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Impact of the Sub-Resting 
Membrane Potential on Accurate 
Inference in Spiking Neural 
Networks
Sungmin Hwang  , Jeesoo Chang, Min-Hye Oh, Jong-Ho Lee & Byung-Gook Park*

Spiking neural networks (SNNs) are considered as the third generation of artificial neural networks, 
having the potential to improve the energy efficiency of conventional computing systems. Although the 
firing rate of a spiking neuron is an approximation of rectified linear unit (ReLU) activation in an analog-
valued neural network (ANN), there remain many challenges to be overcome owing to differences 
in operation between ANNs and SNNs. Unlike actual biological and biophysical processes, various 
hardware implementations of neurons and SNNs do not allow the membrane potential to fall below the 

resting potential—in other words, neurons must allow the sub-resting membrane potential. Because 
there occur an excitatory post-synaptic potential (EPSP) as well as an inhibitory post-synaptic potential 
(IPSP), negatively valued synaptic weights in SNNs induce the sub-resting membrane potential at some 

time point. If a membrane is not allowed to hold the sub-resting potential, errors will accumulate over 
time, resulting in inaccurate inference operations. This phenomenon is not observed in ANNs given their 
use of only spatial synaptic integration, but it can cause serious performance degradation in SNNs. In 
this paper, we demonstrate the impact of the sub-resting membrane potential on accurate inference 

operations in SNNs. Moreover, several important considerations for a hardware SNN that can maintain 
the sub-resting membrane potential are discussed. All of the results in this paper indicate that it is 
essential for neurons to allow the sub-resting membrane potential in order to realize high-performance 

SNNs.

Spiking neural network (SNN) has the potential to change the conventional computing paradigm, in which 
analog-valued neural network (ANN) is currently predominant1,2. ANNs and SNNs are analogous in that they 
consist of neurons and synapses connected in a massively parallel fashion, but SNNs are based on more bio-
logically plausible neuron models where a signal is propagated in the form of a spike. Like a biological nervous 
system, therefore, the SNN is an event-driven system that performs computations only when a spike occurs. 
Accordingly, SNNs are considered to be suitable for an energy-e�cient computing system3–6. Numerous stud-
ies have attempted to implement various ANN applications in SNN manner7–10, but there remain a number of 
challenges to be resolved in order to utilize SNNs with practical applications. Rueckauer et al. proposed a neuron 
model with what is termed a ‘reset by subtraction’ operation, during which the membrane potential is reset by 
subtracting the amount of the threshold to prevent a loss of information, which causes a reduction of the �ring 
rate8. An additional issue to be addressed is that the membrane potential of neurons in SNNs must be allowed 
to fall below the resting potential—in other words, neurons must allow the sub-resting membrane potential. 
Most so�ware implementations of SNNs do not limit neural membrane potentials by stipulating that they must 
remain above the resting potential11–13, but there are a few exceptions14. Cao et al. noted that the minimum value 
of the membrane potential is allowed to be the resting potential or should be lower than this level15; however, the 
theoretical background behind this concept was lacking, and no study has analyzed the impact when the lower 
bound of the membrane potential is limited to the resting potential. Speci�cally, given that a number of hardware 
implementations of spiking neurons and SNNs tend to restrict the membrane potential from going below the 
resting potential, it is important explicitly to investigate the impact of the sub-resting membrane potential on 
SNNs16–22. Biological neurons consist of dendrites, the soma, and axons, as shown in Fig. 1a. Dendrites receive 
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signals from pre-synaptic neurons and spatio-temporally integrate them into the soma. When the accumulated 
potential in the soma exceeds the neuron’s threshold, the neuron generates a spike, which is transmitted along the 
axon to the next neuron23,24. �e signal from a pre-synaptic neuron can increase or decrease a membrane poten-
tial of the soma. For example, if neurotransmitters such as acetylcholine (ACh) and glutamate (Glu) released by a 
pre-synaptic signal stimulate ion channels which are permeable to Na+ at the neuromuscular junction, this action 
will depolarize the post-synaptic cell, causing the membrane potential to move toward the threshold. Transient 
depolarization is also known as the excitatory post-synaptic potential (EPSP), as illustrated in Fig. 1b. In contrast, 
if the ion channels stimulated by neurotransmitters, such as gamma-aminobutyric acid (GABA) and glycine 
(Gly), are permeable to Cl−, this action will hyperpolarize the membrane potential from the resting potential. 
Transient hyperpolarization of the membrane potential is termed the inhibitory post-synaptic potential (IPSP), as 
illustrated in Fig. 1c23–25. �erefore, it is plausible on the basis of neurobiological principles that neurons in SNNs 
must allow the sub-resting membrane potential. Speci�cally, there are negatively valued weights as well as posi-
tively valued weights in neural networks; hence, input spikes connected with negatively valued synaptic weights 
can cause the sub-resting membrane potential during temporal synaptic integration, as illustrated in Fig. 1d. �is 

Figure 1. (a) Illustration of a biological neuron. A neuron receives pre-synaptic stimulus from dendrites, 
and synaptic integration occurs in soma. When a membrane voltage exceeds a threshold, a neuron generates 
an action potential, which is transmitted to other neurons through axon. (b,c) Neurotransmitter in synaptic 
vesicle is released by an action potential. Stimulation of transmitter-gated ion channels permeable to Na+ and 
Cl- induces EPSP (depolarization) and IPSP (hyperpolarization), respectively. It is a biologically plausible to 
allow the sub-resting membrane potential from IPSP characteristic. (d) Schematic representation of spiking 
neural networks (SNNs). Input signals are encoded by spike train, and temporal and spatial integration of inputs 
multiplied by synaptic weights occur. During temporal integration, the sub-resting membrane potential can be 
momentarily induced when negatively valued weighted input sum dominates.
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phenomenon is not observed in ANNs because there is only spatial synaptic integration, but it can cause serious 
performance degradation in SNNs. If the membrane potential has a lower bound, the amount that cannot fall 
below the resting potential induces errors over time.

�is is a fundamental issue in relation to SNNs. In particular, its impact has worsened as numerous neural net-
work applications are composed of multiple hidden layers. In this work, we analyze the impact of the sub-resting 
membrane potential on the accurate inference of SNNs. We employ integrate-and-�re neurons (I&F neurons) 
where one has the lower bound of the membrane potential as the resting potential and the other is capable of 
retaining the sub-resting membrane potential. By comparing the inference performance when each neuron is 
applied to SNN applications involving MNIST and CIFAR-10 classi�cations and an autoencoder, the validity 
of allowing the sub-resting membrane potential for SNN neurons is demonstrated. Moreover, considerations 
of interest for implementing a hardware SNN that can hold the sub-resting membrane potential are discussed. 
In the following sections, we set the resting potential to zero for ease of implementation and simplicity. Hence, 
the sub-resting membrane potential is referred as the negative membrane potential (NMP). All simulations are 
conducted using PyTorch ver. 1.0.0.

Theory
In order to model the impact of a negative membrane potential (i.e. sub-resting membrane potential), we start 
with a simple integrate-and-�re neuron model based on previous work8. �e spike generation of i-th neuron in 
layer l at time t can be represented as:
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when the lower bound of the membrane potential is restricted to zero, the error ϵ can occur during the tem-
poral integration process. Summing over and dividing by the total simulation time t for layer =l 1, we obtain:
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Assuming Vth = 1, the average �ring rate r t( )i
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where N t( )i
l  is the total number of spikes generated in the i-th neuron in layer l during time t.

�at is, if we do not allow the negative membrane potential, neurons tend to �re more (E t( )i
1 ) than the correct 

number of spikes ( f t( )
i
1 ). �is becomes worse in deeper neural networks. By recursively calculating Eqs. (1) 

through (6) in layer l, we can determine the average �ring rate ri
l as shown below.
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Here, rmax is the maximum �ring rate that a neuron can generate. It is de�ned as rmax = 1/∆t, where ∆t is the 
minimum timestep.

�e new error caused by limiting the membrane potential to zero, the ��h term in Eq. (7), is added to the 
inputs which were �red incorrectly due to the error in the previous layer, i.e., the fourth term in Eq. (7). �e ��h 
term indicates that the time-averaged error becomes a non-negative constant as the network reaches a steady 
state. �e fourth term re�ects the accumulation of errors through layer-to-layer propagation and can be positive 
or negative depending on the dominant weights. Consequently, even a�er a long inference operation, the error 
caused by the lower bound of the membrane potential persists and accumulates as it propagates through the 
layers.
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Results
Two major reasons why ANNs have achieved great success are their excellent learning algorithms 
(error-backpropagation) and the rectified-linear unit (ReLU) activation function which enables deep lay-
ers to be trained without the vanishing gradient problem26. However, it is difficult to train SNNs using the 
same learning algorithm due to di�erences in signal forms27–29. Although biological learning algorithms (e.g., 
spike-timing-dependent plasticity (STDP) and spike-rate-dependent plasticity (SRDP)) have been widely used to 
train SNNs, only a few studies have achieved a level of performance comparable to that by ANNs30–33. In recent 
studies, many research groups have suggested ANN-to-SNN conversion methods that implement the SNN infer-
ence system by mapping the weights trained in ANNs7–9. �is is possible because the output �ring rate of an I&F 
neuron in a SNN is an approximation of the output activation of ReLU in an ANN. �erefore, the time-integration 
of output spikes can represent values equivalent to ANN activations7–9,15. In this work, we demonstrate the e�ect 
of a negative membrane potential using ANN-to-SNN conversion methods, as these demonstrate performance 
closest to that of an ANN. Nevertheless, the e�ect discussed later is not limited to SNNs implemented in any par-
ticular manner because it is a solution to the fundamental problem of SNNs.

Inference performance. Figure 2a shows the classi�cation accuracy of the SNN according to the simulation 
time for the MNIST dataset where the blue and orange lines correspond to cases with the negative membrane 
potential (NMP) and the zero-lower-bound membrane potential (ZMP), respectively. �e classi�cation accuracy 
of the SNN reaches 99% of the ANN’s accuracy (98.41%) within 20 timesteps for both the NMP and ZMP cases. It 
appears that there is no di�erence between the NMP and ZMP cases, as the accuracy rates in both cases approach 
that of the ANN within a short time. When the inference runs for a longer time (up to the 1,000th timestep in this 
work), however, the accuracy of the ZMP decreases gradually to 99.36% which is below the best accuracy of the 
ZMP (99.42%). On the other hand, for the NMP case, there was only a slight �uctuation around the best accuracy 
of the NMP (99.43%), stemming from the change in the precision of the spike rate with the simulation time8.

NMP can have a greater impact on deeper and more complex networks. �e changes of the classi�cation 
accuracy with the simulation time in the SNN with CIFAR-10 for the NMP and ZMP cases are illustrated in 
Fig. 2b. In the NMP case, the accuracy reaches 99% of the ANN’s accuracy (90.85%) at the 180th timestep, and the 
best accuracy (91.78%) exceeds that of the ANN (91.77%) at the 743rd timestep. In contrast, in the ZMP case, the 
accuracy falls considerably by approximately 2.72%p compared to the NMP case.

Unlike classi�cation problems in which the most frequently �ring neuron of the output layer matters, SNN 
inference without NMP can give rise to more serious problems in applications such as an autoencoder, where the 
activation itself has an important meaning. �e mean-square error (MSE) according to the simulation time is 
illustrated in Fig. 2c for the NMP and ZMP cases using a sample 512 × 512 image. Even a�er a su�cient simula-
tion time (750th timestep), the MSE in the ZMP case is one order of magnitude lower than that in the NMP case. 
�e changes of a sample reconstructed image at the 50th, 100th, 150th, 200th, and 750th timesteps for the NMP and 
ZMP cases are shown in Fig. 2g,h, respectively. For the NMP case, it takes time to converge to the original image 
due to the latency of the SNN, but the output becomes clear at the 750th timestep, as illustrated in Fig. 2g. On the 
other hand, for the ZMP case, the original image is not restored even at the 750th timestep, as shown in Fig. 2h.

We trained the networks with ten random seeds for weight initialization and extracted the classi�cation accu-
racy and MSE for each trial when the performance converges to a steady state. For the MNIST dataset, as shown 
in Fig. 2d, there is little di�erence, but the accuracy of the NMP is slightly higher than that of the NMP in all trials. 
For the classi�cation and autoencoder tasks using the CIFAR-10 dataset, as shown in Fig. 2e,f, respectively, a large 
performance drop is observed with the ZMP in all trials. While the accuracy and MSE of ZMP tend to greatly vary 
with each trial, those of the NMP remains stable continually.

Consequently, it is di�cult to perform an accurate inference operation in SNNs when the NMP is not allowed, 
and the NMP has a clear impact on the characteristics of SNNs regardless of the initial weights during the training 
stage.

Correlation diagrams. In order to demonstrate the e�ect of the NMP in detail, the correlations between 
the ANN activations and the �ring rates of the SNN at the 300th timestep for the NMP and ZMP cases in Fig. 2a 
are shown in Fig. 3a,b, respectively. �e correlation diagram indicates how accurately the �ring rates of the SNN 
reproduce the ANN activations. If all points in the correlation diagram are on line y = x, the SNN �ring rate is 
considered to match the ANN activation perfectly for all neurons. �e �ring rates of the SNN from all neurons 
in the network for 10,000 test samples are extracted by normalizing the total number of spikes with the simula-
tion time, and they are plotted as a function of the ANN activations of the corresponding neurons. As shown in 
Fig. 3a, when the NMP is applied, the �ring rates of the SNN are in good agreement with the ANN activations; 
however, several neurons �re more actively than the corresponding ANN activations in the ZMP case, causing 
the accuracy to drop, as shown in Fig. 3b.

For the same network in Fig. 2b using the CIFAR-10 dataset, the �ring rates of all neurons in the network are 
consistent with the ANN activations in the NMP case, as illustrated in Fig. 3c. On the other hand, in the ZMP 
case, there are large deviations between the �ring rates of the SNN and ANN activations in all layers, as illustrated 
in Fig. 3d. Unlike the correlation diagram of the network using the MNIST dataset, these deviations are due to 
both over- and under-�red neurons compared to the corresponding ANN neurons. Initially, the error by the ZMP 
induces mostly over-�ring for neurons close to the input layer; however, the over-�red spikes propagate to the 
subsequent layers as inputs such that they lead to under-�ring as well as over-�ring depending on the weighted 
sum. �e accuracy drop can be signi�cantly a�ected by a large deviation in this case. �is reveals that the impact 
of not allowing the NMP is much stronger in deeper and more complex networks.

Figure 3e,f show correlation plots of the same SNN autoencoder depicted in Fig. 2c for the NMP and ZMP 
cases at the 750th timestep, respectively. Although a perfect correlation comparable to the classi�cation case is not 
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observed, the �ring rates of the SNN autoencoder correspond well with the ANN activations to some extent for 
the NMP case, as shown in Fig. 3e. Some deviation remains, but it can be reduced, resulting in a line with a slope 
of 1 when the inference process involves a longer simulation time. As indicated in Fig. 3f, however, the number of 
neurons whose �ring rate does not coincide with the ANN activation is dramatically increased and the autoen-
coder does not work at all in the ZMP case.

Hardware configurations. Operating SNNs on a conventional computing system is slower and less energy 
e�cient due to the parameter expansion caused by neuron models as compared to operating ANNs. �us, SNNs 
have advantages in terms of energy e�ciency when implemented in hardware due to their event-driven pro-
cesses3–6. Figure 4a shows an example of a hardware SNN system con�guration. �e input spike generator corre-
sponds to the input layer in ANNs, composed of integrate-and-�re neurons, converting current or voltage signals 
from outside devices, such as image sensors, to time-series spikes whose �ring rate is proportional to the ampli-
tude of the signals. �e input spikes are transferred to the i-th hidden layer, which consists of a neuron array, a 
synapse array, a weight-modulation controller, and a membrane controller. In the synapse array, a pair of synaptic 
devices represents one synaptic weight = −+ −

w w w( ), with which inducing the EPSP and IPSP34,35. The 

Figure 2. Simulation results according to the simulation timestep. (a) In MNIST classi�cation problem, it 
seems that there is no di�erence between the NMP and ZMP cases. However, the accuracy gradually decreases 
in the ZMP case with long simulation time. (b) In CIFAR-10 classi�cation case, there is a large accuracy drop 
with the ZMP case compared with the result of the NMP case. (c) For spiking autoencoder, MSE decreases 
according to the simulation time in both the NMP and ZMP cases, but a large di�erence occurs. (d–f) Changes 
of the classi�cation accuracy and MSE with 10 random seeds for weight initialization extracted at a steady-state. 
�e performance of the NMP case is stable and higher than that of the ZMP case at all the trials. (g,h) Changes 
of a sample image reconstructed by autoencoder at 50th, 100th, 150th, 200th, and 750th timesteps for the NMP and 
ZMP cases. �e reconstructed image for the NMP case is very close to the original image, but the image for the 
ZMP case is not restored.
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weight-modulation controller is responsible for precisely adjusting the weight of the synaptic device in consider-
ation of hardware variations. In order to do this, the controller must monitor the �ring rate of each neuron 
induced by a single weight and modulate its weight based on the �ring information. Upon the arrival of new input 
data, existing information remains in the membrane, which a�ects the inference accuracy. �erefore, it is neces-
sary to initialize the membrane potential in all neurons when a new pattern is applied using the membrane 
controller.

As shown in Fig. 4b, we propose an I&F neuron circuit which di�ers from the conventional I&F neuron 
circuit proposed earlier by the authors in that the newly proposed circuit can maintain the NMP36,37. Generally, 
CMOS I&F neurons are composed of current mirrors, a capacitor, and cascaded inverters. Pre-synaptic inputs 
are integrated in the capacitor through the current mirrors, and the neuron �res when the membrane potential 
(Vm) exceeds the switching voltage of the inverter. It is possible to maintain the NMP by applying a negative power 
supply to the source of an n-type MOSFET consisting of a current mirror connected to inhibitory synapses. 

Figure 3. Correlation diagrams of SNN at the last simulation timestep. (a,c,e) �e �ring rates of SNN are 
well correlated with ANN activations for the ZMP cases of the MNIST, CIFAR-10 classi�ers and autoencoder, 
respectively. (b,d,f) SNNs cannot accurately represent the ANN activations in that there is a large variation 
for the ZMP cases of the MNIST, CIFAR-10 classi�ers and autoencoder, respectively. �at is the cause of the 
performance drop.
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�e amplitude of the negative voltage determines the lower bound of the NMP. �is may not be a problem for 
so�ware-based SNNs unless the lower bound of the NMP is out of the range covered by a 32-bit �oating-point 
number; however, it is physically impossible to implement a negative supply voltage whose magnitude is in�nitely 
large. Accordingly, one important parameter to be examined carefully during the hardware implementation of a 
SNN is the lower bound of the NMP. Figure 4c,d, and 4e show the changes of the classi�cation accuracy according 
to the lower bound of NMP when using the MNIST, SVHN, and CIFAR-10 datasets, respectively, and Fig. 4f indi-
cates the changes of MSE in the autoencoder using the test data with respect to the lower bound of the NMP. In 
Fig. 4c,d, and 4e, the converged accuracy gradually increases when the lower bound of the NMP varies from 0.0 to 
–0.5 in –0.1 steps. Likewise, in the case of the autoencoder, the MSE gradually decreases when the lower bound of 
the NMP decreases from 0.0 to –2.0 in –0.2 steps, as shown in Fig. 4f. �ese results indicate that the lower bound 
of the NMP can be optimized at di�erent values depending on the dataset, network structure, hyper-parameter, 

Figure 4. (a) Schematic of hardware SNN system con�guration. Inputs are encoded by input spike generator, 
and outputs are decoded by output decoder. Hidden layers are composed of synapse and I&F neuron arrays, 
which are controlled by weight modulation controller and membrane controller for accurate weight transfer 
and membrane reset, respectively. (b) Circuit diagram of I&F neuron for hardware implementation of SNN. �e 
membrane potential (Vm) can retain a negative value due to the negative power supply voltage connected to the 
current mirror for the inhibitory synapses. (c–f) Finding the optimal lower bound of the membrane potential. 
�e simulations are conducted with varying the lower bound of the membrane potential for the MNIST, SVHN, 
and CIFAR-10 classi�ers and autoencoder using the test data. �e converged accuracy and MSE are improved as 
the lower bound of the membrane potential decreases.
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and similarly in�uential parameters, also indicating, however, that the optimal lower bound of the membrane 
potential is not a signi�cantly negative value. To have some margin, we propose –2 times the threshold as the 
lower bound of the membrane potential for hardware implementation.

First, when the negative membrane potential is not allowed, neurons having a weighted sum close to zero are 
most a�ected because the membrane potential of the neurons is in a dynamic state that instantaneously goes back 
and forth between a positive and negative value. In addition, when training a neural network, regularization 
techniques are typically used so as to improve the generalization performance. �ey optimize the weight values in 
a direction that decreases as training progresses. ANN-to-SNN conversion methods also have a 
weight-normalization process that considers the balance between the threshold and the weight7,8. With a 
well-tempered weight distribution, therefore, the lower bound of the membrane potential need not be a large 
negative value. Finally, in terms of hardware design, a circuit generating a negative supply voltage is not only dif-
�cult to implement due to its complexity but also requires extra overhead in terms of its area and energy con-
sumption38–41. If the lower bound of the membrane potential is set to a small negative value, the error t v( , )i

l
lb  in 

Eq. (3) increases. In contrast, if the lower bound of the membrane potential is set to a large negative value, the 
error may decrease slightly, but the energy consumption of the system increases in proportion to the square of the 
supply voltage VDD

2 . Summing up all of these points, it appears that that −VDD (approximately –2 times the thresh-
old) can be an appropriate value as the lower bound of the membrane potential.

Conclusion
In this paper, we analyzed the impact of a negative membrane potential (NMP) on accurate inference in spiking 
neural networks. Allowing the NMP during synaptic integration is derived from the principles of biological nerv-
ous systems, where the membrane potential is controlled by the EPSP and IPSP. �e validity of allowing the NMP 
is veri�ed through SNN simulations with classi�cation and an autoencoder, the most commonly used neural 
network applications. In a network that recognizes relatively simple patterns (e.g., MNIST), there is little impact 
of not allowing the NMP; however, a large performance degradation occurs in deep and complex networks when 
the NMP is not allowed. �e performance is degraded according to a comparison of SNN �ring rates with ANN 
activations through correlation diagrams. We also investigated the lower bound of the NMP in relation to main-
taining high performance levels during inference operations, as this must be considered during the hardware 
design process. All of the results here indicate that allowing the NMP is indispensable to realize an SNN inference 
system capable of high performance.

Methods
MNIST dataset. A convolutional neural network (CNN) was trained using the MNIST dataset. �e CNN 
architecture is denoted as 20C3-50C5-FC500-FC10, where nCm indicates n filters of size m × m and FCm 
denotes a fully connected layer with m neurons. For all hidden layers, several nodes randomly dropped out with 
a probability of 0.5 during the training phase42. �e learning rate, denoted as γ, utilized with this dataset had an 
initial value of 1 × 10−3 and was multiplied by a �xed multiplier of 0.1 a�er 60, 120, and 180 epochs. Data aug-
mentation is a commonly used method to expand a training dataset43. For data augmentation, the training data 
were sampled by a random 24 × 24 crop from an image padded by four pixels on each side. Adam with an L2 
weight decay parameter λ of 1 × 10−4 was used as the optimizer44. We trained the network with ten random seeds 
by He initialization45. A�er training, an average classi�cation accuracy of 99.37% for the test data was obtained.

SVHN dataset. For SVHN, the network is characterized as 20C5-40C5-40C5-40C5-100C3-100C3-100C3-
100C3-FC500-FC10, where nCm represents n �lters of size m × m and FCm denotes a fully connected layer with 
m neurons. For all hidden layers, several nodes randomly dropped out with a probability of 0.5 during the train-
ing phase. Stochastic gradient descent as an optimizer was used with a learning rate γ of 3 × 10−5

, an L2 weight 
decay parameter λ of 0.9, and momentum of 0.5. A�er training, a classi�cation accuracy of 95.11% was obtained 
for the test data.

CIFAR-10 dataset. For the CIFAR-10 dataset, we implemented a network consisting solely of convolution 
layers46. In a CNN, max-pooling is the most successful technique for subsampling. Several methods capable of 
converting a max-pooling layer to a SNN have been reported. Typically, lateral inhibition can be used, but this 
method does not guarantee the selection of a node with the maximum �ring rates15. Another approach is to add a 
control gate that allows only the node with the maximum �ring rate to pass, but considering the hardware imple-
mentation, an extra circuit is required for the gating function, which is a disadvantage in terms of area and energy 
consumption8. �us, in this work, subsampling was performed using strided convolution layers, and global aver-
age pooling (GAP) was applied to the output layer46. �e network in this case was 96C3-96C3-96C3(2)-192C3-
192C3-192C3(2)−192C3-192C1-10C1-GAP, where nCm(s) indicates n �lters of size m × m with stride s, and 
dropout with a probability of 0.5 was applied only to the strided convolution layers. �e learning rate γ was ini-
tially 1 × 10−3 and was multiplied by a �xed multiplier of 0.5 a�er 50, 100, and 200 epochs. �e stochastic gradient 
descent (SGD) algorithm was used as the optimizer with momentum of 0.9 and a L2 weight decay parameter λ of 
1 × 10−4. Data augmentation was used based on a random 32 × 32 crop from an image padded by four pixels on 
each side and with horizontal �ipping. A�er training, an average classi�cation accuracy of 91.70% was obtained 
for the test data with ten random initial weights.

Autoencoder. In classi�cation problems where the most frequently �ring neuron of the output layer matters, 
a slight performance drop can occur if the I&F neuron parameters are not optimal. In order to examine the e�ect 
of the proposed methods on more general SNN inference, an autoencoder capable of image compression and 
decompression was trained, as this method is a neural network application in which the actual activation value 
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itself is important. �e encoding part of the autoencoder is expressed as 128C3-256C3(2)-128C3(2)-4C3 and 
was accordingly capable of extracting 256 features. �e decoding part was 128CT3-256CT3(2)-128CT3(2)-3CT3, 
restoring the features to the original images, where nCTm(s) represents n deconvolution �lters of size m × m and 
with stride s. �e learning rate γ was initially 1 × 10−3 and was multiplied by a �xed multiplier of 0.1 a�er 120, 
240, and 360 epochs. CIFAR-10 was used as the training data, and a sample consisting of a 512 × 512 image was 
split into 256 patches for the test data. �e Adam optimizer was used with an L1 regularization parameter λ of 
1 × 10−9.

ANN-to-SNN conversion. All of the aforementioned networks were converted to a SNN using a previously 
reported ANN-to-SNN conversion method7–9,15. �e trained weights were normalized by data-based normaliza-
tion in order to ensure that the ANN output activations match the capacity of the �ring rates of the I&F neurons 
in the SNN7. �e normalization factors can be determined as the maximum output activation or maximum 
weight which prevents a single weight from driving too much of the activation. For GAP, generally, it can be sim-
ply converted to a SNN by connecting pooling �lters with a weight of 

filter size

1

_
, but this can overly suppress the 

�ring rates of the output layer. Like data-based normalization, the GAP weights can be divided by the maximum 
output activation, resulting in an increase of the �ring rate to the maximum allowable �ring rate of an I&F 
neuron.
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