porous solids, has
focused on the intermediate product B, as it may be converted into less appreciated products.
The consequences of diffusion limitations on selectivity problems were extensively studied
by, for example, Wheeler [7], Weisz et al. [8,9], van de Vusse [10], Vayenas and Pavlou [11],
Sutradhar et al. [12], Szczygieł [13], García et al. [5,14–16], and Kang et al. [2].

It is well known that the intraparticle diffusion resistances are an intrinsic property
of porous catalyst particles, which, under given reaction conditions, depend on pore size,
shape, tortuosity and constrictions, molecular size and configuration and diffusion length,
with all these factors affecting the magnitude of a diffusivity parameter. Models, both
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fundamental and applied, were developed, which propose approaches with different
complexity [17]. These issues severely affect the important concept of the catalytic ef-
fectiveness factor, which shows the working efficiency of active sites in a porous solid
catalyst and simplifies chemical reactor analysis and design [18]. The effectiveness factor
is expressed by the well-known Thiele modulus φ, which includes diffusion and kinetics
parameters [18–22], with the size of catalyst particles being a major issue in determining its
magnitude, as it represents the diffusion length.

However, usually, the calculations of the effectiveness factors are founded upon the
assumption that all the catalyst particles are the same size, a comfortable tool, provided
the range in the sizes is narrow [23,24]. On the contrary, if the evidence of non-uniform
sizes cannot be ignored, the analysis of the effectiveness factor is more difficult and criteria
to quantify intraparticle diffusion limitations may become ambiguous [24]. For example,
the well-known parameter by Weisz and Prater [8], which is the relationship between the
observed reaction rate and a characteristic diffusion rate [18], is used to determine diffusion
restrictions [19] and intrinsic kinetic constants when intraparticle diffusion limitations exist,
if the catalyst particles are uniform in size [20,22,25–27]. If a particle size distribution exists,
a characteristic dimension must be defined to represent all the particles, so as to avoid
errors in the estimation of kinetic parameters [24]. Moreover, it is obvious that particles
with different sizes will show different catalytic effectiveness [23,24].

Different methods exist to determine the particle size distribution (PSD) of catalyst par-
ticles, such as electron microscopy [28], laser diffraction analysis [29], light scattering [30],
elutriation [31,32], or sieving [33]. It is common practice to assume log-normal volume
distributions of the particle sizes [29,32,34], meaning that the logarithm of the particle
diameter has a Gaussian distribution [35].

It is the objective of this work to study the consequences derived from the occurrence
of a catalyst particle size distribution in a catalytic bed on the selectivity to intermediate
products in consecutive (series) chemical reactions of the type A→B→C, under diffusion
limitations. The influences of PSD on the yield curves of product B, according to the mean
Thiele modulus and the relative magnitude of the kinetic constants, are analyzed and
compared against the case of uniform catalyst particle size.

2. Theoretical Background: Uniform Catalyst Particle Size
2.1. System Description

The system under analysis includes the following consecutive reactions:

A
k1→ B

k2→ C (1)

B and C are the primary and secondary products, respectively.
The reactions, which are assumed to be irreversible and are first-order reactions,

take place over spherical porous catalytic particles in a reactor where only the reactant
A is fed with inlet concentration Co

A. The system is assumed to be isothermal and the
adsorption equilibrium is linear; thus, k1 and k2 are overall kinetic constants, including
Henry’s law adsorption equilibrium constants. The catalyst deactivation is disregarded and
the resistance to mass transfer in the film around the particles is negligible. Furthermore,
the concentration profiles in the catalyst particles are assumed to be steady. Diffusion
of reactant species in the pore system of the catalyst particles obeys Fick’s law and the
diffusion coefficients for reactant A and primary product B in the catalyst pores are assumed
to be the same (DA = DB = D).

2.2. Mass Balances

The mass balance for reactant A within a spherical catalyst particle with radius R is

D
[

1
r2

d
dr

(
r2 dCA(r)

dr

)]
= k1CA(r) (0 < r < R) (2)
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dCA
dr

= 0 (r = 0) (3)

CA = CA f (r = R) (4)

and for the intermediate product B, it is

D
[

1
r2

d
dr

(
r2 dCB(r)

dr

)]
= −k1CA(r) + k2CB(r) (0 < r < R) (5)

dCB
dr

= 0 (r = 0) (6)

CB = CB f (r = R) (7)

The reduction in the number of parameters that control these systems and their
simpler analysis can be achieved by means of the dimensional analysis approach [36]. By
defining dimensionless variables in Equations (A1)–(A3) (see Appendix A), the following
dimensionless parameters characterize the reacting system:

φ(R) = L(R)

√
k1

D
=

Vp(R)

Ap(R)

√
k1

D
(8)

and
m =

k2

k1
(9)

where φ(R) is the generalized Thiele modulus for the primary reaction (A
k1→ B) [37] and m

is the relationship between the intrinsic kinetic constants for the secondary reaction (k2)
and the primary reaction (k1) [9].

2.3. Conversion, Yield, and Selectivity

Conversion can be calculated from the observed concentration of reactant A in the
fluid phase (CA f ) as

XA =
Co

A − CA f

Co
A

(10)

or from the corresponding flux-based equation.
The relationship between the moles of product B observed in the fluid phase and the

moles of reactant A fed into the reactor shows the yield of that product as

YB =
CB f

Co
A

(11)

Selectivity to product B can be expressed as the relationship between its overall rate of
formation and the rate of consumption of reactant A [19] and, after the mass balances in
the fluid phase of the reactor, it is easy to show that

SB =

∫
Vp

(
k1CA(r) − k2CB(r)

)
dV∫

Vp

(
k1CA(r)

)
dV

=
−dCB f

dCA f
(12)

Weisz and Swegler [9] used Equation (12) to analyze selectivity in this system, which
can be written as a function of XA (Equation (10)) and YB (Equation (11)) as

SB(R) =
dYB
dXA

=

{(
1

m− 1

)
−
(

YB
1− XA

)}φ(R)
√

mcoth
(

φ(R)
√

m
)
− 1

φ(R)coth
(

φ(R)

)
− 1

−( 1
m− 1

)
(13)
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and solved considering that the initial condition is

YB(XA = 0) = 0 (14)

Then, for a given pair of parameters φ(R) (Thiele modulus for the primary reaction) and
m (relationship between kinetic constants, k2/k1), the yield of product B can be calculated
as a function of the conversion of reactant A as

YB =
∫ XA

0
SBdXA (15)

or, by introducing Equation (13), as

YB =
∫ XA

0

({(
1

m− 1

)
−
(

YB
1− XA

)} φ(R)
√

mcoth
(

φ(R)
√

m
)
− 1

φ(R)coth
(

φ(R)

)
− 1

−( 1
m− 1

)dXA (16)

Figure 1 shows the yield of primary product B, as calculated from Equation (16), as a
function of the conversion of reactant A, for different values of the Thiele modulus for the
primary reaction (φ) and relationships between kinetic constants (m). A similar behavior
to this has been recently reported by Valecillos et al. [6] in the conversion of methanol to
hydrocarbons. The authors observed that the yield of light olefins reached a maximum
value of about 47% at 91% conversion of methanol, then decreased at higher conversions.
This is certainly expected for the methanol to hydrocarbons reaction, as light olefins are
intermediates in the kinetic scheme [38,39] and the continuous increases in the yields of
light paraffins, heavy aliphatics and aromatics at high conversions indicate that these are
the final products [6].

It can be observed in Figure 1 that under extreme conditions, that is, pure chemical
control or net diffusion control, the yield curves of product B do not change as the size of
the particles increases.

In effect, it is very simple to verify that when φ→0, Equation (13) can be reduced to

SB =
dYB
dXA

= 1−
(

mYB
1− XA

)
(17)

with its integration leading to [7]

YB =

(
1

1−m

)
(1− XA)

[
(1− XA)

(m−1) − 1
]

(18)

Moreover, it is well known for porous catalysts that if φ < 0.3, the effectiveness factor
(η) for the primary reaction does not depend on the particle size [21,37,40].

If φ is very large, in the region of net intraparticle diffusion control, the effectiveness
factor is asymptotically inversely proportional to the particle size ( η → 1/φ ) [21,37,40].
However, as it can be observed in Figure 1, the yield of product B for a given value of
conversion is independent from the particle size, and it can be verified that if φ→ ∞ ,
Equation (13) adopts the following form:

SB =
dYB
dXA

=
1√

m + 1
−
( √

mYB
1− XA

)
(19)

and, consequently, the yield is [7] as follows:

YB =

(
1

1−m

)
(1− XA)

[
(1− XA)

(
√

m−1) − 1
]

(20)

For intermediate values of φ, the larger the particle size, the lower the effectiveness
factor [21,37,40] and the yield of B is negatively affected, as confirmed in Figure 1.
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Figure 1. Yield of primary product B as a function of the conversion of the reactant A for different
values of the Thiele modulus (φ) and relationships of kinetic constants (m = k2/k1). (a) 3D color map
surface m = 0.25; (b) contour lines for φ values, m = 0.25; (c) 3D color map surface m = 1.00; (d) contour
lines for φ values, m = 1.00.

3. Non-Uniform Catalyst Particle Sizes: Case of Log-Normal Volume Particle
Size Distribution

The mass balances in Section 2.2 were written for a spherical particle with radius
R. Consequently, the analysis in Section 2.3 is applicable to a catalytic bed of uniform
size particles.

Certainly, considering that all the particles in a catalytic bed have exactly the same
size is a strong idealization. On the contrary, it has been reported that a great number of
catalysts follow a theoretical log-normal PSD [29,32,34,41–44], i.e., the logarithm of the
particle radii is normally distributed [35]. In this case, the volume density function of the
particle size (that is, the volume PSD, see Appendix B) is

fv(R) =
1√
2πβ

(
1
R

)
exp

[
−(ln(R)− α)2

2β2

]
, (0 < R < ∞) (21)

As it can be observed from Equation (21), a log-normal distribution is characterized
by the following two parameters: the location parameter (α = ln(R50)) and the dispersion
parameter (β). R50 is the median of the size distribution; that is, 50% volume of the particles
in the set have a size larger than R50. The parameter β represents the standard deviation
of the natural logarithm of the particle size, and is indicative of how much the actual
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distribution deviates from a uniform size (see Figure A1, Appendix B). Table 1 shows
the values of the central position (R50) and dispersion (β) parameters that correspond to
different cases of commercial catalysts.

Table 1. Parameters of the theoretical log-normal volume PSD in different samples of catalysts
calculated from various authors.

Catalyst R50 (µm) β Authors Reference

FCC 26.8–29.6 0.199–0.425 Grace and Sun [32]
FCC 35.3–54.5 0.318–0.613 Issangya et al. [29]
FCC 46.3 0.429 Qie et al. [43]
FCC 27.5 0.407 Rodriguez et al. [34]

IE resin 284.6 0.243 Dardel [41]
Y zeolite 0.21–0.30 0.134–0.304 Zhang et al. [42]

Al2O3 0.50 0.678 Pabst and Gregorová [44]

While fv(R), given by Equation (21), represents the volume PSD, fv(R)dR is the differ-
ential volume fraction of particles with radii between R and (R + dR), f(R) is the numerical
PSD and f(R)dR is the differential fraction in the number of particles with radii between R
and (R + dR). As shown in Appendix B (Equations (A12)–(A14)), the volume PSD fv(R) is
easily related to the number PSD, f(R) [23,24].

In addition to the hypotheses mentioned in Section 2.1, it will now be assumed that
the size distribution of catalyst particles, the particle density and the intrinsic catalytic
activity are the same throughout the whole volume of the catalytic bed.

As it was shown in Figure 1, provided a relationship of kinetic constants (m = k2/k1) is
set, the yield of the intermediate product B for a given conversion of reactant A depends on
the Thiele modulus. However, if different sizes (R) can be observed in a bed of catalytic
particles, it is clear that for a given diffusion-reaction system, a distribution of Thiele moduli(

φ(R)

)
will occur. Consequently, if the consecutive reactions represented by Equation (1)

take place over a set of particles with a volume PSD fv(R), the contribution to the yield of B
from those particles with sizes between R and (R + dR) is

dYB(R) =

(∫ XA

0
SBdXA

)
(R)

fv(R)dR (0 < R < ∞) (22)

Then, at a given conversion XA, the yield of the intermediate product B, resulting from
the catalytic particles with different sizes in the bed, is

YB =
∫ ∞

0

(∫ XA

0
SBdXA

)
(R)

fv(R)dR (23)

For log-normal distributions (see Equation (21)), the following equation can be obtained:

YB =
∫ ∞

0

(∫ XA

0
SBdXA

)
(R)

{
1√
2πβ

(
1
R

)
exp

[
−(ln(R)− α)2

2β2

]}
dR (24)

Thus, for consecutive reactions with a given relationship between kinetic constants
m = k2/k1, proceeding on a bed of spherical catalytic particles with a log-normal PSD
(median R50 and dispersion β), the yield of the primary product B as a function of the conversion
of reactant A can be obtained from the following combination of Equations (13) and (24):

YB =
∫ ∞

0

(∫ XA
0

({(
1

m−1

)
−
(

YB
1−XA

)}(
φ(R)
√

mcoth(φ(R)
√

m)−1

φ(R)coth(φ(R))−1

)
−
(

1
m−1

))
dXA

){
1√
2πβ

(
1
R

)
exp

[
−(ln(R)−α)2

2β2

]}
dR

(25)
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It is important to note that the dependency on the radius of the catalyst particles in
the integrand of Equation (25) is not only due to the PSD (Equation (21)), but also to the
selectivity itself (see Equation (13)), which involves the Thiele modulus

(
φ(R)

)
, in turn

depending on the particle size. As described, the characteristic length in the generalized
Thiele modulus (Equation (8)) is expressed by the relationship between the volume and the
area of a sphere with radius R [37], which is as follows:

L(R) =
Vp(R)

Ap(R)
=

(
4
3 πR3

)
(4πR2)

=
R
3

(26)

and then

φ(R) =
R
3

√
k1

D
(27)

The average volume and area of a set of particles with different sizes are

V(PSD)
p =

∫ ∞

0

(
4
3

πR3
)

f(R)dR =
4
3

πR3 (28)

and
A(PSD)

p =
∫ ∞

0

(
4πR2

)
f(R)dR = 4πR2 (29)

where the third and second order momenta of the PSD (Equation (A13), Appendix B) can
be recognized in Equations (28) and (29), respectively.

Analogously to Equation (26), it is possible to adopt a characteristic length for the set of
particles with a certain PSD as the relationship between the average volume (Equation (28))
and area (Equation (29)) of the particles [24].

L(PSD) =
V(PSD)

p

A(PSD)
p

=
1
3

R3

R2
(30)

By inspection of Equation (A16) (Appendix B), it is easy to recognize in Equation (30) that

L(PSD) =
V(PSD)

p

A(PSD)
p

=
Rm

3
(31)

where Rm is the mean harmonic radius, that is, the radius of spherical particles in a bed
with uniform particle size, whose relationship Vp(Rm)/Ap(Rm) is the same as that of a bed of

particles with a size distribution of V(PSD)
p /A(PSD)

p [23,24]. Then, for particles with a certain

number
(

f(R)

)
or volume

(
fv(R)

)
PSD, a representative value of the Thiele modulus of

the primary reaction (A
k1→ B) can be expressed in terms of this characteristic length, in a

similar way to Equation (8).

φm =
V(PSD)

p

A(PSD)
p

√
k1

D
=

Rm

3

√
k1

D
(32)

Using φm is advantageous, as shown by Haynes [23] for first-order kinetics and
García et al. [24] for more complex kinetics, including the power-law and Langmuir-
Hinshelwood-Hougen-Watson type. It has been verified that even though the plots of the
catalytic effectiveness factor (η) as a function of φm differ for each value of the dispersion
(β) in the PSD, all the curves have the same asymptotic behavior for the extreme situations
of chemical control ( η → 1 when φm << 0.1) or intraparticle diffusion control (η ∝ 1/φm
when φm >> 3), including, of course, the particular case of uniform particle size, that is,
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β→ 0 [23,24]. Then, for the subsequent analysis, it is convenient to express the size of the
spherical particles (R) as a function of a standard log-normal variable (z, see Equation (A19),
Appendix B), with the mean harmonic radius (Rm) and the standard deviation of the
natural logarithm of the particle size (β) as parameters, that is, R = Rm exp

(√
2βz + β2/2

)
(Equation (A22), Appendix B). Similarly, the Thiele modulus for a given particle size φ(R)
can be expressed in terms of the Thiele modulus with a mean harmonic radius of its
characteristic length, i.e., φ(z) = φm exp

(√
2βz + β2/2

)
(Equation (A24), Appendix B). By

introducing this change in variables, Equation (25) can be equivalently written as

YB =
∫ ∞
−∞

(∫ XA
0

({(
1

m−1

)
−
(

YB
1−XA

)}
(

φ(φm ,z)
√

mcoth(φ(φm ,z)
√

m)−1

φ(φm ,z)coth(φ(φm ,z))−1

)
−
(

1
m−1

))
dXA

){
exp(−z2)√

π

}
dz

(33)

The following tree parameters occur in Equation (33): the Thiele modulus for the
primary reaction, based on a characteristic length that represents the whole set of particle
sizes in the bed (φm), the dispersion of those particle sizes (β) and the relationship between
the kinetic constants of the secondary and primary reactions (m).

4. Results and Discussion

Figures 2 and 3 show how the yield of the primary product B changes as a function
of the conversion of the reactant A for different values of the parameters φm, β and m. A
number of similarities to the case of uniform particle size (see Figure 1) can be observed. In
effect, the following conclusions can be drawn:
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Figure 3. Yield of primary product B as a function of the conversion of the reactant A for different
values of the dispersion parameter (β). m = k2/k1 = 1.00. (a) φm = 0.1; (b) φm = 0.2; (c) φm = 0.3;
(d) φm = 1.0; (e) φm = 2.0; (f) φm = 3.0.

- In all the cases, as expected, initially YB increases as XA increases, reaching a maximum
value and then decreasing at higher conversions.

- If a relationship m = k2/k1 is set, at a certain conversion (XA), the larger the Thiele
modulus, the lower the yield of B.

- For a known pair of parameters, φm and β, the higher the relationship m = k2/k1, the
lower the maximum yield of product B, which is achieved at lower conversions.

- It can be observed that if the situation of uniform particle size is compared against the
cases where a distribution of sizes exists, for a given pair of values of φm and m, the
yield curves are always higher in the case of a bed with uniform particle size, that is,
β = 0. Moreover, the more significant the dispersion, the lower the yield of B at a
given conversion.

It was previously shown for simple reactions A→ P that occur on catalysts with log-
normal volume PSD that the values of the effectiveness factor η, as a function of the Thiele
modulus φm, besides being asymptotic at very small (chemical control) and very large
(diffusion control) φm values, are always smaller than those of the uniform size case [23,24].
Moreover, the larger the dispersion, the smaller the effectiveness factor. This observation
can be explained if it is considered that in log-normal volume PSD, Rm < R50 always (see
Equation (A21), Appendix B). As the radius of half the mass or volume of the bed particles
is larger than R50, the proportion of particles with radii larger than Rm is higher than 50%.
For example, it can be observed from Figure A1 (Appendix B) that the mass or volume
percentages of particles with radii larger than Rm are 59.9% (β = 0.50), 64.6% (β = 0.75) and
69.1% (β = 1.00). Therefore, the resulting global effectiveness of a bed with particles that
show a certain dispersion in their PSD and a harmonic mean radius Rm is always lower
than that of the bed that has particles with uniform sizes that are the same as Rm; moreover,
the more important the dispersion, the more significant the difference.

This view can also be applied to series reactions to explain the lower yields of inter-
mediate product B due to the effect of PSD, as shown in Figures 2 and 3. In effect, given
that the more dispersed the PSD, the higher the proportion of particles larger than Rm (the
length that characterizes the Thiele modulus, φm) (Figure A1, Appendix B), the diffusion
limitations both on reactant A and product B will be more important. It was observed
in Figure 1, for particles with increasing uniform size, that the more important diffusion
restrictions negatively impact the yield of the intermediate product B [7].

Figures 2 and 3 show that, independently from the relationship m = k2/k1, the dis-
persion in the PSD does not influence significantly the yields when φm is larger than
approximately 3. This means that, even though the particles in the bed have many different
sizes, essentially, all of them exert high diffusion resistances, both for the reactant and
the primary product and the yield of B can be calculated directly from Equation (16) [7,9],
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ignoring the dispersion, provided φm > 3. Moreover, it can be observed in Figures 2 and 3
that when φm < 0.1 (chemical control), the yield curves tend to overlap and the yield of B
can be calculated directly from Equation (18), independently from the value of β.

The case where m is much smaller than about 0.25 is close to the case of a simple
reaction A→B. Under this scenario, the extent of the secondary reaction is essentially
negligible over a wide range of conversions of reactant A (see Figure S1 in Supplementary
Materials, m = 0.10); therefore, it no longer makes sense to analyze the system under the
scheme of consecutive reactions. In contrast, a system of consecutive reactions, where
the relationship m is much larger than about 1, is surely not attractive, as yields of the
intermediate product are very low (see Figure S2 in Supplementary Materials, m = 2.00).

5. Conclusions

In a similar manner to catalytic beds with uniform size particles, beds with particles of
different sizes show that the yield of the intermediate product B in a system of consecutive
reactions A→B→C, where both the reactant and products are subjected to diffusion limita-
tions, reaches a maximum value as a function of the conversion of reactant A. The yield
then decreases as a consequence of the prevalence of the secondary reaction to product C.

If the reaction system includes first-order irreversible reactions that proceed on spheri-
cal catalyst particles with a log-normal volume particle size distribution, which are common
in many catalytic applications, the following three parameters characterize the system: φm,
m and β. φm = (Rm/3)

√
k1/D is the Thiele modulus for the primary reaction, where Rm is

the mean harmonic radius of the PSD. m is the relationship between the intrinsic kinetic
constants for the secondary and primary reaction and β represents the standard deviation
of the natural logarithm of the particle size, indicative of the dispersion of sizes in the
distribution. The selection of the mean harmonic radius as the characteristic length that
is representative of the whole set of particles in the calculation of the Thiele modulus is
completely adequate.

If intraparticle diffusion resistances affect the chemical species, the selectivity to the
intermediate product B is negatively influenced by the dispersion in PSD, given m and φm.
The larger the dispersion (β) in the PSD, the stronger the negative impact. However, in
extreme situations, such as the absence of diffusion restrictions (small φm) or under net
intraparticle diffusion control (large φm), the dispersion in the particle size (β) does not
affect the yield curves of the intermediate product B.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12101214/s1, Figure S1: Yield of primary product B as a
function of the conversion of the reactant A for different values of the dispersion parameter (β).
m = k2/k1 = 0.10. (a) φm = 0.1; (b) φm = 0.2; (c) φm = 0.3; (d) φm = 1.0; (e) φm = 2.0; (f) φm = 3.0;
Figure S2: Yield of primary product B as a function of the conversion of the reactant A for different
values of the dispersion parameter (β). m = k2/k1 = 2.00. (a) φm = 0.1; (b) φm = 0.2; (c) φm = 0.3;
(d) φm = 1.0; (e) φm = 2.0; (f) φm = 3.0.
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Abbreviations

Symbols
A area (m2)
C concentration (gmol/m3)
D effective diffusion coefficient (m2/s)
f particle size distribution (1/m)
F cumulative particle size distribution (dimensionless)
k overall kinetic constant (1/s)
L characteristic length (m)
m relationship between the intrinsic kinetic constants (dimensionless)
P generic product
R catalyst particle radius (m)
r radial distance (m)
S selectivity (dimensionless)
V volume (m3)
X conversion (dimensionless)
Y yield (dimensionless)
z standard log-normal variable (dimensionless)
Greek symbols
α location parameter in log-normal volume particle size distribution
β dispersion parameter in log-normal volume particle size distribution
χ dimensionless concentration in the fluid phase
φ Thiele modulus
η effectiveness factor
ρ dimensionless radial distance
ξ dimensionless concentration in the catalyst particle
Subscripts
1 refers to primary reaction
2 refers to secondary reaction
50 refers to the median of a particle size distribution
A refers to reactant
B refers to primary product
f fluid phase
m refers to the mean harmonic value
p particle
R refers to a specific particle size
v volume
Superscripts
◦ inlet or initial concentration
– refers to the x-th order momentum of a continuous distribution
PSD refers to the particle size distribution
x x-th order momentum

Appendix A

By using the following definitions of dimensionless variables,

ρ =
r(

Vp/Ap
) =

3r
R

(A1)

ξA =
CA(r)

Co
A

, ξB =
CB(r)

Co
A

(A2)

χA =
CA f

Co
A

, χB =
CB f

Co
A

(A3)
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the mass balances in the catalyst particles for reactant A (Equation (2)) and primary product
B (Equation (5)), and their corresponding boundary conditions, can be written dimension-
less as

1
ρ2

d
dρ

(
ρ2 dξA

dρ

)
= φ1

2ξA (0 < ρ < 3) (A4)

dξA
dρ

= 0 (ρ = 0) (A5)

ξA = χA (ρ = 3) (A6)

1
ρ2

d
dρ

(
ρ2 dξB

dρ

)
= −φ1

2ξA +
(

φ1
2m
)

ξB (0 < ρ < 3) (A7)

dξB
dρ

= 0 (ρ = 0) (A8)

ξB = χB (ρ = 3) (A9)

where

φ1(R) =
Vp(R)

Ap(R)

√
k1

D
(A10)

is the Thiele modulus for the primary reaction (A
k1→ B), and

m =
k2

k1
(A11)

is the relationship between the intrinsic kinetic constants for the secondary (B→ C)
and primary (A→ B) reactions. It is important to note that, in the right hand side of
Equation (A7), the term that expresses the consumption of product B by the chemical
reaction shows the coefficient φ1

2m =
(

L2 k1
D

) (
k2
k1

)
= φ2

2, φ2 being the Thiele modulus for

the secondary reaction (B
k2→ C). Then, m =

√
φ2/φ1.

For the sake of clarity, the subscript 1 in the Thiele modulus for the primary reaction is
omitted in the text, i.e., φ1(R) = φ(R).

Appendix B

The meaning of the volume distribution of particle sizes ( fv(R), Equation (21)) can be
understood, considering that fv(R)dR is the differential volume fraction of particles with
radii between R and (R + dR). That is,

fv(R)dR =

(
4
3 πR3

)
f(R)dR∫ ∞

0

(
4
3 πR3

)
f(R)dR

=
R3 f(R)dR∫ ∞

0 R3 f(R)dR
(A12)

Instead, f(R) is the number distribution of particle sizes, implying that f(R)dR is the
differential fraction in the number of particles with radii between R and (R + dR).

The x-th order momentum of a continuous distribution f(R)dR [35] is given by

Rx =
∫ ∞

0
Rx f(R)dR (A13)

Then, it is clear from Equation (A12) that the relationship between the volume and the
number distributions of particle sizes is

fv(R) =
R3

R3
f(R) (A14)

where, for a given PSD, the third-order momentum is constant [35].
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By using Equation (A14) in Equation (A13), the second-order momentum (x = 2) is

R2 =
∫ ∞

0
R2 f(R)dR = R3

∫ ∞

0

(
1
R

)
fv(R)dR (A15)

It was shown in Equation (28) that the average volume of a set of particles with a
number distribution of particle sizes f(R) is proportional to R3, while the average area is

proportional to R2 (Equation (29)). Then, according to Equation (30), it can be observed
that the characteristic length in the generalized Thiele modulus includes the relationship
R3/R2, which can be visualized from Equation (A15) to be

Rm =
R3

R2
=

1∫ ∞
0 (1/R) fv(R)dR

(A16)

Rm is the mean harmonic radius, which can be easily calculated from Equation (A16)
if the fv(R) or f(R) PSD are known.

Different authors [29,32,34,41–44] reported that the particle sizes in different catalysts
follow log-normal volume distributions.

fv(R) =
1√
2πβ

(
1
R

)
exp

[
−(ln(R)− α)2

2β2

]
(0 < R < ∞) (A17)

where α is the natural logarithm of the median (R50) and β is a dispersion parameter that
quantifies how much the actual distribution diverts from a uniform size.

The cumulative distribution function of a log-normal volume distribution
(

Fv(R)

)
represents the volume fraction in the bed of those particles with sizes smaller than or equal
to R. From the definition of the error function [45], it can be shown that

Fv(R) =
∫ R

0
fv(R)dR =

1
2
+

1
2

erf

[
ln(R)− α√

2β

]
(0 < R < ∞) (A18)

Figure A1 shows the plots of differential (Equation (A17)) and cumulative (Equation (A18))
log-normal volume particle size distributions with different dispersions (β).
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Figure A1. Differential fv(R) (a) and cumulative Fv(R) (b) log-normal volume PSD with different
dispersions (β). The thick dots indicate the location of Rm/R50 (Equation (A21)).

In practice, it is helpful to use the standard log-normal variable (z) in order to stan-
dardize the actual (dimensional) particle size (R) [23,35].

z =
ln(R)− α√

2β
=

ln(R/R50)√
2β

(A19)
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According to this variable transformation, the particle size (R) can be written in terms
of z, with the median (R50) and the standard deviation of the natural logarithm of the sizes
(β) as parameters.

R = exp
(

α +
√

2βz
)
= R50 exp

(√
2βz
)

(A20)

By replacing R from Equation (A20) and fv(R) from Equation (A17) in Equation (A16),
it is possible to obtain an expression for the mean harmonic radius of a log-normal volume
distribution [23], which yields

Rm = exp
(

α− β2/2
)
= R50 exp

(
−β2/2

)
(A21)

and, by combining this expression with Equation (A20), one can obtain the following equation:

R = Rm exp
(√

2βz + β2/2
)

(A22)

If the particle radius R given by Equation (A22) is introduced into Equation (27), the
generalized Thiele modulus is

φ(z) =
Rm

3

√
k1

Dp
exp

(√
2βz +

β2

2

)
(A23)

and, according to Equation (32), this last expression can be rewritten into

φ(φm ,z) = φm exp
(√

2βz +
β2

2

)
(A24)
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