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Impact of the representation of 
stomatal conductance on model 
projections of heatwave intensity
Jatin Kala1,3, Martin G. De Kauwe2, Andy J. Pitman3, Belinda E. Medlyn4, Ying-Ping Wang5, 

Ruth Lorenz3 & Sarah E. Perkins-Kirkpatrick3

Stomatal conductance links plant water use and carbon uptake, and is a critical process for the land 

surface component of climate models. However, stomatal conductance schemes commonly assume 

that all vegetation with the same photosynthetic pathway use identical plant water use strategies 

whereas observations indicate otherwise. Here, we implement a new stomatal scheme derived 

from optimal stomatal theory and constrained by a recent global synthesis of stomatal conductance 

measurements from 314 species, across 56 field sites. Using this new stomatal scheme, within a global 
climate model, subtantially increases the intensity of future heatwaves across Northern Eurasia. This 

indicates that our climate model has previously been under-predicting heatwave intensity. Our results 

have widespread implications for other climate models, many of which do not account for differences in 
stomatal water-use across different plant functional types, and hence, are also likely under projecting 
heatwave intensity in the future.

Heatwaves are extreme phenomena that have major impacts on environmental, social, health and economic sys-
tems1. We de�ne heatwaves as a series of three or more consecutive days during which daily maximum temper-
atures are higher than the calendar-day 90th percentile2. �e frequency, intensity and duration of heatwaves are 
increasing in many parts of the globe3–5. Observations have highlighted an increase in the length of European 
heatwaves6 and the frequency of heatwave occurrence in China7 and Australia2,8. For example, the 2003 summer 
heatwave a�ected much of Western Europe and likely provided a precursor to future extremes across this region9. 
Many of these observed large-scale heatwaves have been linked to human activity via global warming10,11.

Future warming linked with increases in greenhouse gases is expected to increase the frequency, intensity and 
duration of heatwaves further5,12, particularly across the mid-latitudes including North America and Europe13,14. 
Heatwaves are associated with large-scale synoptic states15,16, which are in�uenced by modes of climate variabil-
ity17. However, it is now well established from observational18 and modelling studies19,20 that heatwaves are also 
strongly modulated by the land surface if the synoptic scale weather generates persistent anticyclonic patterns and 
the planetary boundary-layer strongly couples the land to the atmosphere over consecutive days21. Under these 
circumstances, heatwaves intensify as desiccated soils and a surface radiation balance dominated by the exchange 
of sensible heat is coupled with the boundary-layer to lead to events such as the “mega-heatwaves” experienced 
in Europe during 2003 and 201019,21. Although the detailed role of the land surface on the exchange of water and 
energy during heatwaves remains uncertain22, there is evidence that capturing the detailed connection between 
the land and the atmosphere, and how soil moisture impacts the surface energy balance to moderate or intensify 
heat waves, is necessary to produce realistic simulations of these phenomena19.

Within climate models, land surface models (LSMs) simulate soil moisture and partition available radiation at 
the surface between sensible and latent heat �uxes23. For vegetated surfaces, in particular over forests, the latent 
heat �ux is principally controlled by stomata, as plants exchange water for carbon. Our ability to accurately sim-
ulate how soil moisture states and soil moisture variability a�ects heatwaves, therefore relies at least in part, on 
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accurately modelling stomatal conductance (gs) under current and future CO2 concentrations. At the leaf scale, 
experiments commonly �nd that increasing CO2 results in increased photosynthesis24,25 and reduced water loss 
via lower gs

26–28. However, there is increasing evidence29,30 that we cannot easily transfer our leaf/canopy level 
understanding of the response of transpiration due to CO2, to ecosystem scales. Nevertheless, any CO2-induced 
change in transpiration and/or soil “water-savings”, has the potential to alter future soil moisture state, soil mois-
ture variability, and transpiration, which may then feedback on the development of heatwaves over several days21. 
Given that heatwaves are associated with synoptic state and persistent anticyclonic conditions or so-called “block-
ing/persistent highs”31,32, these feedbacks are more likely to a�ect heatwave intensity than duration or frequency.

To date, the representation of gs in LSMs has been largely based on empirical models33–35. �ese models typi-
cally assume that di�erences in plant water use strategy are only tied to the photosynthetic pathway (C3 vs. C4). 
�is assumption is not supported by experimental evidence; instead leaf level measurements suggest that plant 
water use strategies vary among species (or plant functional types, PFTs)36. Ignoring these di�erences among 
PFTs will likely result in errors in the simulated �ux of moisture to the atmosphere. A recent collation of a global 
database of leaf-level gs measurements36 from 319 species across 56 �eld studies was used to parameterise dif-
ferences in plant water use strategy among PFTs within the Community Atmosphere Biosphere Land Exchange 
(CABLE) model37. Parameters were estimated for each of the models PFTs by �tting Eq. 1 (see Methods) to this 
leaf-level dataset using a non-linear mixed e�ects model38.

�is new gs model27,36 is similar in functional form to the previous empirical model35 used in CABLE and 
many other LSMs but is derived following optimal stomal theory. Consequently, model parameters carry bio-
logical meaning and can be hypothesised to vary with climate and plant water use strategy27. Such variations 
are supported by experimental data36. O�ine CABLE simulations38 and coupled land-atmosphere simulations39 
performed using the Australian Community Climate and Earth Systems Simulator (ACCESS1.3b)40, showed that 
this parameterisation led to a reduction in transpiration (up to 1 mm day−1) across boreal regions, which resulted 
in an increase in daily minimum and maximum temperatures (by up to 1 °C). �ese changes in contemporary 
simulations of water �uxes and daily warm temperature extremes were an improvement in the model’s climatol-
ogy in comparison to observations during the boreal summer, especially over Eurasia39.

We extend our previous work38,39 to examine how an alterantive gs model, constrained by a global synthesis of 
leaf-level measurements, impacts upon future simulations of the likely incidence of heatwaves. We use the “busi-
ness as usual” emission scenario (Representative Concentration Pathway 8.5 (RCP8.5))41 with the ACCESSv1.3 
climate model. To the best of our knowledge, this is the �rst paper to implement a gs model within a global climate 
model focussing on future climate simulations, where the gs model parameters vary per PFT and are derived from 
best available data. We focus speci�cally on Eurasia for several reasons. Firstly, this is the region where the new gs 
scheme improved ACCESS’s climatology of evaporation and warm extremes39. Secondly, a previous evaluation of 
ACCESS’s simulations of extremes has shown large biases in extreme temperatures linked to clouds over North 
America42 and hence we avoid analysing this continent. �irdly, Eurasia was shown to be sensitive to the param-
eterization of gs in earlier ACCESS experiments39 and �nally, work by many researchers19,21,43 hints at this region 
being susceptible to large changes in warm extremes and heatwaves in the future.

Results
We �rst examine changes in warm extremes and surface moisture �uxes as illustrated in Fig. 1 showing the 
di�erence in mean Boreal summer (June-July-August) daily maximum temperature (TMAX, Fig. 1a), warmest 
yearly maximum temperature (TXx, Fig. 1b), and evapotranspiration (ET, Fig. 1c), averaged over 20 year intervals 
(2020–2099), between the new and the default gs scheme (i.e., Experiment minus Control). TMAX increases com-
monly by ∼ 1 °C but by more than 1.5 °C over Western Europe and 2 °C in some regions. �e impact of the new 
gs scheme on TXx is larger, reaching 5 °C over widespread regions. Not surprisingly, there is a strong similarity 
between the patterns of temperature increases, decreases in ET (Fig. 1c), and subsequent decrease in precipitation 
(Fig. 1d), consistent with our previous work39. We note that the di�erence in both TMAX and TXx between models 
is largest during the period 2040–2059 and decreases towards the end of the century. One possible explanation 
for this decrease is that at high leaf temperatures (ca. 30 °C), photosynthesis and stomatal conductance (and thus 
transpiration) are reduced due to photosynthetic inhibition (Fig. S2). �is response to high temperature mini-
mises the di�erences in transpiration between the models that originally resulted from the more conservative 
water use paramaterisation in the new scheme.

Furthermore, the two gs schemes have di�erent sensitivities to vapor pressure de�cit (VPD), with the default 
model showing stronger sensitivity at high VPD (> 3 kPa)38. �us, as dryland expansion accelerates under cli-
mate change44, and the air temperature and VPD increase towards the end of the 21st century, the di�erence in 
predicted transpiration between the two models becomes smaller (Fig. S2 and related text), which potentially 
accounts for the smaller e�ect on TMAX and TXx compared to earlier in the century. Nevertheless, there are still 
large di�erences between the models across most of Eurasia at the end of the century (2 to 4 °C for TXx).

�e increases in TMAX and TXx and a decrease in ET can be clearly seen in the probability density functions 
(PDFs, Fig. 2). �ere is a clear shi� to the right for the PDF of TMAX and TXx, but the limits of the lower and upper 
tails are mostly unchanged. �e new gs scheme does not lead to the emergence of temperatures not previously 
experienced across the region; rather, it leads to a much more frequent occurrence of hot temperatures. Clearly, 
this change is linked to a shi� in the PDF of ET to the le�, such that ET exceeding 4 mm day−1 is rare with the new 
gs scheme, but common using the old scheme.

We next examined the in�uence of the change in gs on heatwave duration, frequency and intensity (see 
Methods for de�nition). �e changes in heatwave duration and frequency were very small, but changes in heat-
wave intensity (HWI) were large (Fig. 3). During the earlier part of the century (2020–2039), there are regions of 
both increases and reductions in HWI indicating that the forcing associated with the change in gs is commonly 
smaller than internal model variability. However, by 2040–2059, the new scheme results in an increase in HWI 
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everywhere, with particularly large increases over western Europe, western Russia and eastern China, where HWI 
increases by 6–7 °C. Similarly to the changes in TMAX and TXx, the magnitude of the increase in HWI decreases 
towards the end of the century, but remains higher than 5 °C in many regions.

Figure 1. Di�erence (Experiment minus Control) in mean Boreal summer (June-July-August) (a) daily 
maximum temperature (TMAX, top row), (b) warmest maximum temperature (TXx, middle row), and  
(c) evapotranspiration (ET, bottom row), and (d) precipitation (mm day−1), averaged over 20 year intervals 
between 2020–2099. Stippling shows regions where di�erences are statistically signi�cant at the 95% level 
using the student’s t-test and the false discovery method for �eld signi�cance. �is �gure was created using 
NCLV6.2.1 (http://www.ncl.ucar.edu/).

Figure 2. Probability distribution function (PDF, %) of monthly mean Boreal summer (June-July-August) 
daily maximum temperature (TMAX, le� plot) warmest maximum temperature (TXx, middle plot), and 
evapotranspiration (ET, right plot) over the period 2020–2099. Results using the new gs are shown in blue (i.e., 
experiment), and the default gs scheme is in black (i.e., the control). �is �gure was created using NCLV6.2.1 
(http://www.ncl.ucar.edu/).

http://www.ncl.ucar.edu/
http://www.ncl.ucar.edu/
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Discussion and Conclusion
�e increase in future (2020–2099) simulated TXx resulting from changing the representation of gs is approxi-
mately 4–5 °C over Western Europe. �is sensitivity to gs can be put into context by recognising that this change 
is equivalent to more than half the increase projected under RCP8.541 (> 1370 ppm CO2 equivalent in 2100) by an 
ensemble of climate models for 2081–210045. �e change is similar to estimates reported for RCP4.541 (~650 ppm 
CO2 equivalent at stabilization a�er 2100) and higher than those reported for RCP2.641 (~490 equivalent before 
2100 and declining) by 2081–210046. It is also similar in magnitude to the estimate reported for the change in 
heatwave intensity under RCP8.547. �e increases in TXx due to the change in the gs model and parameterisation 
are therefore of the size reported for large increases in greenhouse gases.

Over western and northern Europe, the changes in TXx and heatwave intensity due to a change in the rep-
resentation of gs as reported here are similar in terms of both pattern and intensity when compared to studies 
which have linked these changes to projected increases in greenhouse gases46,47. �ere are regions where the 
improved parameterization of gs led to increases in temperature and improved simulations39, particularly between 
around 45–60°N. �e increases predominately occurred across regions de�ned as evergreen needleleaf forest, 
Tundra, and crop PFTs.

�e stomatal parameterisation we used in ACCESS accounts for di�erences in stomatal behaviour between 
PFTs and is supported by a global synthesis of leaf-level stomatal data36, in line with both predictions from opti-
mal stomatal theory27,48 and the leaf and wood economic spectrum49,50. �is empirical basis lends support to the 
robustness of these model simulations, which highlight the role of stomatal conductance in in�uencing future 
heatwaves. Nevertheless, some uncertainties remain. First, the data behind this parameterisation are measured 
at leaf scale; it has not been con�rmed that the di�erences among PFTs observed at this scale also emerge at can-
opy/ecosystem scale. In light of our results, there is an urgent need for future work which tests how the stomatal 
parameterisation (g1, the sensitivity of the conductance to the assimilation rate, see material and methods) scales 
from the leaf to the canopy/ecosystem. Secondly, we have assumed all vegetation to have the same drought sensi-
tivity. Observations suggest that vegetation adapted to di�erent hydroclimates have di�erent sensitivity51, which 
has signi�cant consequences for ecosystem-scale water �ux during drought periods52. A generic parameterisation 
for varying drought sensitivity across di�erent vegetation types is another important priority.

We note a further signi�cant caveat to our study: the ACCESS 1.3b climate model, in common with all climate 
models, has biases in its simulation of extremes42. �e new gs parameterisation resolves some of these biases, 
at both site38 and global scales38,39. We also note that heatwaves are coupled phenomenon linking large-scale 
synoptic conditions, persistence, boundary layer coupling and land processes21. While ACCESS 1.3b is similar 
to other models in its representation of land-atmosphere coupling strength53 it remains a limitation to our study 
that we used a single climate model. We therefore encourage other groups to repeat our experiments to see if they 
can be generalized. Our results are also in�uenced by our use of a prescribed monthly climatology of leaf area 
index (LAI) derived from remote sensing estimates (see Methods). By prescribing the LAI, we are not allowing 
increases in leaf area due to CO2 to reduce any CO2 induced “water savings”. A model inter-comparison study54 
which examined the response to elevated CO2 at two free-Air CO2 enrichment experiments found that even when 
LAI was not prescribed, the land surface component of ACCESS, i.e., CABLE, predicted modest changes in LAI 
(~5% increase). �is result suggests that the use of prescribed LAI is unlikely to a�ect the results shown here for 
ACCESS, but clearly this may vary in other climate models. As both simulations prescribed the same LAI, the 
result is robust to assumptions of leaf area and CO2, and instead highlights the direct impact of the change in gs 
scheme and parameterization. Nevertheless, we plan to investigate the in�uence of prognostic LAI between the 
two schemes in future work.

�e impact of the revised gs scheme on heatwave intensity is confronting, with increases of 5 °C (2040–2059). 
�ese increases are additive to those likely caused by increasing greenhouse gases over the same period47. �e 
magnitude of these changes is large when compared to studies which have investigated the in�uence of soil mois-
ture and vegetation dynamics on heatwaves. For example, lowering soil moisture by 25% for the 2003 European 
heatwaves is reported to lead to a maximum increase of 2 °C20, and other studies report changes of + 0.5 °C by 
increasing LAI55 and ± 1.5 °C due to dynamic phenology56. Our results are inevitably model-speci�c, but if con-
�rmed by other groups, the current systematic under-estimation of future increases in heatwave intensity will 
have signi�cant implications for socio-economic and environmental systems. We note that our revised param-
eterization of gs had no impact on the frequency or duration of heatwaves, since these are primarily driven by 
larger-scale synoptic-scale processes such as blocking highs57 and changing patterns of circulation58. However, 
our results do show that gs strongly a�ects the intensity of heatwaves over Eurasia and is therefore further evi-
dence that land-atmosphere interactions are an important driver of extreme temperature events.

Figure 3. Same as in Fig. 1 except showing the change in heatwave intensity (HWI). �is �gure was created 
using NCLV6.2.1 (http://www.ncl.ucar.edu/).

http://www.ncl.ucar.edu/
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Methods
New representation of stomatal conductance. �e default gs model35 used in ACCESSv1.3b40 has been 
described in detail in the literature37. �e new gs scheme27 follows the form:
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where A is the net assimilation rate (μmol m−2 s−1), Cs (μmol mol−1) and D (kPa) are the CO2 concentration and 
the vapour pressure de�cit at the leaf surface, respectively, and g0 (mol m−2 s−1), and g1 (kPa0.5) are �tted constants 
representing the residual stomatal conductance as A rate reaches zero, and the slope of the sensitivity of gs to A, 
respectively. g0 is zero, leaving one key model parameter, g1, which theoretically represents the marginal carbon 
cost of water27.

�e model was parameterised for the di�erent PFTs (Fig. S1) using a global synthesis of stomatal measure-
ments compiled from 314 species, across 56 �eld sites, covering the Arctic tundra, boreal regions, temperate 
forests and tropical rainforest biomes36. Values are shown in Table S1. �e default gs scheme in CABLE has two 
�tted parameters which only vary by photosynthetic pathway (C3 versus C4) but not by PFT. More details on the 
di�erences between the default and new scheme and the implementation of the new scheme in CABLE can be 
found in our earlier work38,39.

Simulations. �e ACCESS model setup is identical to our previous work in evaluating the new gs model 
under current climate39, except that simulations use sea surface temperatures from a previous fully-coupled sim-
ulation with ACCESS1.3 driven by the RCP8.5 emission scenario41 (o�cial CMIP5 submission). Five ensembles 
were run; each initialised a year apart, with the default gs scheme (i.e., the control), and the new scheme (i.e., the 
experiment). All results shown are for the ensemble mean. We performed statistical signi�cance testing of the dif-
ferences between the experiment and the control using the student’s- t-test at 95% con�dence interval, and tested 
for �eld signi�cance using the false discovery rate method59. Similar to our previous work39, nutrient-limited car-
bon pool dynamics and dynamic phenology were not activated, as the focus was on biophysical e�ects of the new 
gs scheme. Leaf area index (LAI) was prescribed as a monthly climatology derived from MODIS estimates. Results 
are also only shown between 30°W-150°E longitude and 30°N-80°N latitude, corresponding to the region where 
the new gs scheme improved ACCESS’s climatology of ET and warm extremes when compared to observations39.

Heatwave definition. Following the literature on heatwaves (HWs)2, we use thresholds based on percen-
tiles rather than absolute values, with an event de�ned as temperatures exceeding the 90% percentile of daily 
maximum temperatures for at least 3 consecutive days. �e percentiles are computed for each calendar day over 
a moving window over a user-de�ned base period, which is a commonly adopted approach5,43,46,60. To account 
for seasonality, we use a 15-day moving window over a 30-year base period during the �rst 30 years of the simu-
lation (2020–2049) to provide the baseline. We note that most studies use 1961–199046,60; however, although we 
do have data over this period, these were generated using observed prescribed sea surface temperatures39. So, for 
consistency, we use the �rst 30 years of our simulation as baseline. �e percentiles are computed for each of the 5 
ensembles of the control and experiment separately. �e HW-duration is the mean length (in days) of heatwave 
events during summer; the HW-frequency is the number of HW events; the HW-intensity is the mean temper-
ature during the HW events; and the HW-max-intensity is the maximum temperature during the HW events. 
Indices are averaged across the 5 ensembles for the control and experiment and the ensemble mean di�erence is 
shown between the experiment and the control.
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