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Abstract

The impact of the observed sea surface temperature (SST) frequency in the model initialization on the prediction of the boreal 

summer intraseasonal oscillation (BSISO) over the Western North Pacific (WNP) is investigated using the Beijing Climate 

Center Climate System Model. Three sets of hindcast experiments initialized by the observed monthly, weekly and daily 

SST data (referred to as the Exp_MSST, Exp_WSST and Exp_DSST, respectively) are conducted with 3-month integration 

starting from the 1st, 11th, and 21st day of each month in June–August during 2000–2014, respectively. The results show 

that the useful prediction skill of BSISO index reaches out to about 10 days in the Exp_MSST, and further increases by 1–2 

days in the Exp_WSST and Exp_DSST. The skill differences among various hindcast experiments are especially apparent 

during the forecast time of 6–20 days. Focusing on the strong BSISO cases in this period, the BSISO activity and its related 

moist static energy (MSE) characteristics over the WNP are further diagnosed. It is found that from the Exp_MSST to the 

Exp_WSST and Exp_DSST, the enhanced BSISO prediction skill is associated with the more realistic variations of intra-

seasonal MSE and its tendency. Among the various budget terms that dominate the MSE tendency, the surface latent heat 

flux and MSE advection are evidently improved, with reduction of mean biases by more than 21% and 10%, respectively. 

Therefore, the better reproduced MSE variation may contribute to the more skillful BSISO forecast through improving the 

surface evaporation as well as atmospheric convergence and divergence that related to the BSISO activity. Our findings 

suggest the necessity of increasing the observed SST frequency (i.e., from monthly to weekly or daily) in the initialization 

process of coupled models to enhance the actual BSISO predictability, since some current subseasonal forecast operations 

and researches still use relatively low-frequency SST observations for the model initialization.

Keywords BSISO prediction · Model initialization · SST frequency · MSE budget

1 Introduction

The boreal summer intraseasonal oscillation (BSISO) is an 

essential mode of atmospheric variability with a period of 

10–60 days over the Asian summer monsoon region (Yasu-

nari 1980; Zhu and Wang 1993). The BSISO correlates 

with the monsoon dynamics (Yasunari 1979; Lau and Chan 

1986), tropical cyclone activity (Liebmann et al. 1994; 

Weng and Hsu 2017) and the El Niño-Southern Oscillation 

(Ding and Wang 2005; Lin 2019) and can result in severe 

weather and climate events (such as rainfall extremes and 

heat waves) over the Western North Pacific (WNP) region 

(Mao et al. 2010; Ren et al. 2013; Hsu et al. 2016, 2017). 

Due to its recurrent nature (Van den Dool and Saha 1990) 

and association with the tropical and extratropical atmos-

pheric circulations (Ding and Wang 2005), the BSISO acts 

as a leading source of subseasonal predictability over the 
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WNP (Waliser et al. 2003; Vitart et al. 2012; Hsu et al. 

2017; Fang et al. 2019).

Despite great progress in the climate model develop-

ment, the capability in BSISO simulation and prediction 

is still limited (Waliser et al. 2003; Sobel et al. 2008; Fang 

et al. 2016). Most current models show deficiency in simu-

lating the spatial structure, amplitude, evolution and north-

ward propagation of BSISO (Sabeerali et al. 2013; Hu 

et al. 2017; Neena et al. 2017). In the latest Subseasonal 

to Seasonal (S2S) Prediction Project, most state-of-the-art 

operational models exhibit useful BSISO forecast skill of 

about 2 weeks in advance (Jie et al. 2017). This skill is 

much lower than the potential BSISO predictability limit 

of about 5 weeks (Ding et al. 2011). Using the hindcasts 

by several models in the Intraseasonal Variability Hind-

cast Experiment (ISVHE) project, Lee et al. (2015) also 

found that the multi-model mean actual prediction skill is 

clearly lower than the theoretical predictability of BSISO, 

indicating that there is large room to improve the BSISO 

prediction.

The prediction of intraseasonal oscillation is found to 

be sensitive to many factors, such as physical parameteri-

zation (e.g., Liu et al. 2019), model resolution (e.g., Vitart 

2017), ensemble generation (e.g., Rashid et al. 2011), air-

sea interaction (e.g., Fu et al. 2008) and initial conditions 

(e.g., Liu et al. 2017; Bo et al. 2020). Among these fac-

tors, SST initial condition and its impact have drawn much 

attention. The atmosphere-only model is comparable to 

its coupled counterpart in the predictability and predic-

tion skill of intraseasonal oscillation if specified with daily 

SST forecasted by the coupled run (Fu et al. 2008, 2013). 

Abhilash et al. (2014) found that the bias-corrected SST 

has great influence on the BSISO prediction at the 10–20-

day extended range scale. Wang et al. (2015) noted that the 

uncertainty of observed SST data could exert important 

impact on the prediction of tropical intraseasonal oscilla-

tion beyond the forecast time of 5 days. Liu et al. (2017) 

and Bo et al. (2020) also showed that the prediction skill of 

intraseasonal oscillation can be increased by the updated 

SST initial conditions beyond the forecast time of 5 days. 

Some studies further explored that the mean state, tem-

poral and spatial resolution of SST included in the model 

initialization could affect the prediction of intraseasonal 

oscillation (e.g., Wang et al. 2009; Seo et al. 2014; Zhang 

et al. 2019).

Previous studies mostly based on the atmosphere-only 

models have suggested that adopting the SST observations 

with relatively higher temporal frequency during the model 

initialization can improve the model performance in captur-

ing the intraseasonal variability. Simulations with daily SST 

forcing show improvements against those with monthly SST 

forcing in terms of periodicity, intensity and propagation of 

intraseasonal oscillation (Fu and Wang 2004; Fu et al. 2003; 

Klingaman et al. 2008; Pegion and Kirtman 2008). Stan 

(2018) revealed that the inclusion of 1–5-day frequency of 

SST forcing is essential to the accurate simulation of intrase-

asonal oscillation. Zhang et al. (2019) noted that the experi-

ments with prescribed daily SST forcing exhibit higher pre-

diction skill of BSISO than those with seasonal SST forcing. 

Kim et al. (2008) and Boisséson et al. (2012) also found 

that the forecast skill of tropical intraseasonal oscillation is 

higher when forcing model with daily or weekly SST than 

with monthly SST.

To investigate the impacts of observed SST frequency in 

the model initialization on the subseasonal prediction, pre-

vious studies focused more on the intraseasonal oscillation 

during boreal winter than in boreal summer. Additionally, 

most of these studies used atmosphere-only models rather 

than coupled models. Given the importance of ocean-atmos-

phere coupling to the representation of intraseasonal oscil-

lation, it is worth further exploring the effect of SST initial 

condition on the BSISO prediction using multi-component 

coupled models. Meanwhile, exploring the influence of 

observed SST frequency in the model initialization is also 

a demand for the practice in dynamical climate forecasts. 

This is because the initialization of forecast model needs to 

determine the temporal frequency of SST data when adopt-

ing nudging scheme or the size of time window for assimila-

tion analysis. In this context, this study conducts a series of 

hindcast experiments using a coupled model to address the 

following questions: (1) Whether and to what extent increas-

ing the frequency of SST observations in the model initiali-

zation process could improve the prediction skill of BSISO 

over the WNP? (2) What are the possible pathways for the 

impact of observed SST frequency in the model initialization 

on the BSISO forecast?

The rest of this paper is organized as follows. The model, 

data, experimental design and methods are described in 

Sect. 2. Section 3 provides the evaluation of model perfor-

mance in the long-term free run simulation of BSISO. Sec-

tion 4 examines the BSISO prediction skills in the hindcast 

experiments initialized by the SST observations with differ-

ent temporal frequencies, and Sect. 5 gives the diagnostics 

of moist static energy budget for BSISO forecasts in various 

experiments. The summary and discussion are provided in 

Sect. 6.

2  Model, data, experimental design, 
and methods

2.1  Model

The model used in this study is the Beijing Climate 

Center Climate System Model version 2 (BCC-CSM2) 
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with moderate resolution. It is a fully coupled model with 

atmosphere, land, ocean and sea ice components. The 

atmospheric component is the BCC Atmospheric General 

Circulation Model version 2 with a horizontal resolution of 

T106 (approximately 110 km) and 56 vertical hybrid sigma/

pressure layers (Wu et al. 2019). The land component is the 

BCC Atmosphere and Vegetation Interaction Model Version 

2 with T106 triangular truncation (Li et al. 2019). The ocean 

and sea ice components adopt the Modular Ocean Model 

Version 4 (Griffies et al. 2005) and the Sea Ice Simulator 

(Winton 2000) from the National Oceanic and Atmospheric 

Administration (NOAA) Geophysical Fluid Dynamics Labo-

ratory (GFDL) respectively, with a horizontal resolution of 

1/3°–1° at tripolar grid.

The BCC-CSM2 is one of the members in the Coupled 

Model Intercomparison Project Phase 6 (CMIP6). More 

details about BCC-CSM2 and its application in climate pro-

jection are documented in Wu et al. (2019). Several earlier 

versions of this model have been widely used in the S2S 

and seasonal-to-interannual climate predictions (e.g., Huang 

et al. 2013; Liu et al. 2015, 2017, 2019; Fang et al. 2019; 

Bo et al. 2020).

2.2  Data

To initialize the model for climate prediction, the follow-

ing datasets from 2000 to 2014 are used: (1) the 6-hourly 

atmospheric winds, temperature, humidity, and surface 

pressure fields from the National Center for Environmental 

Prediction’s Final Operational Global Analysis (NCEP-FNL; 

Kalnay et al. 1996), which are available at https:// rda. ucar. 

edu/ datas ets/ ds083.2/; and (2) the daily SST from NOAA 

Optimum Interpolation Sea Surface temperature (OISST) 

dataset (Reynolds et al. 2007), which can be obtained from 

https:// www. ncdc. noaa. gov/ oisst.

In addition, we use several datasets during 2000–2014 

to evaluate the model results as follows: (1) the daily out-

going longwave radiation (OLR) from NOAA (Liebmann 

and Smith 1996), which is available at https:// catal og. data. 

gov/ datas et/ noaa- daily- outgo ing- longw ave- radia tion- olr; (2) 

the daily precipitation from the Global Precipitation Cli-

matology Project (GPCP; Adler et al. 2003), which can be 

downloaded at https:// www. ncdc. noaa. gov/ cdr/ atmos pheric/ 

preci pitat ion- gpcp- daily; and (3) the daily wind, tempera-

ture, geopotential height, specific humidity, longwave and 

shortwave radiative heating, surface latent heat and surface 

sensible heat fields from the European Centre for Medium-

Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5; 

Hersbach et al. 2020), which are available at https:// www. 

ecmwf. int/ en/ forec asts/ datas ets/ reana lysis- datas ets/ era5.

2.3  Experimental design

To conduct the S2S prediction, the model initial conditions 

are firstly obtained by three sets of initialization experiments 

based on a nudging strategy. As shown in Fig. 1, during the 

initialization process, the atmospheric component is nudged 

toward 6-hourly NCEP-FNL atmospheric reanalysis, while 

the ocean component is nudged toward monthly/weekly/

daily SST observations derived from the daily OISST data 

(i.e., raw OISST data is averaged over time window with 

monthly, weekly, or daily interval). The SST observations 

with different frequencies (i.e., daily, weekly and monthly) 

used for the three sets of initialization experiments in 2001 

are shown as an example in Fig. 2. It is obvious that the 

SST with high frequency displays larger variability than that 

with low frequency (Fig. 2a). This SST difference in the 

initialization experiments may have distinct impacts on the 

predictions of rainfall and circulation. For example, for the 

forecast case starting from 1 August 2001, the use of higher-

frequency SST observations in the initialization experiment 

clearly improves the skill of rainfall prediction at long fore-

cast time (Fig. 2b). The initialization experiments nudged by 

monthly, weekly, or daily SST observations are all integrated 

from 1 January 2000 to 31 December 2014 to output com-

patible model initial conditions at each day for the hindcast 

experiments shown below. More detailed descriptions of the 

initialization scheme can be found in Liu et al. (2017).

We then carry out three sets of hindcast experiments 

named Exp_MSST, Exp_WSST and Exp_DSST, respec-

tively, and the initial conditions of each hindcast experiment 

is derived from the output of the corresponding initialization 

experiments with monthly, weekly, or daily SST observa-

tions. The hindcasts are conducted with 3-month forecast 

integration starting from the 1st, 11th, and 21st day of each 

month in June–August during 2000–2014. To reduce the 

uncertainty of initial condition, a simple ensemble scheme 

based on lagged average forecasting strategy is adopted in 

each forecast case, with four ensemble members using the 

initial conditions at 00:00 UTC of the forecast day, 18:00 

UTC, 12:00 UTC and 06:00 UTC of the previous day, 

respectively. The ensemble scheme in current study is simi-

lar to the previous studies (e.g., Xiang et al. 2015; Liu et al. 

2017; Bo et al. 2020). Therefore, there are 135 forecast cases 

with four ensemble members in each hindcast experiment. 

The following analysis is based on the ensemble mean fore-

cast from each hindcast experiment.

In addition, a 15-year free run simulation is conducted to 

examine the model capability in simulating the BSISO char-

acteristics. Both the simulation and prediction mentioned 

above adopt the greenhouse-gas external forcing that are 

identical to those in the CMIP5 historical simulation.

https://rda.ucar.edu/datasets/ds083.2/
https://rda.ucar.edu/datasets/ds083.2/
https://www.ncdc.noaa.gov/oisst
https://catalog.data.gov/dataset/noaa-daily-outgoing-longwave-radiation-olr
https://catalog.data.gov/dataset/noaa-daily-outgoing-longwave-radiation-olr
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-gpcp-daily
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-gpcp-daily
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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2.4  Methods

To extract the BSISO signal over the WNP, the real-time 

multivariate BSISO indices are applied following previ-

ous studies (e.g., Lin 2012; Lee et al. 2013). The observed 

BSISO indices are defined as the first two principle com-

ponent time series (PC1 and PC2) of Empirical Orthogo-

nal Function (EOF) modes of combined intraseasonal 

anomalies of OLR and 850-hPa zonal wind (U850), which 

are zonally averaged along 90–150 °E during 1 May to 30 

September over 2000–2014 (Lin 2012, 2019). Before the 

EOF analysis, the observed intraseasonal anomalies are 

obtained by removing the seasonal cycle climatology and 

the anomaly averaged over the preceding 120 days. Simi-

larly, the forecasted intraseasonal anomalies are computed 

by removing the forecasted climatology and the anomaly 

averaged over the previous 120 days, with corresponding 

observed anomalies appended before the initial date of 

forecast. Then the predicted BSISO indices are calculated 

by projecting the forecasted intraseasonal anomalies onto 

the observed EOF modes. The bivariate anomaly correla-

tion (BAC) and bivariate root mean square error (RMSE) 

are computed to measure the prediction skill of BSISO 

indices against the observations (e.g., Lin et al. 2008; 

Rashid et al. 2011).

To investigate the physical processes regulating the BSISO 

convection, the moist static energy (MSE) budget is utilized 

following previous studies (e.g., Kiranmayi and Maloney 

2011; Maloney 2009). The column-integrated MSE ( ⟨m⟩ ) 

is defined as

 where T, Z and q are air temperature (unit: K), geopotential 

height (unit: gpm) and specific humidity (unit: kg  kg− 1), 

respectively;  Cp is heat capacity of dry air at constant pres-

sure (1004  JK− 1  kg− 1), g is gravitational acceleration (9.8 

 ms− 2), and  Lv is the latent heat of condensation (2.5×106 

 Jkg− 1). Angled brackets represent the mass-weighted verti-

cal integration from 1000 to 100 hPa. Following Neelin and 

Held (1987), the MSE budget equation is defined as

 where V is the horizontal wind vector (unit:  ms− 1), ω is 

vertical pressure velocity (unit: Pa  s− 1), and p is pressure 

(unit: Pa); �⟨m⟩∕�t (unit:  Wm− 2) is the tendency of ⟨m⟩ 

(unit:  Jm− 2); −⟨V ⋅ ∇m⟩ and −⟨� ⋅ �m∕�p⟩ (unit:  Wm− 2) are 

the horizontal and vertical advection of ⟨m⟩ , respectively; 

LW and SW represent the longwave and shortwave radiative 

heating, and their column-integrated values (i.e., ⟨LW⟩ and 

⟨SW⟩ ) (unit:  Wm− 2) are derived from the differences of net 

fluxes between the bottom and top of atmosphere, respec-

tively; LH and SH (unit:  Wm− 2) denote the surface latent 

heat and sensible heat fluxes, respectively. As discussed in 

previous studies (e.g., DeMott et al. 2016; Gao et al. 2019), 

⟨m⟩ = ⟨CpT⟩ + ⟨gZ⟩ + ⟨LVq⟩

�⟨m⟩

�t
= −⟨V ⋅ ∇m⟩ − � ⋅ ⟨

�m

�p
⟩ + ⟨LW⟩ + ⟨SW⟩ + LH + SH

Fig. 1  Schematic diagram of the 

experimental design
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the MSE budget terms affect the maintenance ( ⟨m⟩ ) and 

propagation ( �⟨m⟩∕�t ) of BSISO convection.

3  Evaluation of BSISO characteristics 
in the free run

In this section, we evaluate the model performance in cap-

turing the basic feature of BSISO over the WNP region 

in a 15-year free run simulation. Figure 3 shows the spa-

tial distribution of climatological mean precipitation and 

850-hPa wind during June–August. The model can basi-

cally capture the position of observed maximum centers 

of summer precipitation and low-level wind, but with clear 

biases in the amplitude (Fig. 3a, b). Large wet biases occur 

at the west coast of Indian Subcontinent and Indo-China 

Peninsula, associated with the overestimated westerlies 

over these regions (Fig. 3c). These wet biases can also be 

found in the older versions of the BCC model and other 

climate models (e.g., Kim et al. 2008; Liu et al. 2014; 

Liu et al. 2015; Hu et al. 2017). Additionally, small wet 

biases and weak easterly wind biases appear in the east of 

Maritime Continent. Such wind biases are contrary to the 

westerly biases found in the earlier versions of the BCC 

model (e.g., Liu et al. 2015; Jie et al. 2017).

The spatial distribution of standard deviation of 

intraseasonal precipitation and U850 anomalies during 

June–August is given in Fig. 4. In the observation, the 

precipitation field shows two strong variance centers near 

the Indian Subcontinent and the WNP (Fig. 4a), whereas 

the U850 field displays a relatively different pattern with 

maximum variability over the WNP and a secondary maxi-

mum over the tropical Indian Ocean (Fig. 4f). The simu-

lated variances of precipitation and U850 generally agree 

well with the observations. However, for both precipita-

tion and U850 fields, the magnitude of variance is clearly 

overestimated, especially over the Indian Subcontinent, 

Indo-China Peninsula and east of the Philippines in the 

tropical WNP. The overestimated intraseasonal variances 

of precipitation and U850 over these regions also exist 

in the earlier versions of the BCC model (e.g., Liu et al. 

2014; Hu et al. 2017), probably due to the deficiencies in 

parameterizations of convection and cloud physical pro-

cess over the tropics.

Figure 5 depicts the spatial structure of the leading two 

EOF modes of the combined intraseasonal anomaly fields 

of OLR and U850. In the observation, the EOF1 mode is 

characterized by a deep convection center around 15 °N, 

whereas the EOF2 mode exhibits a dipole structure with 

enhanced convection near 20 °N and suppressed convec-

tion near 10 °N. For both the EOF1 and EOF2 modes, 

easterly (westerly) zonal wind anomalies prevail to the 

north (south) of the strong positive convection center. The 

two EOF modes are in a close quadrature relationship with 

a joint contribution of about 46 % to the total variance. 

The leading two EOF modes of simulations generally 

resemble the observations, whereas the simulated EOF2 

mode shows an erroneous strong convection around 5°S. 

In addition, the total explained variance of the EOF1 and 

EOF2 modes in the simulation is about 30 %, which is 

lower than that in the observation. Note that these biases 

of BCC-CSM2 are slightly larger than those of its earlier 

version BCC-CSM1.2 (Bo et al. 2020), and the reason for 

the degradation is worth further investigation but beyond 

the scope of this study.

Figure 6 further shows the composite intraseasonal anom-

alies of precipitation and 850-hPa wind during the BSISO 

lifecycle, which is divided into eight phases according to 

different angles between PC1 and PC2 (Lin 2012; Lee et al. 

2013), and the composite is performed when the BSISO 

amplitude is larger than 1. In the observation, the BSISO 

rainband is tilted northwest-southeastward and exhibits an 

Fig. 2  a Time series of the SST observations (unit: °C) with dif-

ferent frequencies regionally averaged over the area (10–20  °N, 

130–140  °E) during June–August 2001 in the initialization process 

of various initialization experiments. b Time series of the precipita-

tion (unit: mm  day− 1) regionally averaged over the area (10–20  °N, 

130–140  °E) in observations and hindcasts starting from 1 August 

2001. The decimals shown in the brackets are temporal correlation 

coefficients (COR) and root mean square errors (RMSE) between the 

observations and hindcasts during the forecast time of 1–20 day
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obvious northward propagating feature (Fig. 6a). The BSISO 

convection initiates over the equatorial eastern Indian Ocean 

in phase 1, migrates northward to the Bay of Bengal and 

northeastward to the Gulf of Thailand and equatorial western 

Pacific in phase 2, develops rapidly over the South China 

Sea and east of the Philippines in the tropical WNP in phase 

3, further moves northward to the subtropical WNP during 

phases 4–6, and finally dissipates over the south China dur-

ing phases 7–8. Meanwhile, zonally-elongated anomalous 

cyclonic (anti-cyclonic) circulation appears to the north 

of the enhanced (suppressed) convection. The composite 

intraseasonal anomaly of OLR in each BSISO phase is 

generally consistent with that of precipitation (figure not 

shown).

The model can reasonably reproduce the northward 

movement of convection and circulation anomalies from 

equatorial Ocean to south China but with some biases in 

the location and amplitude of convection center (Fig. 6b) 

compared to the observations (Fig. 6a). The BSISO rain-

band over WNP is located more northward in simulation 

than in observation. This may be related to the faster-

than-observed northward propagation of BSISO signal, 

which also exists in the earlier versions of the BCC model 

Fig. 3  Spatial distribution of 

climatological mean precipita-

tion (shaded) and wind at 850-

hPa (vector) in June–August 

during 2000–2014 for a obser-

vations, b free run simulations 

and c differences between them 
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(e.g., Fang et al. 2019; Bo et al. 2020). The amplitude of 

enhanced (suppressed) convection center over the WNP is 

underestimated when the BSISO is in phases 3–6 (phases 

7, 8, 1 and 2) (Fig. 6). The underestimated precipitation 

anomalies are also evident in the tropical Indian Ocean. In 

addition, near the west coast of Indo-China Peninsula, the 

precipitation anomalies are overestimated in most phases, 

especially phases 5 and 8, corresponding to the much over-

estimated intraseasonal variance of precipitation over the 

same areas (Fig. 4b). It is also noted that the wind direc-

tion over Bay of Bengal in phase 3 in the model is almost 

reversed compared to observations, denoting apparent cir-

culation biases in some areas.

The lifecycle composites of intraseasonal SST anomaly 

for different BSISO phases are given in Fig. 7. Along with 

the evolution of BSISO convection, the SST anomaly also 

shows an evident northward propagation. Over the tropical 

WNP region, significant positive (negative) SST anomalies 

are found in phases 1, 2 and 8 (4–6) when the BSISO con-

vection is suppressed (enhanced). The model results gener-

ally agree with the observations. However, the simulated 

SST anomaly center over the WNP extends more northward 

with reduced magnitude than the observation, corresponding 

to the feature of simulated BSISO convection (Fig. 6). Addi-

tionally, the pattern correlation of SST anomalies between 

the simulation and observation over the Asian-Pacific region 

Fig. 4  Spatial distribution of 

standard deviation of intrasea-

sonal precipitation (left panel) 

and 850-hPa zonal wind (right 

panel) anomalies from (a, f) 

observations, (b, g) free run 

simulations and (c–e, h–j) hind-

casts in June–August during 

2000–2014. The results in c–e 

and h–j are derived from the 

3-month-integration forecasts 

starting from 1 June in each 

year during 2000–2014. The 

decimals shown in brackets are 

the pattern correlation coeffi-

cients between the observations 

and simulations or hindcasts
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(10 °S–40 °N, 60 °E–180 °E) is nearly zero in phase 7, 

apparently lower than those of about 0.4–0.6 in other phases. 

This indicates that the model can hardly capture the intra-

seasonal variation of SST when the BSISO convection over 

the tropical WNP is at the transition from wet to dry spell.

4  Forecast skill of BSISO

The predicted standard deviations of summer intraseasonal 

precipitation and U850 in the three sets of hindcast experi-

ments are also given in Fig. 4. For both precipitation and 

U850 fields, there is no significant differences among the 

three sets of hindcast experiments, though the Exp_WSST 

and Exp_DSST produce slightly stronger variance than 

the Exp_MSST over the tropical WNP especially near the 

Philippines. Similar to the feature in the free run simulation 

(Fig. 4b, g), the large variance centers over the Indian Land-

mass, Indo-China Peninsula and tropical WNP are overes-

timated in all sets of hindcast experiments (Fig. 4c–e, h–j). 

This indicates that the overestimation of summer intrasea-

sonal variance in the predictions may arise from the sys-

tematic errors of model itself, and it can hardly be reduced 

by only using the high-frequency observed SST data in the 

model initialization process.

The overall prediction skill, measured by BAC and 

RMSE between the observed and predicted BSISO indices, 

as a function of forecast time is given in Fig. 8. Taken the 

BAC = 0.5 or RMSE = 1.414 as the threshold of useful pre-

diction skill (e.g., Lin et al. 2008; Rahid et al. 2011), the 

Exp_MSST can predict the BSISO up to around 10 days 

in advance. With relatively higher-frequency observed SST 

data included in the model initialization, the Exp_WSST 

and Exp_DSST further improve the useful BSISO predic-

tion skill by about 1–2 days compared to the Exp_MSST. 

The useful skill of BSISO prediction in the Exp_WSST and 

Exp_DSST is comparable to that in the hindcast experi-

ments of Bo et al. (2020), who also used high-frequency 

OISST SST observations to initialize the earlier version of 

the BCC model (i.e., BCC-CSM1.2). This emphasizes the 

importance of SST initial conditions for the BSISO predic-

tion. In addition, compared to the BCC-CSM1.2 in previous 

studies (Jie et al. 2017; Bo et al. 2020), the model in this 

study degrades the BSISO spatial modes in the simulation 

but achieves similar skills in the BSISO prediction as before. 

This suggests that the model performance in the simulation 

of intraseasonal oscillation does not necessarily determine 

the skill of subseasonal prediction, consistent with the find-

ings of Klingaman et al. (2015) and Liu et al. (2019).

In addition, during the first 5-day (i.e., 1-pentad) fore-

cast time, the three sets of hindcast experiments exhibit 

comparable prediction skills (Fig.  8a). However, dur-

ing the forecast time of 6–20 days (i.e., 2–4 pentads), the 

Exp_WSST and Exp_DSST show slightly higher skill than 

Fig. 5  The first two leading EOF modes of the combined intraseasonal anomalies of outgoing longwave radiation and 850-hPa zonal wind in the 

a, b observations and c, d free run simulations. The variance explained by each EOF mode is given at the top right of each panel
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the Exp_MSST. This indicates that the atmospheric initial 

condition plays a dominant role in the BSISO prediction 

within the first pentad, beyond which the impact of SST 

initial condition gradually emerges. This is consistent with 

the previous studies (e.g., Wang et al. 2015; Liu et al. 2017; 

Bo et al. 2020). Similar results can be obtained from the 

pattern anomaly correlation coefficients (PCCs) between the 

observed and predicted intraseasonal precipitation and 850-

hPa zonal wind fields over the WNP. From the Exp_MSST 

to the Exp_WSST and Exp_DSST, the PCCs of these two 

atmospheric variables are slightly increased during the fore-

cast time of 2–4 pentads (Fig. 8c, d). In fact, about 53% 

of forecast cases show overall enhanced PCCs during that 

time. In some particular forecast cases, the mean PCC of 

precipitation (U850) can even be increased by more than 0.3 

(0.5) (figure not shown). Note that the overall BAC, RMSE 

and PCCs of U850 in the Exp_DSST are slightly lower than 

that in the Exp_WSST beyond the forecast time of 5 days. 

This suggests that the closest-to-observed daily SST does 

not necessarily produce the optimal forecast results, possibly 

Fig. 6  Composite intraseasonal 

anomalies of precipitation 

(shaded) and 850-hPa wind 

(vector) as a function of BSISO 

phase in June–August during 

2000–2014 from the observa-

tions (left panel) and free run 

simulations (right panel). The 

composite is performed using 

the days when BSISO amplitude 

is larger than 1. The decimals 

shown in brackets are the pat-

tern correlation coefficients 

of intraseasonal precipitation 

anomalies between observations 

and free run simulations
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due to the high uncertainty of forecast under the complex 

interaction between model error and initial condition error.

Previous studies have demonstrated that the intraseasonal 

oscillation is more predictable in the strong-amplitude events 

than in the weak-amplitude events (e.g., Xiang et al. 2015; 

Fang et al. 2019). To further examine the prediction skill and 

skill differences among the three sets of hindcast experiments, 

strong and weak cases are selected according to the BSISO 

amplitude during the forecast time of 6–20 days. The strong 

BSISO cases are identified if the occurrences of the BSISO 

with amplitude larger than 1 are at least 10 days during the 

forecast time of 6–20 days, otherwise the weak BSISO cases 

are detected. Among the total 153 forecast cases, we identi-

fied 76 strong cases and 59 weak cases. The BAC skills for 

Fig. 7  Same as in Fig. 6, but 

for the intraseasonal anomalies 

of SST (shading) and precipita-

tion (contour). The magenta 

(green) contours represent 

positive (negative) anomalies of 

precipitation
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the strong and weak cases are given in Fig. 9. For the strong 

cases, the Exp_WSST and Exp_DSST increase the BAC by a 

maximum of about 0.1 during the forecast time of 6–20 days 

relative to the Exp_MSST, similar to the results of BAC for 

all cases (Fig. 8a). However, for the weak cases the three sets 

of hindcast experiments display relatively similar skills within 

the forecast time of 6–20 days. This indicates the superiority 

of high-frequency SST data to the low-frequency SST data in 

the model initialization is especially apparent in the prediction 

of strong BSISO events.

5  Possible mechanisms

It is supposed that the MSE and its tendency at intraseasonal 

time scale can basically represent the maintenance and prop-

agation of BSISO convection (DeMott et al. 2016; Gao et al. 

2019). Thus, to investigate the possible physical processes 

related to the impacts of observed SST frequency in the 

model initialization on the BSISO prediction, we conduct 

an MSE budget diagnostic in this section. The diagnostic 

is based on the composite analysis of some strong BSISO 

cases, in which the three sets of hindcast experiments exhibit 

apparent skill differences as shown in the previous section.

Examination on the forecast cases in this study shows that 

the BSISO, with a relatively short periodicity of about 10–60 

days, evolves fast in the phase space (i.e., phase 1–8) and 

Fig. 8  The forecast skill as a function of the forecast time. Shown are 

the a bivariate anomaly correlation (BAC) and b bivariate root mean 

square error (RMSE) of BSISO index, and  the mean pattern anomaly 

correlation coefficients (PCC) of intraseasonal anomalies of c precipi-

tation and d 850-hPa zonal wind zonally averaged over the WNP (10 

°S–40 °N, 90–150 °E) between observations and predictions of each 

hindcast experiment. The dashed lines in (a) and (b) represent skill 

values of 0.5 and 1.414, respectively. PCCs larger than 0.23 are sig-

nificant at the 95% confidence level
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hardly stays in one particular phase for a long time (figure 

not shown). This indicates that the BSISO exhibits relatively 

quick propagation of convection anomaly over the WNP dur-

ing the forecast time of 1–20 days. Thus, to better reveal the 

impact of SST initial conditions on the BSISO evolution, the 

BSISO cases are divided into different categories according 

to the main characteristics of wet and dry phases. Here the 

wet (dry) phase denotes the phases 3–6 (phases 7, 8, 1 and 

2), in which wet (dry) spell prevails over the tropical WNP. 

During the forecast time of 1–20 days, the strong BSISO 

cases evolving from dry to wet (wet to dry) phases are 

referred to as DW (WD) cases, while those staying persis-

tently in wet or dry phase are referred to as PW or PD cases. 

The numbers of the DW, WD, PW and PD cases involved 

in the following composite analysis are 15, 15, 18 and 18, 

respectively. These four categories of cases account for 90% 

of the total 76 strong BSISO cases selected in Sect. 4. They 

all exhibit long duration of wet or dry anomalies over the 

tropical WNP during the forecast time of 6–20 days when 

the forecast skills are clearly different among the hindcast 

experiments.

The composite BSISO trajectories for the above four cat-

egories of cases during the forecast time of 1–20 days are 

given in Fig. 10. In the observation, the DW (WD) cases 

exhibit enhanced (suppressed) convection propagating from 

equatorial ocean to east of Philippines, corresponding to the 

evolution of BSISO from phase 1 to phase 5 (phase 5 to 

phase 1). The PW cases propagate from phase 3 to phase 6 

with wet spell over the tropical WNP, while the PD cases 

decay in phase 8 and then develop in phases 1–2 with dry 

spell over the tropical WNP. By comparison, the Exp_WSST 

and Exp_DSST better reproduce the evolution of all four 

categories of BSISO cases beyond the forecast time of 5 

days relative to the Exp_MSST, with closer-to-observed 

BSISO amplitude and phase variation. This is consistent 

with the results of prediction skill shown in Figs. 8 and 9.

For the DW cases, Fig. 11 depicts the composite time-

latitude distributions of intraseasonal anomalies of pre-

cipitation, U850, column-integrated MSE and its tendency 

averaged along 110–140 °E. During the forecast time of 

1–20 days, the observation shows a northward propaga-

tion of wet anomalies from equator to subtropical WNP 

and an obvious transition from dry to wet (wet to dry) 

anomalies over the tropical (equatorial) western Pacific. 

The Exp_MSST basically captures the variation feature of 

BSISO convection. However, it underestimates the inten-

sity of enhanced (suppressed) convection over the tropical 

(equatorial) western Pacific beyond the forecast time of 

5 days. Compared with the Exp_MSST, the Exp_WSST 

and Exp_DSST can more reasonably predict the northward 

propagation and intensity of precipitation anomalies over 

the WNP beyond the 5-day forecast time. Correspondingly, 

the predictions of easterly (westerly) wind anomalies pre-

vailing over the areas north (south) to the deep convection 

center are also improved. Despite the differences in the 

location and peak time of the BSISO precipitation and cir-

culation centers, the observed intraseasonal anomalies of 

column-integrated MSE and its tendency show northward 

propagation associated with the evolution of BSISO con-

vection. The variation feature of intraseasonal MSE and 

MSE tendency is also better reproduced in the Exp_WSST 

and Exp_DSST than in the Exp_MSST. These results indi-

cate that adopting higher-frequency SST observation in 

the model initialization process tends to produce a more 

Fig. 9  The forecast skill as a function of the forecast time. The bivari-

ate anomaly correlation (BAC) of BSISO index between observa-

tions and predictions of each hindcast experiment for strong and weak 

cases are shown in (a) and (b), respectively. The dashed lines in (a) 

and (b) represent skill values of 0.5
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skillful forecast of the intraseasonal anomalies of pre-

cipitation, circulation, MSE and MSE tendency that are 

closely related to the BSISO characteristics.

Figure 12 further gives the composite time-latitude dis-

tributions of intraseasonal anomalies of various budget 

terms contributing to the column-integrated MSE ten-

dency averaged along 110–140 °E for the DW cases. The 

terms include horizonal and vertical advection of MSE, net 

longwave and shortwave radiative heating, surface latent 

and sensible heat flux. At the intraseasonal time scale, the 

observed vertical and horizontal MSE advection, longwave 

radiation flux and latent heat flux show strong anomalies 

propagating northward, indicating large contribution 

to the MSE tendency. In contrast, the shortwave radia-

tion flux and sensible heat flux are quite weak, contrib-

uting little to the MSE tendency. Although featured by 

similar biases in the magnitude, location and peak time 

of anomaly center for the above terms, the three sets of 

Fig. 10  Composite trajectories for the strong BSISO cases with a 

dry-to-wet (DW), b wet to dry (WD), c persistent-wet (PW) and d 

persistent-dry (PD) phase variation. The black big dots denote the 

location at the previous day of forecast starting date, and small dots 

represent the location at each day since the forecast starting date



1110 X. Zhu et al.

1 3

hindcast  experiments could differ remarkably in some 

budget terms. From the Exp_MSST to the Exp_WSST and 

Exp_DSST, the prediction of latent heat flux is remark-

ably improved in the magnitude and propagation. This 

improvement is also evident for the terms of horizontal 

and vertical MSE advection. Moreover, the prediction 

of longwave radiation is slightly improved, whereas the 

predictions of shortwave radiation flux and sensible heat 

flux are hardly improved. Although the differences among 

the three sets of hindcast experiments are very significant 

in some forecast cases (figure not shown), the composite 

differences of MSE budgets terms between different pre-

dictions are only statistically significant over several small 

areas. This is possibly due to the sharply smoothed BSISO 

evolution features by composite of various cases with dif-

ferent position and intensity of dry/wet anomaly center.

For the DW cases, the composite time variations of intra-

seasonal anomalies of precipitation, MSE, MSE tendency 

and its budget terms regionally averaged over the core region 

(10–20 °N, 110–140 °E) are given in Fig. 13. In this region, 

Fig. 11  Composite time-latitude distributions of the intraseasonal 

anomalies of precipitation, 850-hPa zonal wind, column-integrated 

MSE, and MSE tendency averaged along 110–140 °E in observations 

and predictions of each hindcast  experiment for the strong BSISO 

cases with dry-to-wet (DW) phase variation
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the observed precipitation anomalies turn from negative to 

positive at the beginning of forecast, peaks around the 15th 

forecast day and remains strong subsequently. The MSE 

shows similar variation feature, but its tendency peaks 

around the 6th forecast day and then decays rapidly. This 

indicates that the intraseasonal MSE is highly in phase with 

the BSISO precipitation and intensive moistening appears 

about 1 week ahead of the convection center, consistent with 

the findings of previous studies (e.g., DeMott et al. 2016; 

Gao et al. 2018). Meanwhile, the various observed MSE 

budget terms differ in the magnitude and the occurrence 

time of peaking and transiting between negative and positive 

states. During the 1–5th forecast day when the dry anomalies 

occur, the horizontal and vertical advection act as apparent 

sources to recharge the MSE, whereas the latent heat flux 

and longwave radiation flux serve as apparent sinks to dis-

charge the MSE. This recharge-discharge process is reversed 

when  the BSISO precipitation is persistently enhanced 

during the 6–20th forecast day. The three sets of  hind-

cast experiments can generally capture the variation feature 

of precipitation, MSE and MSE budget terms, but with obvi-

ous biases in the magnitude. By comparison, with less root 

Fig. 12  Same as in Fig.  11, but for the intraseasonal anomalies of 

column-integrated horizontal advection ( −V ⋅ ∇m ), vertical advection 

( −� ⋅ �m∕�p ), net longwave radiation ( LW ), net shortwave radiation 

( SW ), surface latent ( LH ), and surface sensible heat ( SH ). Stippling 

denotes where the differences between the Exp_WSST/Exp_DSST 

predictions and the Exp_MSST predictions are significant at the 90% 

confidence level according to the Student’s t test
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mean square errors against the observations, the Exp_WSST 

and Exp_DSST outperform the Exp_MSST in predicting the 

precipitation, MSE, and MSE tendency especially beyond 

the forecast time of 5 days. For the MSE budget terms, com-

pared with the Exp_MSST, the Exp_MSST and Exp_DSST 

exhibit much closer-to-observed magnitude of latent heat 

flux, as well as somewhat improved horizonal and vertical 

MSE advection during the 6–20-day forecast time. Never-

theless, the three sets of hindcast experiments display rela-

tively small differences of longwave radiation flux, short-

wave radiation flux and sensible heat flux. This indicates 

that the realistic representation of latent heat flux as well as 

horizontal and vertical MSE advection may largely contrib-

ute to the above-mentioned closer-to-observed evolution of 

the DW cases in the Exp_WSST and Exp_DSST than in the 

Exp_MSST.

In addition, for the WD, PW and PD cases, the com-

posite time-latitude cross sections of intraseasonal anom-

alies of precipitation averaged along 110–140  °E are 

shown in Fig. 14a. For the WD cases, the Exp_WSST 

and Exp_DSST can better capture the magnitude of dry 

anomalies over the tropical WNP beyond the 5-day fore-

cast time than the Exp_MSST. For the PW cases, different 

from the observation in which the wet anomalies over the 

WNP maintains within the forecast time of 20 days, the 

Exp_MSST shows wet anomalies over the tropical WNP 

before the forecast time of about 15 days, but exhibit an 

erroneous transition from wet to dry anomalies beyond 

that time. The deficiency of the unrealistic transition is 

reduced in the Exp_WSST and Exp_DSST. For the PD 

cases, the magnitude and variation of dry anomaly over the 

WNP during the forecast time of 6–20 days are also some-

what improved from the Exp_MSST to the Exp_WSST 

Fig. 13  Composite time variations of intraseasonal anomalies of sev-

eral variables for the strong BSISO cases with dry-to-wet (DW) phase 

variation. a Precipitation, and column-integrated b MSE, c MSE 

tendency, d horizontal advection ( −V ⋅ ∇m ), e vertical advection 

( −� ⋅ �m∕�p ), f net longwave radiation ( LW ), g net shortwave radi-

ation ( SW ), h surface latent ( LH ), and i surface sensible heat ( SH ) 

regionally averaged over the area (10–20 °N, 110−140 °E). The deci-

mals shown beside the legends are root mean square errors between 

the observations and predictions of each hindcast experiment during 

the forecast time of 1–20 day
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and Exp_DSST. These results suggest that using rela-

tively higher-frequency SST observations for the model 

initialization could result in improved prediction of the 

magnitude and propagation of BSISO convection over the 

tropical WNP whenever the BSISO is persistently active/

break or evolves between wet and dry phases over that 

region.

From the Exp_MSST to the Exp_WSST and Exp_

DSST, the intraseasonal MSE tendency and most budget 

Fig. 14  Same as in Fig. 11, but for the intraseasonal anomalies of a precipitation and b surface latent heat flux for the strong BSISO cases with 

wet-to-dry (WD), persistent-wet (PW) and persistent-dry (PD) phase variation
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terms averaged along 110–140 °E are overall more skill-

fully predicted during the forecast time of 6–20 days 

for the WD, PW, and PD cases (figure not shown). The 

improvement is especially evident in the prediction of 

latent heat flux that related to the BSISO convection 

(Fig. 14b). This is similar to the results of DW cases in 

Figs. 12 and 13, further confirming that the improved 

forecast of BSISO characteristics is associated with the 

more realistic description of latent heat flux. This stresses 

the key role of the intraseasonal latent heat flux on the 

development of BSISO convection over the WNP, possi-

bly through triggering instability of atmospheric boundary 

layer prior to the convection center as demonstrated by 

Wang et al. (2018).

Furthermore, aiming at the forecast time of 6–20 days 

when the differences of BSISO prediction among the three 

hindcast experiments are notable, Fig. 15 gives the tempo-

ral mean intraseasonal MSE tendency and its budget terms 

averaged over the region (10–20 °N, 110–140 °E) for various 

cases. During the forecast time of 6–20 days, for the DW 

and PW (WD and PD) cases, the observed MSE tendency 

is largely compensated (offset) by the latent heat flux and 

longwave radiation flux and offset (compensated) by the hor-

izontal and vertical advection of MSE, but is little attributed 

to the shortwave radiation flux and sensible heat flux. The 

Exp_MSST considerably underestimates the amplitude of 

the four dominant MSE budget terms (i.e., horizontal advec-

tion, vertical advection, latent heat flux, and longwave radia-

tion flux). The Exp_WSST and Exp_DSST can reduce the 

biases, especially in the latent heat flux, consistent with pre-

vious results in Figs. 12, 13 and 14. The latent heat flux is 

underestimated by about 5  Wm− 2, 6  Wm− 2, 12  Wm− 2, and 

5  Wm− 2 in the Exp_MSST for the DW, WD, PW and PD 

cases, respectively. It is further improved in the Exp_WSST 

and Exp_DSST, with reduction of biases by more than 87 %, 

51 %, 21 %, and 66 % for the above four different types of 

BSISO cases, respectively. Also, from the Exp_MSST to 

the Exp_WSST and Exp_DSST, the biases of vertical MSE 

advection are reduced by about 14–30% for the DW and PD 

cases, and those of horizontal MSE advection are decreased 

by about 10–41% for all four categories of cases. In addition, 

the longwave radiation is slightly improved for most cases.

The above results suggest that the inclusion of higher-

frequency observed SST in the model initialization can lead 

to improvement in the BSISO-related MSE variations, pos-

sibly by changing the surface evaporation (related to the 

surface latent heat flux) and atmospheric convergence and 

divergence (related to the MSE advection). This improve-

ment may further result in more skillful forecast of BSISO 

over the WNP.

6  Summary and discussion

Based on the prediction of three sets of hindcast experiments 

with BCC-CSM2 initialized by SST observations of differ-

ent temporal frequencies, this study examines the impact of 

Fig. 15  Composite temporal mean intraseasonal anomalies of col-

umn-integrated MSE tendency and various MSE budget terms (unit: 

 Wm− 2) averaged over the region (10–20 °N, 110−140 °E) during the 

forecast time of 6–20 days. The MSE budget terms include horizontal 

advection ( −V ⋅ ∇m ), vertical advection ( −� ⋅ �m∕�p ), net longwave 

radiation ( LW ), net shortwave radiation ( SW ), surface latent ( LH ), 

and surface sensible heat ( SH ). The results are for the strong BSISO 

cases with a dry-to-wet (DW), b wet-to-dry (WD), c persistent-wet 

(PW), and d persistent-dry (PD) phase variation
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observed SST frequency in the model initialization on the 

prediction of BSISO over the WNP.

A 15-year free run simulation shows that the model itself 

can reasonably reproduce the spatial structure of the BSISO 

variability and BSISO mode, the northward propagation of 

intraseasonal anomalies of precipitation, circulation and SST 

over the WNP, as well as the convection-circulation phase 

relationship. However, it still shows clear biases in simulat-

ing the amplitude and location of BSISO activity center. 

These deficiencies may limit the forecast skill of BSISO over 

the WNP to some extent.

The useful prediction skill of real-time BSISO indices 

is up to 10 days in the Exp_MSST, and further increases to 

11–12 days in the Exp_WSST and Exp_DSST. Among the 

three sets of hindcast experiments, the BSISO prediction 

skills are very similar within the first few days of forecast 

but exhibit clear differences beyond the forecast time of 5 

days, indicating that the impacts of SST initial conditions 

gradually become more noticeable as the forecast time 

increases. Compared to the Exp_MSST, the Exp_WSST 

and Exp_DSST slightly enhance the overall prediction 

skill during the forecast time of 6–20 days, in terms of the 

BAC and RMSE of BSISO indices and the PCCs of intra-

seasonal precipitation and U850 anomalies over the WNP. 

This suggests that adopting higher-frequency SST observa-

tions in the model initialization process tends to improve the 

prediction of BSISO feature over the WNP. The BSISO skill 

differences among the three sets of hindcast experiments are 

dependent on the amplitude of BSISO. From the Exp_MSST 

to the Exp_WSST and Exp_DSST, the prediction skill is 

clearly enhanced for the strong BSISO cases, but it is almost 

unchanged for the weak BSISO cases. About 90% of the 

strong BSISO cases are characterized by long duration of 

dry or wet anomaly over the tropical WNP during the fore-

cast day of 6–20 days. For these cases, the Exp_WSST and 

Exp_DSST can more skillfully capture the BSISO magni-

tude and phase variation than the Exp_MSST.

Further composite analysis on the strong BSISO cases 

indicates that the three sets of hindcast experiments show 

remarkable differences in the predicted BSISO-related MSE 

and MSE tendency during the forecast time of 6–20 days 

when the differences of BSISO prediction skill among the 

three hindcast experiments are evident. Diagnostic of MSE 

budget indicates that the Exp_WSST and Exp_DSST can 

generally better reproduce the amplitude and propagation of 

intraseasonal MSE, MSE tendency and most of its budget 

terms than the Exp_MSST. Especially, from the Exp_MSST 

to the Exp_WSST and Exp_DSST, for various BSISO cases 

during the forecast time of 6–20 days, the mean biases of 

latent heat flux and MSE advection over the WNP are 

reduced by about 21–87% and 10–41%, respectively. This 

suggests that using higher-frequency SST observations for 

the model initialization can lead to more realistic prediction 

of BSISO-related MSE variations, and thus enhance the 

BSISO prediction skill possibly through changing the sur-

face evaporation (related to the latent heat flux) and atmos-

pheric convergence and divergence (related to the MSE 

advection).

This study demonstrates that the forecast experiments 

with daily or weekly SST observations used in the model 

initialization process can enhance the BSISO prediction 

skill during the forecast time of 6–20 days compared to 

those with monthly SST observations. However, this skill 

enhancement in this study is less significant than that in Kim 

et al. (2008) and Boisséson et al. (2012), probably because of 

the different model settings. In contrast to atmosphere-only 

model with prescribed SST field used in previous studies, 

the coupled climate system model used in this study may 

suffer from a deteriorating SST forecast with increasing 

forecast time, partly because of the model drift in ocean-

atmosphere coupling process. This may to some extent limit 

the forecast skill at long forecast time. In addition, although 

we suppose it is necessary to increase the frequency of SST 

observations in the model initialization process, the highest-

frequency SST observation in this study is not optimal for 

the BSISO prediction. This implies the huge uncertainty of 

S2S prediction, which is largely affected by the errors in 

both initial conditions and model itself. It is of course that 

the above results are perhaps somewhat uncertain because of 

the model-dependent forecast errors, the difference in SST 

observations, and the limited number of hindcast cases, as 

well as the considerable residuals of MSE budget shown 

in this study and many other studies (e.g., Kiranmayi and 

Maloney 2011; Sobel et al. 2014). To improve the S2S pre-

diction of the BCC model as well as other models, more 

efforts should be made to optimize the model initial condi-

tions, in addition to a sustained endeavor to upgrade the 

model physical parameterizations.

Acknowledgements This study was jointly supported by the National 

Key R&D Program of China under Grant 2016YFA0602100, the 

National Natural Science Foundation of China under Grant 42075161, 

41975081, 41675090, and 41875004, the Postgraduate Research and 

Practice Innovation Program of Jiangsu Province of China under Grant 

KYCX190038, the bilateral research project GZ1259 of the Sino-

German Center for Research Support, CAS “Light of West China” 

Program, the Jiangsu University “Blue Project” outstanding young 

teachers training object, and the Fundamental Research Funds for the 

Central Universities and the Jiangsu Collaborative Innovation Center 

for Climate Change. We appreciate the four anonymous reviewers for 

their constructive and insightful suggestions to improve the manuscript 

greatly.

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long 

as you give appropriate credit to the original author(s) and the source, 

provide a link to the Creative Commons licence, and indicate if changes 

were made. The images or other third party material in this article are 

included in the article’s Creative Commons licence, unless indicated 



1116 X. Zhu et al.

1 3

otherwise in a credit line to the material. If material is not included in 

the article’s Creative Commons licence and your intended use is not 

permitted by statutory regulation or exceeds the permitted use, you will 

need to obtain permission directly from the copyright holder. To view a 

copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abhilash S, Sahai AK, Borah N et al (2014) Does bias correction in 

the forecasted SST improve the extended range prediction skill of 

active-break spells of Indian summer monsoon rainfall? Atmos 

Sci Lett 15:114–119

Adler RF, Huffman GJ, Chang A et al (2003) The version-2 global 

precipitation climatology project (GPCP) monthly precipitation 

analysis (1979–present). J Hydrometeorol 4:1147–1167

Bo Z, Liu X, Gu W, Huang A et al (2020) Impacts of atmospheric 

and oceanic initial conditions on boreal summer intraseasonal 

oscillation forecast in the BCC model. Theor Appl Climatol 

142(1):393–406

Boisséson Ed, Balmaseda M, Vitart F, Mogensen K (2012) Impact 

of the sea surface temperature forcing on hindcasts of Madden-

Julian Oscillation events using the ECMWF model. Ocean Sci 

8:1071–1084

DeMott CA, Benedict JJ, Klingaman N et al (2016) Diagnosing ocean 

feedbacks to the MJO: SST-modulated surface fluxes and the 

moist static energy budget. J Geophys Res Atmos 121:8350–8373

Ding Q, Wang B (2005) Circumglobal teleconnection in the Northern 

Hemisphere summer. J Clim 18:3483–3505

Ding R, Li J, Seo KH (2011) Estimate of the predictability of boreal 

summer and winter intraseasonal oscillations from observations. 

Mon Weather Rev 139:2421–2438

Fang Y, Wu P, Wu T et al (2016) An evaluation of boreal summer 

intra-seasonal oscillation simulated by BCC_AGCM2.2. Clim 

Dyn 48:3409–3423

Fang Y, Li B, Liu X (2019) Predictability and prediction skill of the 

boreal summer intra-seasonal oscillation in BCC_CSM model. J 

Meteorol Soc Jpn 97:295–311

Fu X, Wang B (2004) The boreal-summer intraseasonal oscillation 

simulated in a hybrid coupled atmosphere-ocean model. Mon 

Weather Rev 132:2628–2649

Fu X, Wang B, Li T, McCreary JP (2003) Coupling between north-

ward-propagating, intraseasonal oscillations and sea surface tem-

perature in the Indian Ocean. J Atmos Sci 60:1733–1753

Fu X, Yang B, Bao Q, Wang B (2008) Sea surface temperature feed-

back extends the predictability of tropical intraseasonal oscilla-

tion. Mon Weather Rev 136:577–597

Fu X, Lee JY, Hsu PC et al (2013) Multi-model MJO forecasting during 

DYNAMO/CINDY period. Clim Dyn 41:1067–1081

Gao Y, Klingaman NP, DeMott CA, Hsu PC (2019) diagnosing ocean 

feedbacks to the BSISO: SST-modulated surface fluxes and the 

moist static energy budget. J Geophys Res Atmos 124:146–170

Griffies S, Gnanadesikan A, Dixon KW et al (2005) Formulation of an 

ocean model for global climate simulations. Ocean Sci 1:45–79

Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global rea-

nalysis. Q J R Meteorol Soc 146:1999–2049

Hsu PC, Lee JY, Ha KJ (2016) Influence of boreal summer intrasea-

sonal oscillation on rainfall extremes in southern China. Int J Cli-

matol 36:1403–1412

Hsu PC, Lee JY, Ha KJ, Tsou CH (2017) Influences of boreal summer 

intraseasonal oscillation on heat waves in monsoon Asia. J Clim 

30:7191–7211

Hu W, Duan A, He B (2017) Evaluation of intra-seasonal oscillation 

simulations in IPCC AR5 coupled GCMs associated with the 

Asian summer monsoon. Int J Climatol 37:476–496

Huang A, Zhang Y, Wang Z et al (2013) Extended range simula-

tions of the extreme snow storms over southern China in early 

2008 with the BCC_AGCM2.1 model. J Geophys Res Atmos 

118:8253–8273

Jie W, Vitart F, Wu T, Liu X (2017) Simulations of the Asian sum-

mer monsoon in the sub-seasonal to seasonal prediction project 

(S2S) database. Q J R Meteorol Soc 143:2282–2295

Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 

40-year reanalysis project. Bull Am Meteorol Soc 77:437–472

Kim HM, Hoyos CD, Webster PJ, Kang IS (2008) Sensitivity of 

MJO simulation and predictability to sea surface temperature 

variability. J Clim 21:5304–5317

Kiranmayi L, Maloney ED (2011) Intraseasonal moist static energy 

budget in reanalysis data. J Geophys Res Atmos 116:D21117

Klingaman NP, Inness PM, Weller H, Slingo JM (2008) The impor-

tance of high-frequency sea surface temperature variability to 

the intraseasonal oscillation of Indian monsoon rainfall. J Clim 

21:6119–6140

Klingaman NP, Jiang X, Xavier PK, Petch J, Waliser D, Woolnough 

SJ (2015) Vertical structure and physical processes of the Mad-

den-Julian oscillation: synthesis and summary. J Geophys Res 

Atmos 120:4671–4689

Lau KM, Chan PH (1986) Aspects of the 40–50-day oscillation dur-

ing the northern summer as inferred from outgoing longwave 

radiation. Mon Weather Rev 114:1354–1367

Lee JY, Wang B, Wheeler MC, Fu X, Waliser DE, Kang IS (2013) 

Real-time multivariate indices for the boreal summer intrasea-

sonal oscillation over the Asian summer monsoon region. Clim 

Dyn 40:493–509

Lee SS, Wang B, Waliser DE, Neena JM, Lee JY (2015) Predict-

ability and prediction skill of the boreal summer intraseasonal 

oscillation in the Intraseasonal Variability Hindcast Experiment. 

Clim Dyn 45:2123–2135

Li W, Zhang Y, Shi X, Zhou W, Huang A, Mu M, Qiu B, Ji J (2019) 

Development of land surface model BCC_AVIM2.0 and its 

preliminary performance in LS3MIP/CMIP6. J Meteorol Res 

33(5):851–869

Liebmann B, Smith CA (1996) Description of a complete (interpo-

lated) outgoing longwave radiation dataset. Bull Am Meteorol 

Soc 77:1275–1277

Liebmann B, Hendon HH, Glick JD (1994) The relationship between 

tropical cyclones of the western Pacific and Indian Oceans and 

Madden-Julian oscillation. J Meteorol Soc Jpn 72:401–412

Lin H (2012) Monitoring and predicting the intraseasonal variabil-

ity of the East Asian–Western North Pacific summer monsoon. 

Mon Weather Rev 141:1124–1138

Lin H (2019) Long-lead ENSO control of the boreal summer intra-

seasonal oscillation in the East Asian-western North Pacific 

region. NPJ Clim Atmos Sci 2(1):1–6

Lin H, Brunet G, Derome J (2008) Forecast skill of the Madden–

Julian oscillation in two Canadian atmospheric models. Mon 

Weather Rev 136:4130–4149

Liu X, Wu T, Yang S et al (2014) Relationships between interannual 

and intraseasonal variations of the Asian-western Pacific sum-

mer monsoon hindcasted by BCC_CSM1. 1 (m). Adv Atmos 

Sci 31:1051–1064

Liu X, Wu T, Yang S et al (2015) Performance of the seasonal fore-

casting of the Asian summer monsoon by BCC_CSM1. 1(m). 

Adv Atmos Sci 32:1156–1172

Liu X, Wu T, Yang S et al (2017) MJO prediction using the sub-

seasonal to seasonal forecast model of Beijing Climate Center. 

Clim Dyn 48:3283–3307

Liu X, Li W, Wu T et al (2019) Validity of parameter optimization 

in improving MJO simulation and prediction using the sub-

seasonal to seasonal forecast model of Beijing Climate Center. 

Clim Dyn 52:3823–3843

http://creativecommons.org/licenses/by/4.0/


1117Impact of the observed SST frequency in the model initialization on the BSISO prediction  

1 3

Maloney ED (2009) The moist static energy budget of a composite 

tropical intraseasonal oscillation in a climate model. J Clim 

22:711–729

Mao J, Sun Z, Wu G (2010) 20–50-day oscillation of summer Yangtze 

rainfall in response to intraseasonal variations in the subtropical 

high over the western North Pacific and South China Sea. Clim 

Dyn 34:747–761

Neelin JD, Held IM (1987) Modeling tropical convergence based on the 

moist static energy budget. Mon Weather Rev 115:3–12

Neena JM, Waliser D, Jiang X (2017) Model performance metrics and 

process diagnostics for boreal summer intraseasonal variability. 

Clim Dyn 48:1661–1683

Pegion K, Kirtman BP (2008) The impact of air–sea interactions 

on the simulation of tropical intraseasonal variability. J Clim 

21:6616–6635

Rashid HA, Hendon HH, Wheeler MC, Alves O (2011) Prediction 

of the Madden–Julian oscillation with the POAMA dynamical 

prediction system. Clim Dyn 36:649–661

Ren X, Yang XQ, Sun X (2013) Zonal oscillation of western pacific 

subtropical high and subseasonal SST variations during Yangtze 

persistent heavy rainfall events. J Clim 26:8929–8946

Reynolds RW, Smith TM, Liu C et  al (2007) Daily high-resolu-

tion-blended analyses for sea surface temperature. J Clim 

20:5473–5496

Sabeerali C, Ramu Dandi A, Dhakate A et al (2013) Simulation of 

boreal summer intraseasonal oscillations in the latest CMIP5 cou-

pled GCMs. J Geophys Res Atmos 118:4401–4420

Seo H, Subramanian AC, Miller AJ, Cavanaugh NR (2014) Coupled 

impacts of the diurnal cycle of sea surface temperature on the 

Madden-Julian oscillation. J Clim 27:8422–8443

Sobel A, Maloney E, Bellon G, Frierson D (2008) The role of surface 

fluxes in tropical intraseasonal oscillations. Nat Geosci 1:653–657

Sobel A, Wang S, Kim D (2014) Moist static energy budget of the MJO 

during DYNAMO. J Atmos Sci 71:4276–4291

Stan C (2018) The role of SST variability in the simulation of the MJO. 

Clim Dyn 51:2943–2964

Van den Dool H, Saha S (1990) Frequency dependence in forecast skill. 

Mon Weather Rev 118:128–137

Vitart F (2017) Madden-Julian oscillation prediction and teleconnec-

tions in the S2S database. Q J R Meteorol Soc 143:2210–2220

Vitart F, Robertson AW, Anderson DL (2012) Subseasonal to seasonal 

prediction project: Bridging the gap between weather and climate. 

WMO Bull 61:23–28

Waliser D, Stern W, Schubert S, Lau K (2003) Dynamic predictabil-

ity of intraseasonal variability associated with the Asian summer 

monsoon. Q J R Meteorol Soc 129:2897–2925

Wang W, Chen M, Kumar A (2009) Impacts of ocean surface on the 

northward propagation of the boreal summer intraseasonal oscil-

lation in the NCEP climate forecast system. J Clim 22:6561–6576

Wang W, Kumar A, Fu X, Hung MP (2015) What is the role of the 

sea surface temperature uncertainty in the prediction of tropi-

cal convection associated with the MJO? Mon Weather Rev 

143:3156–3175

Wang T, Yang X, Fang J, Sun X, Ren X (2018) Role of air-sea interac-

tion in the 30–60-day boreal summer intraseasonal oscillation over 

the western north Pacific. J Clim 31:1653–1680

Weng CH, Hsu HH (2017) Intraseasonal oscillation enhancing C5 

typhoon occurrence over the tropical western North Pacific. Geo-

phys Res Lett 44:3339–3345

Winton M (2000) A reformulated three-layer sea ice model. J Atmos 

Oceanic Technol 17:525–531

Wu T, Song L, Li W et al (2014) An overview of BCC climate system 

model development and application for climate change studies. J 

Meteorol Res 28:34–56

Wu T, Lu Y, Fang Y et al (2019) The Beijing Climate Center Climate 

System Model (BCC-CSM): The main progress from CMIP5 to 

CMIP6. Geosci Model Dev 12:1573–1600

Xiang B, Zhao M, Jiang X et al (2015) The 3–4-week MJO prediction 

skill in a GFDL coupled model. J Clim 28:5351–5364

Yasunari T (1979) Cloudiness fluctuations associated with the northern 

hemisphere summer monsoon. J Meteorol Soc Jpn 57:227–242

Yasunari T (1980) A quasi-stationary appearance of 30 to 40-day 

period in the cloudiness fluctuations during the summer monsoon 

over India. J Meteorol Soc Jpn 58:225–229

Zhang Y, Hung MP, Wang W, Kumar A (2019) Role of SST feedback 

in the prediction of the boreal summer monsoon intraseasonal 

oscillation. Clim Dyn 53:3861–3875

Zhu B, Wang B (1993) The 30–60-day convection seesaw between 

the tropical Indian and western Pacific Oceans. J Atmos Sci 

50:184–199

Publisher’s note Springer Nature remains neutral with regard to 

jurisdictional claims in published maps and institutional affiliations.


	Impact of the observed SST frequency in the model initialization on the BSISO prediction
	Abstract
	1 Introduction
	2 Model, data, experimental design, and methods
	2.1 Model
	2.2 Data
	2.3 Experimental design
	2.4 Methods

	3 Evaluation of BSISO characteristics in the free run
	4 Forecast skill of BSISO
	5 Possible mechanisms
	6 Summary and discussion
	Acknowledgements 
	References


