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Abstract

Kinetic parameter estimation in dynamic PET suffers from reduced accuracy 

and precision when parametric maps are estimated using kinetic modelling 

following image reconstruction of the dynamic data. Direct approaches 

to parameter estimation attempt to directly estimate the kinetic parameters 

from the measured dynamic data within a uni�ed framework. Such image 

reconstruction methods have been shown to generate parametric maps 

of improved precision and accuracy in dynamic PET. However, due to the 

interleaving between the tomographic and kinetic modelling steps, any 

tomographic or kinetic modelling errors in certain regions or frames, tend to 

spatially or temporally propagate. This results in biased kinetic parameters 

and thus limits the bene�ts of such direct methods. Kinetic modelling errors 

originate from the inability to construct a common single kinetic model for 

the entire �eld-of-view, and such errors in erroneously modelled regions 

could spatially propagate. Adaptive models have been used within 4D image 

reconstruction to mitigate the problem, though they are complex and dif�cult 

to optimize. Tomographic errors in dynamic imaging on the other hand, 

can originate from involuntary patient motion between dynamic frames, as 

well as from emission/transmission mismatch. Motion correction schemes 

can be used, however, if residual errors exist or motion correction is not 

included in the study protocol, errors in the affected dynamic frames could 
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potentially propagate either temporally, to other frames during the kinetic 

modelling step or spatially, during the tomographic step. In this work, we 

demonstrate a new strategy to minimize such error propagation in direct 

4D image reconstruction, focusing on the tomographic step rather than 

the kinetic modelling step, by incorporating time-of-�ight (TOF) within a 

direct 4D reconstruction framework. Using ever improving TOF resolutions 

(580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image 

reconstruction can substantially prevent kinetic parameter error propagation 

either from erroneous kinetic modelling, inter-frame motion or emission/

transmission mismatch. Furthermore, we demonstrate the bene�ts of TOF in 

parameter estimation when conventional post-reconstruction (3D) methods 

are used and compare the potential improvements to direct 4D methods. 

Further improvements could possibly be achieved in the future by combining 

TOF direct 4D image reconstruction with adaptive kinetic models and inter-

frame motion correction schemes.

Keywords: PET, time-of-�ight, direct 4D reconstruction, parametric imaging

(Some �gures may appear in colour only in the online journal)

1. Introduction

Pharmacokinetic modelling of dynamic PET data allows targeted physiological parameters 

to be derived. Compared to static imaging, dynamic imaging allows the time course of the 

activity distribution to be imaged and subsequently modelled following post-reconstruction 

kinetic analysis. When full compartmental analysis is used, maps of micro-parameters are 

derived, which represent different physiological parameters (Watabe et al 2006). However, 

dynamic data are particularly noisy owning to limited counting statistics and the need for 

increased temporal sampling, thus leading to estimated kinetic parameters of suboptimal 

accuracy and precision. 4D image reconstruction methods have been shown to improve 

parameter precision and accuracy. A number of 4D algorithms exist, with the direct 4D 

methods leading to direct estimation of parameters from the measured data in a uni�ed 

framework (Reader and Verhaeghe 2014). Such algorithms are often speci�c to kinetic 

models and the nonlinear coupling of the kinetic parameters makes them often too com-

plicated and slow to converge (Kamasak et al 2005, Jianhua et al 2012, Rakvongthai et al 

2013). However, a number of algorithms lately attempt to separate the tomographic from 

the kinetic modelling step, thus allowing existing algorithms used for image reconstruc-

tion and kinetic modelling to be used within a 4D reconstruction framework (Wang and 

Qi 2009, 2012, Matthews et al 2010, Angelis et al 2011, Rahmim et al 2014, Gravel and 

Reader 2015). This is often achieved by interleaving the tomographic and kinetic model-

ling steps, which resembles the post-reconstruction methodology but converges to the 4D  

solution. Such approaches are easier to implement and allow a multitude of kinetic models 

to be used, opening the way for reconstructing dynamic data of new tracers using direct 

4D methods. Direct 4D parameter estimation and its bene�ts have been extensively dem-

onstrated in neuro-receptor and generally dynamic brain PET imaging. Nevertheless, so 

far their application to dynamic thoracic and abdominal imaging has been very limited 

(Kotasidis et al 2010, 2012a, Rahmim et al 2010, 2014). There are two issues arising when 

trying to directly estimate kinetic parameters in the body.

F A Kotasidis et alPhys. Med. Biol. 61 (2016) 3443
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Firstly, using a single common kinetic model to describe the kinetics in the entire �eld- 

of-view (FOV) is challenging. In brain imaging, using a single model to describe the under-

lying temporal distribution of a given tracer is usually a valid approximation, with activity 

delivery through the carotid arteries and with a minimal differential delay and dispersion in 

different brain regions (Iida et al 1986, 1988). However, compared to brain imaging which is 

limited to a single organ structure, the multitude of organ structures and regions with diverse 

kinetics encountered in the torso region, makes kinetic modelling in the body challenging 

and its application within a 4D framework particularly complex. Regions with differential 

delay and dispersion (thoracic versus abdominal organs as well as veins carrying the activity 

from the injection site) and activity delivery through routes other than arterial blood (such as 

urinary excretion, bile, as well as venous delivery in the liver), can be located within the FOV. 

In such cases, a common model cannot describe the kinetics within the FOV. Therefore, due 

to the interleaving between tomographic and kinetic modelling steps, the erroneous kinetic 

model �tting in certain regions will result in the propagation of errors in the vicinity of these 

regions. This leads to biased kinetic parameters even in regions where the data are accurately 

modelled. One simple approach to minimize errors is using pre-de�ned masks to specify the 

regions where kinetic modelling can be applied, while using general models (polynomials, 

B-splines, … etc) in the remaining regions (Germino et al 2015a). However, such masks need 

to be de�ned a priori and require manual intervention. A more user independent approach 

that can alleviate the problem is the application of adaptive kinetic models. Such models rely 

on looking at the residuals and attempting to detect any structure which usually arises from 

inappropriate model �tting. When structured residuals are identi�ed, either a different primary 

model (Germino et al 2015b) or alternatively a secondary residual model (Matthews et al 

2012) can be used, to allow a less constrained �t. Residual models can minimize error propa-

gation in well modelled regions when used within 4D reconstruction, yet they are dif�cult to 

implement, have free parameters to optimize and often reduce bias at the expense of increased 

variance due to the complexity of separating structured residuals from noise (Kotasidis  

et al 2014).

Secondly involuntary and voluntary inter/intra-frame bulk body motion (apart from cardiac 

and respiratory) can frequently occur in dynamic body studies (axial slide, shoulder twist, side 

roll, … etc) (Mukherjee et al 2010, Konik et al 2014) especially due to the longer acquisition 

times (>1 h) compared to static imaging (Klein et al 2011). Even in cases when immobili-

zation devices are used, signi�cant motion can occur (Green et al 1994, Beyer et al 2005).  

The situation is more severe in elderly patients and in those presenting with neurological/

psychological disorders (e.g. Tourette syndrome, epilepsy, Parkinson) where the use of rigid 

restraining devices often is not tolerated. Such motion can occur either between frames or 

within frames and can cause signi�cant changes in voxel-wise time-activity curves (TACs), 

especially on the boundaries of regions with signi�cantly different kinetics and high activity 

gradient. Such blurring across frames could subsequently lead to blurring of the kinetic para-

meter maps (Herzog et al 2005, Dinelle et al 2011, Keller et al 2012) or even affect the extrac-

tion of image-derived input functions from the dynamic emission data (Mourik et al 2011). 

Furthermore, patient movement will most likely cause an emission/attenuation mismatch in 

the affected frames, resulting in errors during attenuation correction and scatter estimation 

(Anton-Rodriguez et al 2010, Häggström et al 2014). However, such emission/attenuation 

mismatch could also occur in the absence of any inter/intra-frame motion as patient motion 

could occur in the time interval between the transmission and emission acquisitions while the 

patient remains still during the emission scan. A number of strategies have been devised for 

motion correction (Jin et al 2013). These include online optical motion tracking systems and 

incorporation of motion information in image reconstruction (Bloom�eld et al 2003, Qiao et al 

F A Kotasidis et alPhys. Med. Biol. 61 (2016) 3443
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2006, Rahmim et al 2007, 2008, Dinelle et al 2011, Olesen et al 2012), post-reconstruction 

frame-by-frame realignment methods using either optical systems or image-based algorithms 

(Wardak et al 2010, Costes et al 2009, Mourik et al 2009, Ye et al 2014, Jiao et al 2015), 

as well as more advanced methods leading to simultaneous estimation of motion and kinetic 

parameters (Jiao et al 2014). However, realignment methods can be tracer/activity dependent 

and susceptible to noise (especially in early frames) when image-based methods are used for 

frame-by-frame transformations. They also suffer from problems related to rigid marker �xa-

tion when optical methods are used. On the other hand, reconstruction-based approaches can be 

more computationally intensive and slow to converge, have dif�culties to handle out-of-FOV 

events and are limited by the optical tracking accuracy. Therefore, in cases where no motion 

correction is used or residual errors remain due to the shortcomings of the selected motion 

correction scheme, the bias introduced either due to emission/attenuation mismatch, intra- and 

inter-frame motion blurring, or both, could lead to kinetic parameter error propagation (tem-

poral or spatial) during direct 4D image reconstruction. Emission errors in certain frames and 

regions caused by attenuation mismatch or motion, could possibly propagate to other frames 

during the kinetic modelling step (temporal propagation). Subsequently, the errors in those 

frames could further propagate spatially during the tomographic step (spatial propagation).

Despite the fact that erroneous kinetic modelling, emission/attenuation mismatch and bulk 

motion are different sources of errors, all could potentially result in biased parametric maps if 

direct 4D methods are used, with parameter bias not only restricted to erroneous regions but 

further away from them. Therefore, methods to restrict the spatial propagation of errors in the 

dynamic emission data, which translate in error propagation in the kinetic para meter space, 

are needed.

Time-of-�ight (TOF) imaging has been regaining considerable momentum during the last 

few years owing to continuous hardware and software advancements (Moses 2003, Conti et al 

2005, Surti et al 2006, Conti 2009, 2011a, Surti 2015). TOF image reconstruction results in 

signal-to-noise ratio (SNR) improvements and apparent increase in the effective sensitivity 

(Budinger 1983, Conti et al 2013, Westerwoudt et al 2014). However, one bene�t of TOF 

when used within 3D image reconstruction is the robustness it provides under the presence of 

inconsistent correction data, such as attenuation, scatter and normalization, as demonstrated 

by (Conti 2011b). Data from a point source in image space will only contribute to a spe-

ci�c number of TOF bins according to the TOF probability distribution. Therefore, any errors 

located in a certain region are more likely to be constrained in the vicinity of that region, 

depending on the TOF timing resolution. In an analogous way, in this work, we extrapolate 

this concept from errors encountered in static imaging which can propagate in 3D reconstruc-

tion, to errors appearing in dynamic imaging which propagate or could potentially propagate 

in direct 4D image reconstruction. We envisage that TOF-based direct 4D image reconstruc-

tion could potentially be more robust in the presence of errors arising in dynamic imaging, 

such as application of erroneous kinetic model �tting and inter-frame bulk body motion. The 

incentive behind such hypothesis is similar to the 3D case. It is based on the fact that the spa-

tial constraints imposed by TOF information could restrict the propagation of kinetic model-

induced or motion-induced errors between the tomographic steps within the 4D reconstruction 

and improve upon kinetic parameters in regions consistent with the TOF information.

As such, incorporating TOF information within an existing direct 4D EM framework, we 

develop a direct 4D TOF image reconstruction algorithm and apply it to simulated 4D dynamic 

[15O]H2O TOF datasets to investigate kinetic model induced error propagation. Kinetic para-

meters are estimated using direct 4D TOF image reconstruction at different TOF resolutions 

as well as conventional non-TOF direct 4D reconstruction and 3D post-reconstruction kinetic 

analysis. Furthermore, we investigate the effect of bulk body motion on kinetic parameter 

F A Kotasidis et alPhys. Med. Biol. 61 (2016) 3443
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estimation and its implication in parameter estimation when direct 4D image reconstruction is 

used. The effects of inter-frame blurring and emission/attenuation mismatch are demonstrated 

separately and together.

2. Methods

2.1. Simulated dynamic datasets

To investigate the impact of inconsistencies during dynamic imaging, on the kinetic para-

meters, when these are directly estimated from the measured dynamic data, fully 4D dynamic 

datasets were simulated based on [15O]H2O kinetics. TACs represent a 3 parameter 1-tissue 

model (K1, k2), including a blood volume component (bv). A 4D digital body phantom was 

used, comprising of 8 major internal body structures. The anatomical information covering the 

thoracic and upper abdominal area were generated using MRI-derived data to segment the dif-

ferent regions (soft tissue, bones, liver and lungs). The myocardium and heart ventricles were 

segmented using an ECG triggered MRI scan, while 9 tumours of different sizes where manu-

ally inserted in the liver and lung regions (Tsoumpas et al 2011, Buerger et al 2012). In each 

region, kinetic parameters from a typical [15O]H2O scan were assigned (table 1). The dynamic 

datasets simulated a typical 6 min scan with 28 time frames (14  ×  5 s, 5  ×  10 s, 3  ×  20 s, 

6  ×  30 s), and realistic as well as diverse kinetics. Based on the segmented organs that were 

used to generate the anatomical phantom, an attenuation map was also generated using a 4 

region classi�cation of the phantom (air: 0 cm−1, lung: 0.03 cm−1, soft tissue: 0.099 cm−1, and 

bone: 0.15 cm−1).

2.1.1. Inconsistent dynamic data from diverse kinetics. To investigate the impact of TOF on 

directly estimated kinetic parameters in the presence of diverse kinetics in the FOV, differ-

ent physiological responses were assigned to the different organ regions, simulating possible 

discrepancies between the underlying kinetics and the common kinetic model used during 

parameter estimation (table 2).

All organ regions with the exception of the liver and the heart ventricles, shared a common 

input function (IF) using a single input model. As such, the counts within image voxels in 

these regions were proportional to:

( ) ( )( )
⊗ + ⋅

λ− + ⋅fC t bv C te
k t

A A
2 (1)

( )C tA  is the arterial input function activity concentration over time, f  is perfusion ( =f K1 

for freely diffusable tracers, such as [15O]H2O, where permeability surface area product is 

high and the extraction is 100% under normal physiological conditions), k2 is the ef�ux rate, 

bv is the fractional blood volume and λ is the decay constant of [15−O] (λ  =  0.00 567 s−1). 

Table 1. Simulated kinetic parameters used for the [15O]H2O 1 tissue model.

K1 (ml/s/ml) k2 (ml/s/ml) bv (ml/ml) Vd (ml/ml)

Lungs 0.0008 0.0014 0.06 0.6

Bone 0.0018 0.0027 0.00 0.69

Soft tissue 0.0005 0.0042 0.00 0.12

Ventricles 0.0000 0.0000 1.00 0.00

Myocardium 0.0167 0.0183 0.15 0.91

Tumors 0.0098 0.0161 0.08 0.61

Liver 0.0117 0.0119 0.05 0.98

F A Kotasidis et alPhys. Med. Biol. 61 (2016) 3443
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To introduce diverse kinetics in the FOV, an input function with a differential delay and dis-

persion and representing earlier tracer arrival time, was used to generate the TAC in the heart 

ventricles (delay  =  −8 s, dispersion coef�cient  =  0.09) compared to the IF used to generate 

the TACs in the remaining regions (considering the tracer’s arrival time in other regions as 

the reference zero time point). Furthermore, a dual input model was used in the liver (hepatic 

artery  +  portal vein) (Kudomi et al 2008) compared to other regions (single input model). 

To simulate the portal vein, the gastrointestinal compartment was introduced in the simula-

tion, which is a single compartment model between arterial blood and the gut compartment  

(�gure 1). No delay between the arterial and portal input function was assumed. As such, the 

counts within image voxels in the liver were proportional to:

( ( ) ( )) ( )( )
+ ⊗ + ⋅

λ− + ⋅f C t f C t bv C te k t
a A p P a

2 (2)

with

( ) ( )= ⊗
− ⋅

C t k C t e k t
p g A

g (3)

being the gut compartment with diffusion rate kg  =  0.5 min−1 and

( )
( ) ( ) ( )=

+

= +k
f f

C t r C t r C t
Vd

,2
a p

a a A p P (4)

( ) ( )
=

+
=

+
r

f

f f
r

f

f f
,a

a

a p

p
p

a p

 (5)

where Vd is the volume of distribution, f
a
 and fp are the arterial and portal vein blood �ows 

while ra and rp are the arterial and portal vein blood �ow to total hepatic �ow ratios, respectively.

2.1.2. Inconsistent dynamic data from emission–transmission mismatch. To investigate the 

impact of TOF on directly, as well as indirectly estimated kinetic parameters in the presence 

of emission–transmission mismatch, a relative shift was introduced between the simulated 

dynamic emission data and the corresponding attenuation map. Thus the dataset simulated the 

situation of the patient moving between the emission and transmission scans, but remaining 

motion free for the duration of the emission scan. All 28 time frames were rotated and trans-

lated (Vinci software, Max-Planck-Institute) based on realistic situations, representing rigid 

bulk body motion (translations: (x  =  2 mm, y  =  3.5 mm, z  =  6.5 mm), rotations: (ϑx  =  1.3°, 

Table 2. Input function supply and delay parameters used for the kinetic model during 
generation of the dynamic dataset and parameter estimation within the employed digital 
phantom. Inconsistencies between the model and the data are marked in bold.

Organs

Simulated kinetics Kinetic modeling

MatchInput Delay Input Delay

Liver Dual No Single No No

Myocardium Single No Single No Yes

Liver tumors Single No Single No Yes

Lungs Single No Single No Yes

Lung tumors Single No Single No Yes

Soft tissue Single No Single No Yes

Bones Single No Single No Yes

Heart ventricles Single Yes Single No No

F A Kotasidis et alPhys. Med. Biol. 61 (2016) 3443
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ϑy  =  2°, ϑz  =  1.3°]. Figure 2 shows the attenuation maps at the original position as well as 

the attenuation mismatch between the 2 positions (before and after patient movement).

2.1.3. Inconsistent dynamic data from inter-frame motion. To investigate the impact of TOF 

on estimated kinetic parameters in the presence of inter-frame motion, an inter-frame patient 

movement was simulated between the 11th and 21st frames. The simulated rigid bulk body 

motion (translations: (x  =  2 mm, y  =  3.5 mm, z  =  6.5 mm), rotations: (ϑx  =  1.3°, ϑy  =  2°, 

ϑz  =  1.3°) corresponded to the patient moving to a new position at the 11th frame and return-

ing back in the original position after the 21st frame. No intra-frame motion was simulated. 

The effect of inter-frame blurring and emission/attenuation mismatch were evaluated sepa-

rately and together. First, the motion affected data were reconstructed using the correct attenu-

ation maps corresponding to each frame and simulating only the emission blurring between 

frames. Secondly, the emission/attenuation mismatch was also considered as well, therefore 

using a common attenuation map for all temporal frames, corresponding to the original posi-

tion. The 3 simulated scenarios regarding inter-frame motion and emission/attenuation mis-

match are depicted in �gure 3.

2.2. Projection data

A virtual TOF PET scanner corresponding to the geometry con�guration of the mCT PET/

CT scanner (Siemens Healthcare, Erlangen), was used to generate the dynamic TOF datasets 

(span 11, 7 segments, maximum ring difference of 38, angular mash factor of 2) based on 

an in-house TOF projection simulator. Dynamic TOF projection data were generated at 4 

different TOF resolutions using a TOF kernel with 580 ps (13 TOF bins), 440 ps (17 TOF 

bins), 300 ps (27 TOF bins) and 160 ps (49 TOF bins) full width at half maximum (FWHM),  

as well as non-TOF data (radial_bins (400)  ×  angles (200)  ×  sinogram planes (303)  ×  dynamic 

frames (28)  ×  TOF bins (1, 13, 17, 27 or 49)). To isolate the impact of TOF on bias propa-

gation, only noiseless datasets were considered, as TOF in�uences the SNR and as such, it 

would be dif�cult to decompose any bias due to error propagation from the noise induced bias.

2.3. Image reconstruction and kinetic modelling

Kinetic parameter estimation from the simulated dynamic datasets was performed using 

both traditional 3D image reconstruction followed by kinetic modelling, as well as direct 

4D image reconstruction, without as well as with TOF at different TOF resolutions (580 ps, 

Figure 1. Schematic diagram showing the dual input model with both the hepatic artery 
and portal vein supplying blood to the liver. The venous blood in the portal vein is 
drained from the gastro-intestine organs with the blue arrows representing equilibration 
between tissue and venous concentrations.

F A Kotasidis et alPhys. Med. Biol. 61 (2016) 3443
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440 ps, 300 ps, and 160 ps). The direct 4D TOF reconstruction was based on our conventional 

EM-based direct 4D framework, which allows separation between the tomographic and kinetic 

modelling steps. This algorithm, is based on converting the spatiotemporal 4D maximum like-

lihood problem in projection space,

( ( ) )∑α = −
α

m y yarg max log
il

il il il
opt

e (6)

( )∑ ∑ αλ η η= + = +y p p fil

j

ij jl il

j

ij jl il (7)

where during the lth time frame and in the ith data bin, mil are the PET measured data, yil the 

mean number of events, η
il
 the mean number of erroneous events, pij the probability system 

matrix of a photon emitted from the jth voxel and being detected in the ith projection bin 

and λjl is the number of emissions from the jth voxel in the image during the lth time frame 

described by a kinetic model f jl with parameter vector α; into a maximum likelihood problem 

in image space

( ) ( ( ( )) ( ))( ) ( )
∑∑ ∑α α αλ= −

α

+ +p f farg max logk

j i

ij

l
jl
k

jl jl
1 1

e (8)

where

( )

( )

( )

( )

( )∑
∑
∑

α

α

λ
η

=
+

+

′

′ ′

f

p

p

p f

y
jl
k jl

k

i

ij i

ij il

j

ij j l
k

il

1

 (9)

Using a one step late approach, equation (8) can be approximated with a weighted least square 

problem

( )( ( ))( ) ( )
∑α α αλ= −

α

+ +w farg mink

jl

jl jl

k
jl

1 1

2

1 2

 (10)

where the weights are given by

( )
( )

α

α

=w
f

1
jl

jl
 (11)

with k being the number of iterations.

Figure 2. The emission/attenuation mismatch was simulated by introducing rotations 
and translations on the emission data. The attenuation map is shown along with the bias 
introduced in the attenuation map used during image reconstruction due to motion-
induced emission–transmission mismatch.
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Figure 3. Three individual cases were simulated to investigate the effects of bulk body 
motion. First, the case of a mismatch between the emission and attenuation maps due to 
patient movement after the transmission scan but without motion during the emission 
scan (a). Second, the case of a patient moving between frames 11–21 (55–160 s) but 
using the correct attenuation map for each frame, therefore isolating the effect of inter-
frame blurring only (b). Third, having the same situation as in the second case but 
including also the emission/attenuation mismatch by using a single attenuation map 
for the entire dynamic scan, therefore not only having an inter-frame blurring in frames 
11–21 but also a mismatched attenuation (c).

F A Kotasidis et alPhys. Med. Biol. 61 (2016) 3443
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The algorithm proceeds by alternating between the tomographic EM image update (equa-

tion (9)) and the voxelwise image-based least squares kinetic modelling steps (equation (10)).

Extending this algorithm to direct 4D TOF image reconstruction was done by incorpo-

rating TOF projectors into the tomographic step. TOF projectors were implemented using 

pre-computed non-symmetric TOF weighting coef�cients taking into account the geometric 

symmetries in the scanner during their application. Therefore the TOF equivalent of equa-

tion (9) can be expressed as:

( )

( )

( )

( )

( )∑∑
∑∑

∑∑

α

α

λ
η

=
+

+

′

′

f

z

z

z f

y
jl
k jl

k

i t

ijt i t

ijt itl

j t

ijt j l
k

itl

1

 (12)

where y
itl

 is the expected number of events in the ith projection bin, tth time bin and lth tem-

poral frame ( = ∑y yil t itl), zijt is the probability of an event emitted from the jth voxel being 

detected in tth time bin along the ith LOR and η
itl

 is the mean number of erroneous events 

in the ith projection bin, tth time bin and lth temporal frame including randoms and scat-

tered contributions. Random events are TOF independent and equally distributed amongst 

time bins, while scattered events have a TOF dependence. The elements of the TOF weighting 

coef�cient matrix are calculated using a Gaussian modelled TOF kernel, with the probability 

of an event detected at the tth TOF bin, given a time difference δ, calculated as the de�nite 

integral of the TOF kernel between the time boundaries of the tth TOF bin and centred at δ 

time point (Mehranian et al 2016). TOF 3D reconstruction resembles the tomographic part of 

the direct 4D TOF reconstruction (equation (12)) with the difference being that the previous 

image estimate is not the �tted image following kinetic modelling and described by a kinetic 

model f jl with parameter vector α, but the previous tomographic image estimate.
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Both 3D and 4D image reconstructions were OSEM-based (21-subsets and up to 16 itera-

tions), while no scatter and randoms contributions were taken into account.

For the kinetic model, we used a 3 parameter, 1-tissue single arterial input model includ-

ing a blood volume term, with no delay and dispersion in the IF. The generalized linear least 

square (GLLS) method was used to generate parametric maps while the linear least square 

(LLS) method was used to initialize the kinetic parameters for GLLS (2 iterations) (Feng et al 

1996).

3. Results

3.1. Inconsistent dynamic data from diverse kinetics

In regions where the data are inconsistent with the model, such as the heart ventricles and 

liver, TACs appear biased (�gure 4) when kinetic analysis is performed following traditional 

3D reconstruction. In the remaining regions, where the dynamic data are consistent with the 

kinetic model, TACs appear to have almost converged to the real simulated TACs. When direct 

4D reconstruction is used, the TACs in those regions appear biased due to the additional errors 

propagated between the tomographic and kinetic modelling steps. This is apparent when look-

ing at the TAC from the myocardium (�gure 4(A)).
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The activity in the heart ventricles arrives earlier and less dispersed compared to the rest of 

the regions, therefore causing the activity in the myocardium to arrive earlier and be less dis-

persed as well. Similar propagation of errors is seen in the lung TAC which is mostly affected 

by the liver bias. When TOF information is used within 4D reconstruction, the TACs in these 

well modelled regions appear to get closer to the simulated TACs and similar to the post-

reconstruction analysis. In the lungs, the improvements are correlated with the ever improving 

TOF resolution. However, improvements in the myocardium, are only noticeable at 160 ps as 

the myocardium is relatively small and surrounded by the erroneously modelled ventricles. 

Therefore, high TOF resolutions are needed to start decoupling the in�uence of voxels from 

the ventricles into the myocardium. In the regions, where the data are inconsistent with the 

model, all reconstruction methods are matched since TOF doesn’t appear to impact upon the 

errors, but only on their propagation.

Figure 4. Time-activity curves (TACs) from the entire myocardium (A) and lungs (B) 
regions, representing regions for which the dynamic data are consistent with the model 
used for parameter estimation and from the liver (C), representing a region for which the 
data are inconsistent with the kinetic model. TACs are plotted using post-reconstruction 
kinetic analysis, direct 4D reconstruction and direct 4D TOF reconstruction at improving 
TOF resolutions (FWHM). The true simulated TACs are also shown for comparison. 
Both the myocardium and lung TACs are affected by error propagation in direct 4D 
reconstruction, with the inclusion of TOF gradually reducing propagation and matching 
the reconstructed to the simulated TACs as well as those following post-reconstruction 
analysis. In the liver, being an erroneously modelled region, all methods match since 
TOF appears not to improve upon the actual error but only its propagation.
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Parametric images of K1, Vd and blood volume were estimated using both traditional post-

reconstruction kinetic analysis and direct 4D reconstruction and are shown along with the 

corresp onding bias maps in �gure 5. When maps are estimated with post-reconstruction anal-

ysis, the erroneous kinetic model in the liver and heart ventricles introduced parameter bias 

in these regions of up to 90%. However, the errors are restricted to these 2 regions, which is 

in contrast with what is observed when the parameters are directly estimated from 4D recon-

struction (also seen from the TACs). Errors spatially propagate to other regions for which the 

model is consistent with the measured data and regional errors in the lungs, myocardium and 

soft tissue of up to 50% can be seen. The severity of this bias appears to be spatially dependent 

and more pronounced closer to the regions where the data are not consistent with the kinetic 

model. By using TOF information within 4D reconstruction, errors appears to be reduced even 

at 580 ps, while at 160 ps the observed bias propagation is restricted close to the boundaries 

of the erroneously modelled regions. This is more pronounced when looking at the soft tissue 

in the boundaries of the heart ventricles, while the myocardium is still biased even at 160 ps 

due to its vicinity to the ventricles (being erroneously modelled). These improvements demon-

strated at improving TOF resolutions, persevere at higher number of iterations despite the fact 

that all the parameter estimation methods have different convergence rates. This can be seen 

in �gure 6 where the overall bias in the phantom for K1, Vd and blood volume is plotted for 

all parameter estimation methods and for increasing number of image updates (8 iter, 21 sub-

sets). As expected, TOF-based 4D reconstructions converge faster, with the rate increasing at 

higher TOF resolutions. Furthermore, the observed bias reduction appears to be non-linearly 

related to the TOF resolution improvements. The bias reduction in all parameters going from  

300 ps to 160 ps appears consistently higher (K1 ~ 3%, Vd ~ 5%, bv ~ 5%) than going from 

580 ps to 440 ps (K1 ~ 1%, Vd ~ 2%, bv ~ 2%), despite TOF resolution improving by 140 ps in 

both cases, respectively. In addition, it can also be seen that despite an almost 10% bias reduc-

tion between non-TOF and TOF (160 ps) 4D reconstructions, the residual bias still persists 

compared to the post-reconstruction analysis. Nevertheless, additional K1 and Vd parameter 

bias from propagation is reduced to less than 4% compared to ~15% and 25%, respectively, 

when TOF is not used.

3.2. Inconsistent dynamic data from emission–transmission mismatch

Inconsistencies between the kinetic model and the dynamic data can cause errors that prop-

agate in 4D reconstruction as shown previously. However, other inconsistencies such as inter-

frame motion could potentially cause similar error propagation. To investigate �rst the effect 

of emission/attenuation mismatch separately from inter-frame emission blurring, patient 

movement was simulated between the transmission and dynamic emission scan but without 

any motion during the emission scan. In �gure 7(A), TACs are plotted for post-reconstruction 

analysis and direct 4D reconstruction without and with TOF at ever improving TOF resolu-

tions. Both 3D as well as direct 4D reconstructed TACs appear to be negatively biased by up 

to 35% across all frames. However, incorporating TOF, a gradual decrease in bias can be seen 

going towards improved TOF resolutions. The bias is reduced to ~17% at 580 ps, with further 

reduction to less than 7% at 160 ps. Comparing the 3D against the direct 4D reconstruction, 

a difference of up to 4% was seen when TOF is not used (especially in the late frames), with 

the 2 methods giving almost identical TACs at the highest TOF resolution (160 ps). Parametric 

maps are shown in �gure 8 for both 3D and direct 4D methods, whereas the corresponding bias 

maps are displayed in �gure 9. Similar to what has been observed on the TAC plots (�gure 7),  

all parameters appear signi�cantly biased in both parameter estimation methods and in the 

absence of TOF information. The bias appears to be higher in the boundaries of regions with 
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high attenuation gradient; however, the bias is present in other regions as well. Inclusion of 

TOF information appears to gradually reduce the bias caused by attenuation errors throughout 

the body. Using direct 4D reconstruction, similar improvements can be seen at improving 

TOF resolutions. However, quantitative analysis on the bias maps between post reconstruction 

analysis and direct 4D reconstruction revealed additional parameter bias when parameters are 

directly estimated. In �gure 10, parameter bias in the lungs is plotted as a function of image 

updates for all parameter estimation methods. In the absence of TOF, parameters estimated 

directly are consistently more biased (K1 ~ 60%, Vd ~ 40%, bv ~ 36%) compared to conven-

tional post-reconstruction analysis (K1 ~ 58%, Vd ~ 37%, bv ~ 35%) across image updates. 

Such difference could be attributed to attenuation errors, which are already spatially propagat-

ing within 3D reconstruction, propagating further within 4D reconstruction. Including TOF 

and going towards better TOF resolutions, the errors due to propagation in 4D reconstruc-

tion are consistently and gradually reduced to less than 0.5% across all parameters at 160 ps. 

Absolute bias also appeared to be reducing from ~60% to  <20% in K1, from ~40% to ~15% 

in Vd and from ~35% to  <15% in blood volume at 160 ps FWHM.

Figure 5. True (a-i) and estimated kinetics parameter maps using post-reconstruction 
(a-ii), non-TOF direct 4D (a-iii) and TOF direct 4D ((a-iv)–(a-vii)), parameter 
estimation methods. Using post-reconstruction kinetic analysis, the inconsistencies 
introduced in the liver and heart ventricles result in bias in those 2 regions. Using direct 
4D reconstruction, these errors spatially propagate as expected to other regions. By 
incorporating TOF information, a gradual bias reduction is observed with errors almost 
suppressed in the immediate vicinity of those 2 erroneously modelled regions (liver 
and ventricles), resembling the post-reconstruction approach. The corresponding bias 
parametric maps are shown for the post-reconstruction (b-i), non-TOF direct 4D (b-ii) 
and TOF direct 4D ((b-iii)–(b-vi)), parameter estimation methods.
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3.3. Inconsistent dynamic data from inter-frame motion

To evaluate the impact of inter-frame bulk body motion on kinetic parameters, as well as 

the in�uence of TOF on them, 2 different cases were considered in order to decompose the 

effect of the emission blurring between frames from the emission/attenuation mismatch. The 

�rst case simulates the effect of inter-frame blurring alone, with the patient moving between 

frames 11–21 but using the corresponding attenuation map in each frame, while the second 

case considers additionally the emission/attenuation mismatch based on using a single attenu-

ation map for all time frames. TACs from the lung region are shown in �gures 7(B)–(C) for 

both cases considered. When only inter-frame motion is simulated (�gure 7(B), a sudden dip 

in the TACs is seen due to the blurring of activity between the lungs and the soft tissue mainly. 

TACs from the 3D reconstructed dynamic data appear to match irrespective of including TOF 

in the reconstruction, since the individually reconstructed frames have no errors as the correct 

attenuation maps are used. Therefore, as the only error is the relative motion between frames 

11–21 and the rest of the frames, TOF has no in�uence on the derived TACs. However, using 

direct 4D reconstruction, late frames (beyond the 21st frame)appear biased, since the inter-

leaved tomographic and kinetic modelling steps appear to affect activity in frames for which 

Figure 6. Graphs of K1 (A), Vd (B) and blood volume (C) percentage bias (over 
all voxels) in the simulated phantom as a function of image updates (8 iterations,  
21 subsets) using post-reconstruction kinetic analysis, direct 4D image reconstruction 
as well as TOF direct 4D image reconstruction at improving TOF resolutions (580 ps, 
440 ps, 300 ps and 160 ps FWHM). Parameter bias at improving TOF resolutions is 
converging faster; however, bias improvements are sustained even at increased number 
of image updates.
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no motion was simulated. Inclusion of TOF information with progressively improving TOF 

resolutions, gradually reduced the bias in these late frames. These �ndings were con�rmed 

following kinetic modelling of the dynamic data. Figure 11 shows the estimated parametric 

maps for both post-reconstruction analysis and direct 4D reconstruction methods while in  

�gure 12 the corresponding bias maps are displayed for improving TOF resolutions. Parameter 

bias with conventional post-reconstruction analysis is matched across all TOF resolutions 

and identical to non-TOF post-reconstruction analysis. Quantitative analysis for a lung ROI  

(�gure 13) con�rms that TOF has no in�uence since there is no temporal/spatial propagation 

of motion-induced inter-frame errors, while activity within each frame is correctly estimated 

in the absence of attenuation-induced errors. The bias converges at a different rate but almost 

reaches a plateau for all reconstructions (K1 ~ 16.5%, Vd ~ 52%, bv ~ 38%) subject to using 

a suf�cient number of iterations.

Furthermore, looking at the bias maps (�gure 12), errors are localized in the bounda-

ries of regions where TACs were blurred from inter-frame motion, due to activity gradients 

Figure 7. Time-activity curves (TACs) from the entire lung region after (A) introducing 
an emission/attenuation mismatch, (B) introducing an inter-frame motion between 
frames 11th–21st but using the correct attenuation maps in each frame and (C) �nally 
introducing both inter-frame motion and emission/attenuation mismatch. TACs are 
shown for conventional post-reconstruction kinetic analysis and direct 4D reconstruction 
both without as well as TOF at improving TOF resolutions (580 ps, 440 ps, 300 ps and 
160 ps).
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Figure 8. True (i) and estimated kinetics parameter maps without (ii) and with TOF 
at improving TOF resolutions (iii–vi) for both post-reconstruction kinetic analysis  
(A) and direct 4D image reconstruction (B) methods simulating the case of motion 
between emission/transmission causing an emission/attenuation mismatch.

Figure 9. Bias parametric maps estimated without (i) and with TOF at improving 
TOF resolutions (ii–v) for both post-reconstruction kinetic analysis (A) and direct 4D 
image reconstruction (B) methods simulating the case of motion between emission/
transmission causing an emission/attenuation mismatch.
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between regions. Positive and negative bias occurs depending on the relative activity differ-

ences between adjacent regions. However, since within each region the activity is simulated 

as being constant, inter-frame motion doesn’t introduce blurring in the TACs further away 

from the boundaries and therefore kinetic parameter bias is almost zero. When parameters are 

estimated directly, what becomes immediately apparent is an increase in bias, which extends 

not only in the boundary regions but in other regions for which the TACs should be unaffected 

by the inter-frame motion (seen in the post-reconstruction parameter bias maps).

Errors through propagation appear to be more severe in Vd, followed by errors in K1 and 

blood volume. Quantitative analysis in the lungs region (�gure 13) con�rms this propagation 

of errors, with K1, Vd and blood volume bias in non-TOF 4D reconstruction up to ~24%, 

~76% and ~42%, respectively (compared to ~16.5%, ~52% and ~38% in post-reconstruction 

analysis, respectively). However, in contrast to the post-reconstruction analysis, inclusion of 

TOF appears to improve bias, with improvements again more noticeable at improving TOF 

resolutions. K1 and Vd bias in the lungs reduces by  >2% with blood volume improvements 

being minimal (<0.5%). The impact of TOF appears to be similar to the one seen in �gure 6, 

Figure 10. Graphs of (A) K1, (B) Vd and (C) blood volume percentage bias due to 
motion between emission–transmission causing an emission/attenuation mismatch. 
The bias is shown for the lungs region as a function of image updates (16 iterations,  
21 subsets) using post-reconstruction kinetic analysis and direct 4D image reconstruction 
without as well as with TOF at improving TOF resolutions (580 ps, 440 ps, 300 ps and 
160 ps FWHM).
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Figure 11. True (i) and estimated kinetics parameter maps without (ii) and with TOF 
at improving TOF resolutions (iii–vi) both for post-reconstruction kinetic analysis  
(A) and direct 4D image reconstruction (B) methods simulating the case of activity 
blurring alone due to inter-frame motion between 11th–21st frames.

Figure 12. Bias parametric maps estimated without (i) and with TOF at improving TOF 
resolutions (ii–v) both for post-reconstruction kinetic analysis (A) and direct 4D image 
reconstruction (B) methods simulating the case of activity blurring alone due to inter-
frame motion between 11th–21st frames.
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with the inclusion of the TOF kernel reducing the propagation of errors in direct 4D recon-

struction, though attributed to a different source of error.

It has to be emphasized that since each region in the phantom has uniform activity, inter-

frame motion will result in inter-frame blurring only in the boundaries of each region/organ. 

Therefore regional analysis taking into account the entire organ region will result in an aver-

age error between the blurred boundaries and the rest of the organ/region for which there is 

no apparent change in the activity across frames (other than the normal tracer’s distribution). 

This is the reason why TOF appears to reduce bias in the 4D reconstructed data. The errors 

existing in the boundaries of regions due to inter-frame motion and which propagate tempo-

rally during the kinetic modelling step in 4D reconstruction, also propagate spatially during 

the tomographic step. Therefore, the apparent bias reduction achieved with TOF doesn’t affect 

the errors in the boundary of regions caused by inter-frame motion, which are unavoidable. 

However, it restricts their spatial propagation within each frame to a certain extent and within 

the limits of TOF resolution.

Introducing the effects of emission/attenuation mismatch on top of the inter-frame blur-

ring, causes additional errors and further propagation of these errors. TACs from the lungs 

Figure 13. Graphs of K1 (A), Vd (B) and blood volume (C) percentage bias from 
activity blurring due to inter-frame motion between 11th–21st frames. The bias is 
shown for the lungs region as a function of image updates (16 iterations, 21 subsets) 
using post-reconstruction kinetic analysis and direct 4D image reconstruction without 
and with TOF at improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps FWHM).

F A Kotasidis et alPhys. Med. Biol. 61 (2016) 3443



3462

Figure 14. True (i) and estimated kinetics parameter maps without (ii) and with TOF at 
improving TOF resolutions (iii–vi) for both post-reconstruction kinetic analysis (A) and 
direct 4-D image reconstruction (B) methods simulating the case of activity blurring, 
as well as emission/attenuation mismatch due to inter-frame motion between 11th–21st 
frames.

Figure 15. Bias parametric maps estimated without (i) and with TOF at improving TOF 
resolutions (ii-v) for both post-reconstruction kinetic analysis (A) and direct 4-D image 
reconstruction (B) methods simulating the case of activity blurring, as well as emission/
attenuation mismatch due to inter-frame motion between 11th–21st frames.
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are shown again in �gure 7(C) for all parameter estimation methods. In contrast to simulating 

the inter-frame blurring alone, when both effects are considered, inclusion of TOF within 

3D reconstruction appears to change the dynamic data. The TAC at 160 ps appears similar to 

the 3D reconstructed TACs in �gure 7(B), effectively almost negating the effect of introduc-

ing an erroneous attenuation. This can be explained by the fact that attenuation errors origi-

nate in the tomographic step and act within each individually reconstructed frame, whether 

in 3D or 4D reconstruction. Therefore, TOF appears to substantially suppress their impact. 

Dynamic data using direct 4D reconstruction again appears to be more biased compared to 

3D reconstruction. However, now errors occur from 2 sources (both attenuation errors during 

the tomographic step of the erroneously attenuated frames which are also seen in 3D recon-

structed data, and inter-frame activity blurring). These temporally propagate �rst in frames for 

which no motion or attenuation errors exist (during the kinetic modeling step), while at a sec-

ond stage propagate spatially within these frames (during the tomographic step). When TOF 

is used within direct 4D reconstruction, TACs follow the same trend seen in the 3D recon-

structed data, with the differences between 3D and 4D reconstruction at 160 ps being similar 

Figure 16. Graphs of K1 (A), Vd (B) and blood volume (C) percentage bias from 
activity blurring, as well as emission/attenuation mismatch due to inter-frame motion 
between 11th–21st frames. Bias is shown for the lungs region as a function of image 
updates (16 iterations, 21 subsets) using post-reconstruction kinetic analysis and direct 
4D image reconstruction without as well as with TOF at improving TOF resolutions 
(580 ps, 440 ps, 300 ps and 160 ps FWHM).
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to when no attenuation mismatch was simulated. Figure 14 shows the estimated parametric 

maps both for post-reconstruction analysis and direct 4D reconstruction methods while in 

�gure 15 the corresponding bias maps are displayed for improving TOF resolutions. Looking 

at the bias maps, it can be seen that in post-reconstruction analysis and when TOF is not used, 

the bias appears not only in the boundaries of regions where attenuation mismatch occurs but 

also in other regions for which no attenuation mismatch occurs (considering that we simulated 

uniform attenuation within regions). This is similar to what was observed in �gure 9 where 

the bias from attenuation mismatch was evaluated individually and signi�es propagation 

of attenuation errors within each individually reconstructed frame. Quantitative analysis in  

�gure 16 reveals that bias (in the lungs) has jumped to ~29%, ~82% and ~52% in K1, Vd and 

blood volume, respectively, compared to ~16.5%, ~52% and ~38%, respectively (�gure 13) 

when no attenuation mismatch was included. The additional bias is due to either attenuation 

errors in the lung boundaries, or to attenuation errors propagating in the rest of the lung (since 

the bias is estimated for the entire lung region). TOF, however, appears to dramatically reduce 

the attenuation-induced bias as seen in the bias maps (�gure 15), which is also re�ected in 

the quantitative analysis, with bias dropping by ~10% in K1, ~7% in Vd and ~12% in blood 

volume at 160 ps FWHM. Looking at the directly estimated kinetic parameters, error propa-

gation consistently persists across all not-TOF and TOF reconstructions. However, the com-

parison of the non-TOF direct 4D estimated parameters in �gure 16 with those in �gure 13 

where no attenuation mismatch was included, shows that the additional effect of attenuation 

mismatch has increased bias in K1, Vd and blood volume by ~8% (~24% to ~32%), ~5% 

(~76% to ~81%) and ~11% (~42% to ~54%), respectively. This increase in bias is less than 

the equivalent increase in the non-TOF post-reconstruction analysis, which stands at ~10% 

(~19% to ~29%) in K1, ~30% (~52% to ~82%) in Vd and ~13% (~39% to ~52%) in blood 

volume. Therefore, attenuation-induced bias in the presence of inter-frame blurring appears to 

affect the post-reconstruction estimated parameters more than the ones directly estimated and 

with the error propagation from the 2 sources of errors not being simply the summation of the 

errors propagating from the individual effects. Inclusion of TOF also reduces errors in directly 

estimated parameters mostly due to the effect of TOF on attenuation and less to inter-frame 

blurring, as the magnitude of improvements going from non-TOF to TOF at 160 ps is similar 

between the post-reconstruction analysis and direct-4D reconstruction, especially in K1 and 

blood volume. However, in Vd, TOF improvements are more noticeable in post-reconstruction 

analysis compared to direct 4D reconstruction owing to the reduced impact of emission/atten-

uation mismatch in the presence of inter-frame motion as mentioned above.

4. Discussion

Following many decades of hardware and software advancements, TOF PET imaging has now 

emerged as the standard method of data acquisition. The bene�ts stemming from its utiliza-

tion originate in the constrained localization of annihilated events along their line-of-response 

with an accuracy depending on the scanner’s TOF resolution. The main bene�t of incorporat-

ing information about the photon arrival times within image reconstruction, is the apparent 

increase in the effective sensitivity resulting in an increase in the signal-to-noise ratio. The 

demonstrated gain depends mainly on patient’s size, (randoms fraction) and TOF resolution 

and the resulted bene�t can be used in static imaging to reduce the injected dose, reduce the 

scanned time or to improve image quality and subsequently lesion detectability. In dynamic 

imaging, similar performance gains can be used to increase temporal sampling rate or allow 

multi-bed dynamic imaging protocols. However, one side bene�t of TOF imaging that has 
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received less attention is that TOF-based image reconstruction algorithms in static imaging 

are more robust in the presence of inconsistent correction data, such as attenuation, normaliza-

tion and scatter as demonstrated �rst by (Conti 2011b). The underlying cause of this bene�t 

is the same as the apparent SNR gain, in that any errors that originate in a point in space are 

not back-projected along the LOR traversing the entire FOV but only along a small segment, 

dictated by the system’s timing uncertainty and represented by the TOF kernel. Such a ben-

e�t is critical in the presence of a less than optimum attenuation, as is the case in PET/MR 

(Mehranian and Zaidi 2015) or when normalization is only approximately accurate. In such 

cases, errors which would otherwise spatially propagate during back-projection, are kept more 

spatially localized or even minimized. Similar error propagation however occurs not only in 

static imaging but in dynamic imaging as well (Kotasidis et al 2011, 2012b). In the presence of 

inconsistent dynamic data/kinetic model, errors spatially propagate to other regions for which 

there is consistency between the model and the data. In this work, we investigated additional 

sources of errors that could arise in dynamic imaging, related to inter-frame bulk rigid-body 

motion. We hypothesized that using direct 4D image reconstruction for parameter estima-

tion, inconsistencies between the dynamic data caused by activity blurring across frames and 

the kinetic model, could lead to errors temporally and spatially propagating to frames for 

which no motion occurs. Therefore, in the presence of such errors and taking advantage of the 

mechanics of TOF back-projection and its apparent bene�ts in static imaging, we investigated 

and demonstrated the bene�t of TOF-based post-reconstruction and direct 4D image recon-

struction techniques for kinetic parameter estimation.

Kinetic model induced bias has been demonstrated to exist when parameters are directly 

estimated within a 4D reconstruction algorithm, with adaptive models helping to minimize 

any errors in the TACs after the kinetic modelling step (Kotasidis et al 2014). However, a 

drawback identi�ed is that such methods are as good as the selection of the secondary model 

used to capture any structure in the residuals. As such, it is unavoidable that noise will inevi-

tably be captured as well, leading to its re-introduction back into the dynamic data. Therefore, 

there is a �ne balance between reducing the kinetic model induced bias and increasing the 

noise induced bias and variance. On the other hand, inclusion of TOF appears to have no draw-

backs and acts on limiting the propagation of bias at a stage where it already exists (during 

the tomographic step), as opposed to any adaptive model which attempts to limit its genera-

tion the �rst place (during the kinetic modelling step). However, as the results suggest, TOF 

alone although signi�cantly reduces any propagation of bias, it doesn’t completely eradicates 

it. Even at 160 ps, some bias still persisted in soft tissue around the heart ventricles. On the 

other hand, it was observed that bias reduction appears to be non-linearly related to the TOF 

resolution. Such a response can be attributed to the fact that there is a bias gradient, with errors 

being more pronounced closer to the erroneously modelled regions. Therefore, as TOF resolu-

tion improves, bias reduction becomes more pronounced. An improvement moving forward, 

would be the combination of TOF-based direct 4D algorithms with adaptive kinetic models, 

such as those proposed by (Matthews et al 2012, Germino et al 2015b). It is expected that the 

combination of both approaches for parameter estimation would minimize issues related to the 

application of a single model for the entire FOV. In this work, we focused on dynamic imaging 

in the body as opposed to applications in the brain. With the brain being signi�cantly smaller 

compared to the torso, the in�uence of TOF on kinetic model induced errors is expected to be 

less noticeable and only at increased TOF resolutions. However, the limited in�uence of TOF 

is counterbalanced by the fact that such inconsistencies between the model and the data are 

less of a concern in dynamic brain imaging, since application of a common model throughout 

the brain is more feasible, with less diversity between the underlying kinetics.
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Apart from inconsistencies due to diverse kinetics, we investigated potential error propaga-

tion from inter-frame body motion. The impact of emission/attenuation mismatch was inves-

tigated separately from inter-frame emission blurring and in combination. The reason is that 

attenuation related errors are not speci�c to dynamic imaging; therefore error propagation 

from them occurs not only in direct 4D methods but also in conventional 3D reconstruction, 

as the errors appear within each individually reconstructed frame. Therefore, in order to get 

a better understanding of the error propagation going from 3D to 4D parameter estimation, 

it was important to decompose the different sources of errors and evaluate their in�uence 

separately.

Directly reconstructed kinetic parameters were found to be only slightly more biased 

compared to those estimated from post-reconstruction analysis in the presence of emission/

attenuation mismatch. This is probably due to the fact that attenuation errors occurring in 

the boundaries of regions, already spatially propagate within each individually reconstructed 

frame in 4D reconstruction (in the tomographic step and prior to the kinetic modelling step). 

Furthermore, to investigate attenuation mismatch alone, we simulated the case where the 

patient moved between the emission and transmission scans. Therefore, attenuation errors are 

similar across all frames, as opposed to the other 2 cases where we simulated patient motion 

between the 11th–21st frames and, as such, attenuation errors only appear in these frames.  

As errors and their propagation occur in all individually reconstructed frames, temporal prop-

agation of these errors between frames during 4D reconstruction doesn’t signi�cantly add up 

to the already biased parameters seen in post-reconstruction analysis. This is in contrast to the 

case where inter-frame blurring was simulated alone, as when parameters are estimated post-

reconstruction, errors are restricted solely on the boundaries of regions for which the TACs 

are blurred. This is to be expected since the activity was simulated to be constant within each 

region; therefore depending on the magnitude of motion, only a part of each region will expe-

rience activity blurring across frames. Although having a constant activity within each region 

is a simpli�cation for computational purposes, it also makes it easier to identify any error 

propagation in direct 4D reconstruction. Error propagation appears to occur at two stages. 

First during the kinetic modelling step, the erroneous �t in the boundary regions will result 

in bias in the frames for which no motion occurs. Then similar to the kinetic model-induced 

and attenuation-induced errors, these errors will spatially propagate within each frame during 

the tomographic step of the 4D algorithm. It is then in this stage that TOF appears to help, 

as errors that already exist in the boundary regions, become more localized depending on the 

TOF resolution kernel.

Finally, when both the emission/attenuation mismatch and inter-frame activity blurring 

were considered together, additional error propagation was observed. However, the results 

suggested that the overall bias and its propagation is not just the summation of the individual 

biases. This could be explained by the fact that potential negative bias in a region due to 

attenuation mismatch could be partially negated by a positive bias due to inter-frame emis-

sion blurring. This would depend on the relative differences in activity and attenuation values 

between neighbouring regions as well as the magnitude and duration of motion. Nevertheless, 

in all individual or combined cases of the effects of inter-frame motion on kinetic para meters, 

TOF substantially reduced the propagation of errors both in 3D (attenuation errors) and 

4D (attenuation  +  emission blurring errors) image reconstructions. However, in contrast to 

kinetic model induced errors, which are more pronounced in the body rather than the brain, 

inter-frame motion errors are a common source of errors in dynamic brain imaging. Due to 

the difference in size/diameter between the torso and the brain, inter-frame motion induced 

errors and their propagation are expected to bene�t to a lesser degree when TOF-based image 
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reconstruction algorithms are used for parameter estimation. Therefore, the bene�ts are only 

expected to be signi�cant in higher TOF resolutions.

In all simulated inconsistencies investigated, post-reconstruction kinetic analysis consist-

ently outperformed direct 4D image reconstruction in terms of bias. The reason is that com-

pared to conventional post-reconstruction kinetic analysis, direct approaches to parameter 

estimation incorporate the temporal dimension within the reconstruction process. Therefore, 

Figure 17. Estimated kinetic parameter maps without TOF for noiseless (i) and noisy 
(ii) data and with TOF (300 ps) for noisy data (iii). Parametric images are shown both 
for post-reconstruction kinetic analysis and direct 4D image reconstruction. Simulated 
data represent the ideal situation when no inconsistencies are present in the dynamic 
data. Under noiseless data, both post-reconstruction analysis and direct 4D give 
the same parameters (data shown at 8 iterations and 21 substers and have not fully 
converged comparing to the true parameters (�gure 14(A-i)). Under noisy data and in 
the absence of inconsistencies, direct 4D reconstruction generated parametric maps with 
less variance compared to post-reconstruction analysis. The trend is the same whether 
TOF is used or not. Furthermore, comparing the non-TOF and TOF reconstructed data, 
the improvement in terms of SNR are also noticeable. Non-TOF and TOF images are 
compared at the same tumor-to-background contrast due to different convergence rates 
(non-TOF -(8 iterations and 21 substers); TOF  −(2 iterations and 21 substers).
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the temporal and the spatial dimension become interlinked and any errors occurring either 

during the tomographic, or the kinetic modelling step, will affect each other. Attenuation 

errors originate during the tomographic part and therefore errors can appear in the individu-

ally reconstructed time frames before the kinetic modelling step. On the other hand, errors 

due to inter-frame motion or erroneous modelling of the data occur in the temporal dimension 

and during the kinetic modelling step. Tomographic errors, such as attenuation, can propagate 

either spatially within each individual frame as in post-reconstruction analysis or propagate 

both spatially and temporally like in direct 4D reconstruction, with the kinetic model being the 

mean by which propagation occurs. On the other hand, errors originating in the kinetic mod-

elling step, will only propagate in direct 4D reconstruction while in the post-reconstruction 

analysis such errors will be localized in the regions where the erroneous modelling occurred. 

As such, errors in direct 4D reconstruction will always be more severe than post-reconstruction  

analysis under inconsistent data. However, as elaborated in (Kotasidis et al 2014), bias can 

originate either from inconsistencies or from noise in the data. Bias in the kinetic para meters 

due to noise is far larger than bias due to inconsistencies. Therefore, under noisy data and 

given the noise-induced bias improvement of the direct 4D reconstruction against post-recon-

struction analysis, the overall bias in the parameters directly estimated is still lower com-

pared to parameters estimated indirectly, despite the additional bias due to propagation. In 

other words, the bias due to propagation is not suf�cient to negate the noise-induced bias 

reduction that direct 4D methods offer compared to indirect 3D methods. Therefore, in this 

work we focused on using noiseless data and isolating the bias due to propagation, which 

limit the full bene�t of direct parameter estimation methods, given the de facto superiority of 

direct 4D methods when noisy data are used. This is demonstrated in �gure 17 where kinetic 

parameters were estimated using both noisy and noiseless data with no inconsistencies.  

As expected, under noiseless data both 3D and direct 4D reconstructions give similar paramet-

ric images with almost zero bias. Under noisy data, direct 4D substantially outperforms the 

post-reconstruction analysis.

Another motivation justifying the fact that we focused on noiseless data is that TOF not 

only limits bias due to propagation but also bias due to noise. As a consequence, adding 

noise would result in a bias reduction originating from both sources of bias, thus masking the 

bene�ts of TOF under inconsistent data alone. Finally, this study did not consider scatter or 

random events as the effect of these corrections on the kinetic parameters could potentially 

vary with the TOF resolution, thus masking the real impact of TOF on kinetic parameters in 

the presence of inconsistent dynamic data.

5. Conclusion

Time-of-�ight image reconstruction algorithms are increasingly becoming the standard 

method for parameter estimation in PET imaging, whether to estimate activity concentrations 

or kinetic parameters. Apart from the obvious bene�t of improving the SNR, TOF image 

reconstruction can prevent error propagation in the FOV, by limiting their spatial distribu-

tion, with a gain depending on the TOF kernel. This property can be used not only in static 

imaging applications but also in dynamic imaging as well, to prevent kinetic parameter error 

propagation both in 3D and direct 4D parametric image reconstruction. The propagation of 

errors induced by the inconsistencies between the data and kinetic model, could be signi�-

cantly suppressed. Such improvements could facilitate the use of direct 4D reconstruction 

algorithms in dynamic abdominal and thoracic imaging for kinetic parameter estimation and 

allow their bene�ts to be fully exploited. Additional improvements could be further achieved 

by incorporating adaptive kinetic models within TOF-based parametric image reconstruction.
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