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Abstract

Purpose: Cancer cells have altered metabolism, with increased glucose uptake, glycolysis, and biomass

production. This study conducted genomic andmetabolomic analyses to elucidate how tumor and stromal

genomic characteristics influence tumor metabolism.

Experimental Design: Thirty-three breast tumors and six normal breast tissues were analyzed by gene

expression microarray and by mass spectrometry for metabolites. Gene expression data and clinical

characteristics were evaluated in association with metabolic phenotype. To evaluate the role of stromal

interactions in alteredmetabolism, cocultures were conducted using breast cancer cells and primary cancer-

associated fibroblasts (CAF).

Results: Across all metabolites, unsupervised clustering resulted in two main sample clusters. Normal

breast tissue and a subset of tumorswith less aggressive clinical characteristics had lower levels of nucleic and

amino acids and glycolysis byproducts, whereasmore aggressive tumors had higher levels of theseWarburg-

associated metabolites. While tumor-intrinsic subtype did not predict metabolic phenotype, metabolic

cluster was significantly associated with expression of a wound response signature. In cocultures, CAFs from

basal-like breast cancers increased glucose uptake and basal-like epithelial cells increased glucose oxidation

and glycogen synthesis, suggesting interplay of stromal and epithelial phenotypes onmetabolism. Cytokine

arrays identified hepatocyte growth factor (HGF) as a potential mediator of stromal–epithelial interaction

and antibody neutralization of HGF resulted in reduced expression of glucose transporter 1 (GLUT1) and

decreased glucose uptake by epithelium.

Conclusions: Both tumor/epithelial and stromal characteristics play important roles in metabolism.

Warburg-like metabolism is influenced by changes in stromal–epithelial interactions, including altered

expression of HGF/Met pathway and GLUT1 expression. Clin Cancer Res; 19(3); 571–85. �2012 AACR.

Introduction

Highly proliferative tumor cells undergo fundamental
changes in metabolism and nutrient usage to survive and

progress (1), and metabolic transformation appears to be
necessary for sustained proliferation (2). Much of the met-
abolic transformation is glucose-dependent, with invasive

cancers exhibiting increased aerobic glycolysis (3) via the
"Warburg Effect" (4). TheWarburg effect occurs when there
is ametabolic shift toward glycolysis, with increased cellular

production of biomass, especially amino acids and nucleic

acids. While the Warburg phenomenon has been investi-
gated for more than 85 years, the metabolic interactions
between stroma and epithelium are not well characterized,

despite the important role of stroma in breast cancer biol-
ogy (5–12).

The gap in our understanding of stromal–epithelial
interactions was recently illuminated when it was shown

that epithelial tumor cells induce oxidative stress in the
normal stroma (9), in turn, leading to activation of
NFkB and hypoxia-inducible-1a (HIF-1a) pathways in

cancer-associated fibroblasts (CAF; ref. 11). Concomitant
changes in inflammation, autophagy, mitophagy, and
aerobic glycolysis are induced in the stroma, which then

produces energy-rich metabolites (such as lactate and
pyruvate) that are secreted and used by epithelial cells
to generate ATP (11, 13). This bidirectional communica-
tion, with aerobic glycolysis in stroma fueling cancer

growth is referred to as "Reverse Warburg Effect" (14–
16), and its discovery established an important role for
stroma in altering metabolism (9–11). However, differ-

ences in metabolomics by stromal–epithelial interaction
and according to breast cancer subtype have not been
widely investigated.
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Breast tumors show substantial heterogeneity (17)
with at least 5 distinct subtypes: luminal A, luminal B,
HER2-positive, basal-like, and claudin-low breast cancers

(18–20). In addition to their unique cell-autonomous
characteristics [including unique mutation patterns, che-
motherapy responses, and cellular phenotypes (21–23)],

these subtypes have distinct interactions with the stroma.
The interaction of basal-like breast cancer cells with fibro-
blasts leads to an increase in inflammatory cytokines and

migratory behavior, whereas luminal cells in culture
with fibroblasts show distinct gene expression and altered
proliferation (12, 24). This evidence of subtype-specific
interactions with surrounding stroma underscores the

importance of studying epithelial and stromal factors simul-
taneously when evaluating tumor metabolism.

In the present study, we apply metabolomics and radio-

tracer metabolic studies to simultaneously investigate the
role of tumor gene expression and stromal–epithelial inter-
actions in tumor metabolism. Tissue samples were used to

conduct gene expression analyses and samples were classi-
fied using multiple published signatures: the PAM50 sig-
nature, claudin-low signature, and in vivo wound response

signature (17, 20, 25). These gene expression phenotypes
were then compared with metabolomics classes identified
by analysis of 379 metabolites. Complementary coculture
experiments were carried out to evaluate subtype-specific

metabolic interactions of stromal and epithelial cells

experimentally. Our results illustrate that compared with

luminal cancer cells or luminal-derived CAFs, basal-like
cells and basal-like CAFs play a strong role in determining
substrate metabolism in culture. Strong associations

between tissuemetabolic phenotype and tissue gene expres-
sion also suggest the importance of stroma in metabolic
cancer microenvironments.

Materials and Methods

Patient samples
Thirty-one fresh-frozen breast tumor samples, 6 breast

tissue samples from reduction mammoplasty, and 5 met-
astatic samples were obtained under Institutional Review
Board (IRB)-approved protocols at the University of North

Carolina at Chapel Hill (UNC-CH; Chapel Hill, NC).
Patients were treated according to the standard of care
dictated by disease stage, estrogen response (ER), andHER2
status. Table 1 describes patient demographics and tumor

characteristics. All tissues were handled by snap freezing
immediately after surgery, and RNA was isolated using a
protocol as described by Hu and colleagues (26). RNA

integrity was determined using the RNA 6000 Nano Lab-
Chip Kit and Agilent 2100 Bioanalyzer.

Microarrays
Microarrays experiments were carried out as described

(26). Briefly, labeled cRNA was generated using Agilent’s

Low RNA Input Linear Amplification Kit. Cy5-labeled
experiment samples were combined with Cy3-labeled ref-
erence (Stratagene Universal Human Reference spiked with
1:1,000 with MCF-7 RNA and 1:1,000 with ME16C RNA to

increase expression of breast cancer genes) and hybridized
to 4 � 44 K Agilent whole genome arrays or 244 K Agilent
custom arrays. For 2 cases with duplicate arrays, the intra-

class correlation coefficients (ICC) were 0.597 and 0.886,
suggesting moderate-to-strong agreement between repli-
cates. All tumor gene expression data are publicly available

through the Gene Expression Omnibus (GSE6128 and
GSE6130).

Metabolite arrays
For each tumor, a single sample was analyzed for meta-

bolites. Tissue (100 mg) was homogenized in a volume of
water at 4mLpermgof sample in a2-mL cryovialwith two3-

mm zirconium oxide beads, one 3:8 steel ballcone, and one
1:8 steel ballcone on the GenoGrinder at 1,000 strokes/min
for 5 minutes. A 100 mL aliquot of the homogenate was

placed in a 96-well deepwell plate along with two 3-mm
zirconium oxide grinding beads per well. The plate was
placed in the chiller on the robot, and a 400 mL volume of

EtOAc/EtOH (1:1) with 2.5 mg/mL 2-fluorophenylglycine
and 25 mg/mL d2-maleic acid and tridecanoic acid was
added to each well. The plate was capped with a plate mat
and samples were shaken on GenoGrinder at 675 strokes/

min for 2 minutes. The plate was centrifuged on a Beckman
GS-6R centrifuge at 3,200 rpm for 5minutes at 4�Cand then
placed back on the Hamilton LabStar robot and the cen-

trifugates were transferred to a second plate. A 200-mL

Translational Relevance

Evolutionary theories of cancer argue that tumors
must adapt to their localmicroenvironments toprogress,
including adaptation to limited oxygen and nutrients.

While evolution of breast cancers appears to result in
distinct genomic subtypes, the corresponding metabo-
lomic subtypes have not been well characterized. We

provide evidence that metabolomic characteristics of
tumors are a result of complex interactions between
stromal and cancer cells, with stromal–epithelial inter-

actions playing a critical role in substrate metabolism
observed in tumors. More aggressive cancers possess a
distinct metabolic phenotype, which is weakly associat-
ed with cancer subtype, and more strongly associated

with expression of a stroma-derived wound response
signature. Several studies have suggested that metabolic
phenotypes of tumorsmaybe targetable to inhibit tumor

growth, but an understanding of the genomic controls
upon tissuemetabolism is needed.We show that glucose
uptake in epithelial cells, occurs partially through glu-

cose transporter 1 (GLUT1) receptor. Epithelial GLUT1
expression, in turn, is dependent upon coculture-derived
hepatocyte growth factor (HGF) secretion. Because
HGF/c-METpathway is implicated inothermalignancies

and c-MET inhibitors are already clinically available,
blocking c-MET response to HGF may be a plausible
strategy for targeting tumor metabolism.

Brauer et al.
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volume of MeOH was placed in each well of the first plate,

and the plate was shaken and centrifuged as before. The
centrifugates were transferred as before and the same pro-
cess was repeated using 200 mL volume of MeOH/H2O

(3:1) and then repeated using 200 mL volume of DCM/
MeOH (1:1). The samples were mixed by pipetting up and
down several times and a 225 mL aliquot of each was

transferred to each of two 250-mL autosampler vial inserts.
All extracts were placed in the Zymark TurboVap 96 for
concentration under nitrogen streams for 25 minutes. A
second 225 mL aliquot of each sample was transferred to the

appropriate insert, and the samples were placed in the
Labconco Centrivap Concentrator for drying for 6.5 hours
for drying. Samples were transferred to the Labconco Free-

zone 6 lyophilizer for further overnight drying. For liquid

chromatography/mass spectrometry (LC/MS), a 40-mL vol-

ume of MeOH with 20 mg/mL D10 benzophenone was
added to each sample. Sampleswere shakenwith a Lab-Line
Titer plate shaker for 5minutes on setting 7 and then a 60mL

volume of 0.1% formic acid was added containing 5 mg/mL
d3 leucine, 5 mg/mL DL-4-chlorophenylalanine, 5 mg/mL 4-
bromo-DL-phenylalanine, and 0.5 mg/mL amitryptyline.

For gas chromatography/mass spectrometry (GC/MS),
samples were derivatized to a final volume of 50 mL for
GC/MS analysis using equal parts bistrimethyl-silyl-trifluor-
oacetamide and solvent mixture acetonitrile:dichloro-

methane:cyclohexane (5:4:1) with 5% triethylamine at
60�C for 1 hour. Three types of controls were analyzed in
concert with the experimental samples: samples generated

from pooled experimental samples served as technical

Table 1. Characteristics of breast cancer samples by two clusters according to metabolite expression

Total

Cluster 1—good

prognosis (N ¼ 18)

Cluster 2—poor

prognosis (N ¼ 15)

N n (%) n (%) P

ER status

Positive 20 13 (61.1) 7 (38.9)

Negative 10 3 (41.7) 7 (58.3) 0.122

Missing 3 2 (66.7) 1 (33.3)

Size

�2 cm 7 7 (100) 0 (0)

>2–�5 cm 12 5 (41.7) 7 (58.3)

>5 cm 5 2 (40) 3 (60) 0.047

Direct extension to chest wall or skin 7 3 (42.9) 4 (57.1)

Missing 2 1 (50) 1 (50)

Tumor subtypea

Basal 10 4 (40) 6 (60)

HER2 3 1 (66.7) 2 (33.3)

Luminal A 10 9 (90) 1 (10) 0.064

Luminal B 6 2 (33.3) 4 (66.7)

Claudin-low 3 1 (33.3) 2 (66.7)

Normal-like 1 1 (100) 0 (0)

Tumor grade

Well-differentiated/1 2 2 (100) 0 (0)

Intermediate/2 7 5 (71.4) 2 (28.6) 0.135

Poorly differentiated/3 20 8 (40) 12 (60)

Missing 4 3 (75) 1 (25)

Nodeb

Negative 21 12 (57.1) 9 (42.9)

Positive 10 5 (50) 5 (50) 0.991

Unknown 2 1 (50) 1 (50)

Age, y

30–39 5 2 (40) 3 (60)

40–49 5 3 (60) 2 (40)

50–59 5 3 (60) 2 (40) 0.952

�60 16 9 (56.3) 7 (43.7)

Unknown 2 1 (50) 1 (50)

aClassified using PAM50 algorithm applied to microarray data.
bNegative means no positive lymph nodes. Positive is at least one positive lymph node.

Stromal Microenvironment Impacts Cancer Metabolic Phenotypes
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replicates throughout the data set, extracted water samples

served as process blanks, and a cocktail of standards spiked
into every analyzed sample allowed instrument perfor-
mance monitoring. Experimental samples and controls

were randomized across the platform run. Raw data are
included in Supplementary Table S1.

Metabolite data analysis

Metabolite levels with signal intensity greater than 10 dpi
in both channels and at least 80%present datawere selected
and the red/green Lowess-normalized ratios for each gene

were log2-transformed. Missing data were imputed using k-
nearest neighbors’ imputation (with k ¼ 10). This resulted
in a complete dataset consisting of 379 metabolites, and

each row/metabolite was median-centered. Data were ana-
lyzed by unsupervised significance analysis of microarray
(SAM; ref. 27), and significant metabolites were clustered
across all samples using average-linkage hierarchical cluster

analysis, results were visualized using Java Treeview (28).
SAM uses the variance structure of the data to compute
expected distributions. Small fold changes were statistically

significant by SAM analysis due to low variation between
samples within a class. To test whether there was a signif-
icant trend in metabolite level for classes of metabolites

[amino acids, carbohydrates/sugars, nucleic acids, and the
tricarboxylic acid (TCA) cycle metabolites], we estimated
the b-value and P value corresponding to linear regression

of metabolite level on an ordinal variable equal to 1 for
normal tissue, 2 for cluster 1 samples, 3 for cluster 2
samples, and 4 for metastases. Statistical tests of the trend
were 2-tailed and SE was calculated (SAS version 9.2).

Because these clusters emerged from SAM analyses where
multiple comparisons were adjusted, no adjustment for
multiple comparisons was made in the trend analyses. The

objective of these analyses is to show whether there is
evidence of a monotonic increase or decrease in metabolite
level.

Gene expression data analysis
Using the probe set common to both array platforms

(25), probeswith signal intensity greater than10dpi inboth
channels and at least 80%present datawere selected and the
red/green Lowess-normalized ratios for each gene were
log2-transformed. Duplicate microarrays corresponding

to the same patient sample were combined by averaging.
Missing data were imputed using k-nearest neighbors’
imputation (with k ¼ 10). Gene annotations from each

dataset weremapped to UniGene cluster IDs (UCIDs, Build
161) using the SOURCEdatabase, andmultiple occurrences
of a UCID were collapsed by taking the median value for

that ID within each experiment and platform. This resulted
in a complete dataset consisting of about 2,800 genes, and
each experiment was standardized to N(0, 1) and each row/
gene was median-centered.

To identify genes that significantly changed by metabolic
cluster (cluster 1 or 2), data were analyzed by 2-class SAM
(27). Significant genes were clustered across all samples

using average-linkage hierarchical cluster analysis, and

results were visualized using Java Treeview (28). Significant

genes were evaluated for ontologic enrichment using Inge-
nuity Pathway Analysis (IPA), with Benjamini–Hochberg
(B–H)multiple testing correction. Significant functions and

pathways were defined as those with B–H P < 0.05.

Associations between metabolic phenotype and
biologically defined gene expression signatures

To characterize the biologic phenotypes of the metabolic
clusters, gene expression in each sample was comparedwith
an existing in vivo breast-derived wound response signature

(25). The wound response signature was generated by
comparing cancer-adjacent stroma-rich breast tissue to
breast tissue from reduction mammoplasty, which identi-

fied an active wound signature in the cancer-adjacent tissue.
Themedian-centered gene expressionprofile of eachpatient
was evaluated for correlation with this signature by calcu-
lating Pearson correlation coefficients, using the method of

Creighton and colleagues (29). Briefly, vectors correspond-
ing to the genes in the wound response signature were
constructed, with 1 assigned to upregulated genes and

�1 assigned to downregulated genes. Sample arrays were
filtered to retain only genes with interquartile range (IQR)
of at least 0.8. A Pearson correlation coefficient was calcu-

lated comparing this standard vector to the vector of medi-
an-centered gene expression for each patient. Patients were
classified as positive if the Pearson correlation coefficient

was greater than zero and negative if the coefficient was less
than zero. The association between metabolic cluster and
wound response score was evaluated using a 2-tailed Fisher
exact test (conducted in SAS version 9.2).

Cell culture
Primary CAFs were isolated from breast tissue of patients

undergoing breast surgery for primary invasive breast car-
cinoma at UNC Hospital. Tissue specimens were procured
under an IRB-approved protocol (LCC 0913) by the Line-

berger Cancer Center Tissue Procurement Facility and
stored in 10 mL of Dulbecco’s Modified Eagle’s Media
(DMEM)/F12 with 10% FBS on ice until processing (up to

6 hours). Tissue was minced and transferred to a 15-mL
conical tube with 9 mL of suspension media: DMEM/F12
(GIBCO) supplemented with 10% FBS (GIBCO), 1% Pen/
Strep (Invitrogen), 2.5 mg/mL Amphotericin B solution

(Invitrogen), 300 U/mL collagenase (Sigma), and 100 U/
mL hyaluronidas (Sigma). Collagenase digestion occurred
overnight at 37�C, and the sample was then centrifuged for

30 seconds at 100 � g. A top layer of hydrolyzed fat was
discarded and supernatant was centrifuged at 200 � g for 3
minutes. Supernatant was transferred to a new tube and

centrifuged at 400 � g for 5 minutes. The supernatant was
discarded, and the remaining fibroblast pellet was resus-
pended in 7 mL of suspension media, as described earlier,
and transferred to a T25 flask. Cells were grown at 37�C in a

5%CO2, withmedia changed every 3 to 5days and split into
a T75 at 80% confluency.

SUM149 (basal-like) and MCF7 (luminal) breast cancer

cell lines were obtained from American Type Culture

Brauer et al.
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Collection (30). Cell lines were maintained 37�C and 5%

CO2 in DMEM/F12 supplemented with 10% FBS and 50
units/mL penicillin/streptomycin. Cell lines were tested for
mycoplasma by the Tissue Culture Facility at Lineberger

Cancer Center.

Cocultures
Two types of cocultures were conducted to model the

tumor metabolic microenvironment. First, we conducted
direct cocultures, defined as a coculture where the 2 cell types
are grown in physical contact, in the same well. Direct

cocultures were used for all of the glucose assays plated at
a physiologically relevant 1:2 ratio of cancer cells to fibro-
blasts in 24-well plates and were maintained for 96 hours,

changing the media at 48 hours, before assays were con-
ducted. Second, we conducted indirect cocultures or transwell
cultures, where fibroblasts and cancer cells are grown sep-
arated by a membrane but in contact via soluble factors.

Indirect cocultures were solely used to calculate individual
cell growth rates for interacting stromal and epithelial cells.
These studies were conducted by seeding 1 of the 2 cell types

on the insert layer of Corning Transwell plates with 0.4-mm
pore polycarbonatemembranes, whereas the other cell type
was grown in the bottom of the well. At 96 hours, 48 hours

after media change, cells were harvested from top and
bottom wells and counted using a Coulter Counter (Beck-
man Coulter, Inc.) to determine the ratio of cells. Identical

starting stromal–epithelial ratios and analysis time points
were used for both direct and indirect cultures. Two luminal
and 1 basal-like primary CAF cell lines were used for all in
vitro experiments, and all experiments were repeated in

triplicate. For hepatocyte growth factor (HGF) inhibition,
cells were treated with 0.5 mg/mL of anti-HGF antibody
(Abcam) at time of plating, and media were not changed

during the course of the experiment (48 hours).

Glucose uptake assay

Cells were plated for direct coculture at 1.0 � 105 epi-
thelial cells per well and 2.0� 105 fibroblasts/well into 24-
well plates and allowed to grow for 96 hours, with media

changed at 48 hours. Cells that were treated with anti-HGF
antibody or sham were assayed at 48 hours. The cells were
washed twice with 0.5mL 37�C1� PBS and then incubated
for 10 minutes at 37�C in 0.5 mL/well KRH buffer (136

mmol/L NaCl, 4.7 mmol/L KCl, 1.25 mmol/L CaCl2, 1.25
mmol/L MgSO4, 10 mmol/L HEPES, pH 7.4) with 0.5 mCi/
mL [3H]2-deoxy-D-glucose (PerkinElmer). Cells were

washed twice with 0.5 mL iced 1� PBS with 20 mmol/L
D-glucose and then lysed in 0.5 mL lysis buffer (0.025%
SDS, 1% Triton X-100 in 1� PBS). Lysates were centrifuged

at 20,000 � g for 5 minutes at 4�C, and the protein
concentration was determined with a Bicinchoninic Acid
(BCA) assay (Thermo Fisher Scientific). The rest of the lysate
was then added to a scintillation vial filled with 4.5 mL

EcoScint H (National Diagnostics) for scintillation count-
ing. Because cell composition changes during the time of
coculture (due to different growth rates for cancer cells and

fibroblasts), expected metabolic responses for cocultures

were computed using cell numbers at time of measurement

and using measured activity levels. For each of n cocultures,
the following formula was used to calculate expected met-
abolic activity level:

mn coculture ¼ fða �mepi monoÞ þ ðð1� aÞ �mcaf monoÞg

where m ¼metabolic activity and a ¼ fraction of epithelial
cells as estimated by cell counts for both cell types at a given
time point after the start of coculture. Expected activity

computed by this formula was compared with observed
activity, and fold change was computed as a function of
expected over observed metabolic activity. Statistical anal-

yses of these data were conducted with 2-tailed t tests (e.g.,
all MCF7 cocultures vs. all SUM149 cocultures, or all LCAF
cocultures vs. BCAF cocultures, etc.).

Glucose oxidation/glycogen synthesis
Cells were plated for direct coculture at 1.0 � 105 epi-

thelial cells per well and 2.0 � 105 fibroblasts per well into

24-well plates and allowed to grow for 96hours, withmedia
changed at 48 hours. The cells were washed twice with 0.5
mL 37�C 1� PBS and then incubated for 120 minutes at

37�C in 0.5 mL/well KRH buffer (136 mmol/L NaCl, 4.7
mmol/L KCl, 1.25mmol/L CaCl2, 1.25mmol/LMgSO4, 10
mmol/L HEPES, pH 7.4) with 2 mCi/mL [14C] uniformly

labeled D-glucose (PerkinElmer). Following incubation,
400 mL of KRH media from each well was placed into the
upperwell of an oxidation platewith 200mL 1mol/LNaOH
in the lower well. The oxidation plate was sealed with a

gasket and lid and the media well acidified by injecting 100
mL 70% perchloric acid. The oxidation plate was placed on
an orbital shaker for 1 hour and then 150 mL of the NaOH

from each well was placed into a scintillation tube with 4.5
mL EcoScint H for scintillation counting. The data are
expressed as DPM/mg of protein/minute. Cells from this

assay were washed twice with 0.5 mL iced 1� PBS with 20
mmol/L D-glucose and then lysed in 0.5 mL lysis buffer
(30% KOH saturated with Na2SO4). Lysates were heated to
95�C for 10 minutes and centrifuged at 20,000 � g for 5

minutes at 4�C. The protein concentration was determined
with a BCA assay (Thermo Fisher Scientific). To the remain-
ing lysate, an equal volume of 100% ethanol was added to

precipitate glycogen and samples stored at �20�C over-
night. Samples were centrifuged at 20,000� g for 5minutes
at 4�C and the supernatant removed. The pellets were

washed in 1 mL of 70% ethanol and centrifuged at
20,000 � g for 5 minutes at 4�C. Supernatants were
removed and pellets air-dried overnight. Pellets were then

resuspended in 0.5 mL water and transferred to a scintilla-
tion vial with 4.5 mL EcoScint H for scintillation counting.
The data are expressed as DPM/mg of protein/h fold change
of observed/expected. For each of these cocultures, the

expected activities of glucose oxidation and glycogen syn-
thesis pathways were computed as described earlier and
used to compute fold change relative to expected. Statistical

analyses of these data were conducted as described earlier
for glucose uptake.

Stromal Microenvironment Impacts Cancer Metabolic Phenotypes
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Lactate assay

Cells were plated at 1.0� 105 epithelial cells per well and
2.0 � 105 fibroblasts per well into 24-well plates and
allowed to grow for 48 hours, media were collected and

stored in aliquots at�80�C and assayed for lactate content.
Briefly, freshNADþwas added to assay buffer (175mmol/L
hydrazine sulfate, 68 mmol/L glycine, 2.9 mmol/L EDTA,
11.3mmol/L NADþ, pH 9.5) just before assay. In a 96-well

plate, 200 mL of assay buffer and 40 mL of lactate standard or
media sample were combined in each well. The plate was
then preread at 340 nm followed by the addition of 1U of

lactate dehydrogenase in a 10 mL volume of water. The plate
wasmixed and read at 340 nm. The lactate concentration in
each sample was determined from the standard curve.

Computed expected levels of lactate were conducted as
described for other metabolic assays earlier. Statistical anal-
yses of these data were conducted as described earlier for
glucose uptake.

Western blot analysis
Cells were harvested from culture, and protein was iso-

lated and quantitated. Lysates were denatured by boiling
with b-mercaptoethanol, and 30 mg of protein was electro-
phoresed on a 4% to 20% Tris-HCl Criterion precast gel

(Bio-Rad) and transferred to a Hybond-P membrane
(Amersham Biosciences) by electroblotting. The blots were
probed with antibodies against the GLUT1 (Abcam) and

b-actin (Cell signaling). Blotswerewashed3 timeswith Tris-
buffered saline supplemented with 0.1% Tween and then
were probed with ECL anti-mouse IgG horseradish perox-
idase (HRP)-linked whole antibody from rabbit (Amer-

sham-GE Healthscience). Blots were rewashed, and detec-
tion was by enhanced chemiluminescenceWestern blotting
detection system (Amersham-GE Healthcare). Relative

GLUT1 protein concentration was quantified using ImageJ
software, pixel intensity was used to measure the protein
band of GLUT1 and divided by the intensity of the b-actin

band.

Analysis of cytokine expression in conditioned media

Conditionedmedia fromdirect 1:1 cocultures (48 hours)
was analyzed on a RayBio Human Cytokine Antibody
Array 5 (80; Raybiotech) designed to detect 80 cytokines
and chemokines. These glass arrays were used according

to manufacturer protocol to measure cytokine and che-
mokine expression in the conditioned media from direct
cocultures. Briefly, slides were blocked by incubation with

blocking buffer at room temperature for 30 minutes and
incubated with 100 mL of the sample at room temperature
for 90 minutes. Membranes were washed and incubated

with biotin-conjugated antibodies overnight at 4�C.
Finally, the membranes were washed and incubated with
fluorescent dye–conjugated streptavidin at room temper-
ature for 2 hours. After final washing, slides were dried by

centrifugation at 1,000 rpm for 3 minutes. Fluorescent
signal was detected on a laser scanner using a cy3 (green)
channel (excitation frequency 532 nm). Data for each

cytokine were normalized to positive controls on the

same slide to estimate relative protein expression. Each

monoculture or direct coculture was analyzed in
duplicate.

cDNA synthesis and qPCR analysis
RNA was isolated from cultured cells using RNeasy Mini

kit (Qiagen) following manufacturers’ instructions. One
microgram of total RNA was reverse transcribed into cDNA

using iScript cDNA synthesis kit (Bio-Rad). Quantitative
PCR (qPCR) was carried out with a dilution of cDNA
equivalent to 100 ng RNA in 18 mL of master mix [10 mL

SsoFast 2X Probes Supermix (Bio-Rad), 0.5 mL 18S-VIC, and
0.5 mL gene-specific Assay-On-Demand-FAM (Applied Bio-
systems), 7 mL water] was used in each well of the qPCR 96-

well plate. The following primer/probe sets (Applied Bio-
systems) were used: GLUT1, 18S. Amplification conditions
were as follows: 1 cycle of 95�C for 1 minute; 40 cycles of
95�C for 5 seconds, 60�C for 20 seconds. The best linear fit

equation generated by the amplicon standard curve was
used to determine the number of copies of GLUT1 in the
cDNA generated. Relative transporter expression was nor-

malized to the expression of 18s. Statistical analyses of these
datawere conductedwith a 2-tailed t test (e.g., cocultures vs.
monocultures, or cocultures with and without HGF

antibody).

Results

Evidence of two distinct metabolic clusters
To identifymetabolic subgroups of tumors, unsupervised

hierarchical clustering was conducted on 379 metabolites
across 31 breast tumor and 6 normal breast tissue samples.

Patient characteristics for these 37 patients are described
in Table 1. Two main clusters resulted (dendrogram shown
in Fig. 1A and heatmap shown in Fig. 1C), one of which

(cluster 1) was primarily normal tissue and less aggressive
tumors (90% of luminal A tumors; 100% of normal breast
tissues; Fig. 1B, colored boxes). The other cluster (cluster 2)

was enriched for more aggressive tumor subtypes and
metastatic tumors (60% of basal-like tumors; 66.7% of
luminal B tumors; 100% of metastases). Cluster 2 tumors

had significantly larger tumor size (P¼ 0.047) than those in
cluster 1. While associations were not statistically signifi-
cant, cluster 2 tumors were also substantially more likely to
be ER-negative (Fig. 1B, gray scale boxes) and have poorly

differentiated tumor grade.
Given the importance of stromal cells in altering glucose

metabolism of cancer cells in previous literature

(10, 31, 32), we hypothesized that metabolite subtypes
would correlate with stroma-driven gene expression in the
human tissue specimens. Using a published wound

response signature identified in cancer-adjacent stroma-rich
breast tissue when compared with breast tissue from reduc-
tion mammoplasty (25), we observed an association
between metabolic cluster and wound response, with a

higher percentage of tumors in cluster 2 (the more aggres-
sive metabolic group) expressing activated wound response
signature (Fig. 1D, P ¼ 0.054). Of the tumors in cluster 1,

39% were positively correlated with the wound response

Brauer et al.
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signature, whereas 79% of tumors in cluster 2 were posi-
tively correlated with the signature. Interestingly, the asso-
ciation between metabolic subtype and wound response
signature was stronger than the association with either ER

status or breast tumor subtype (Table 1).

Pathway-driven metabolic phenotypes in breast

tumors
Four well-defined groups of metabolites defined the

differences betweenmetabolic clusters: amino acids, sugars,

nucleic acids, and metabolites involved in the tricarboxylic
citric acid (TCA) cycle. Principal component analysis (PCA)
using metabolites in each of these 4 metabolite classes
separated the cluster 1 and 2 tumors and delineated normal

from metastatic samples (Fig. 2). The association between
metabolite levels and metabolite cluster was strongest for
amino acids (Fig. 2A; PC1, 85.7%; PC2 4.3%), followed by

nucleic acids (Fig. 2B; PC1, 51.6%; PC2, 24.3%), TCA cycle

(Fig. 2C; PC1, 54.2%; PC2, 17.2%), and carbohydrates/
sugars (Fig. 2D; PC1, 32.8%; PC2, 13.6%), suggesting the
relative importance of these types of metabolites in driving
clustering and aggressive tumor subtype. Considering indi-

vidual metabolites in each of these 4 categories, there were
19 amino acids that increased between normal samples and
cluster 1 and between cluster 1 and non-metastatic tumors

in cluster 2 (Table 2). Many of these metabolites increased
further inmetastatic tumors from different sites (skin, lung,
liver, or brain). Several individual metabolites showed a

trend from normal to cluster 1 tumors to cluster 2 non-
metastatic tumors, including glucose (decrease), glucose-6-
phosphate (increase), lactate (increase), and ribulose-5-
phosphate (increase). Malic acid and fumaric acid, both

metabolites in the TCA cycle, increased from normal to
cluster 1 tumors to cluster 2 non-metastatic tumors, inverse-
ly proportional to citric acid levels. In summary, many

metabolites that are crucial for glucose metabolism and

Figure 1. Unsupervised cluster

analysis of 379 metabolites resulted

in 2 main clusters (clusters 1 and 2;

A). Cluster 1 (blue lines in

dendrogram) included less

aggressive tumor types or normal

breast samples, whereas cluster 2

(red lines in dendrogram) included

more aggressive tumors and

metastases (B; colored bars).

Clusters of metabolites in the

heatmap (C) implicated hallmark

Warburg phenotypes in aggressive

tumors: elevated levels of amino

acids, nucleic acids, and decreased

steady state levels of sugars/

carbohydrates and citric acid cycle

metabolites. Pearson correlation of

tumor gene expression with a

previously published wound

response signature shows a role for

stromal activation in cluster 2; that is,

metabolic class was strongly

correlated with expression of an in

vivo wound response signature

(ref. 25; D).
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the citric acid cycle were present at lower or higher levels in
the more aggressive tumor cluster (cluster 2) than in cluster
1. A diagram illustrating the pathways affected by this

metabolic shift is presented in Fig. 3.

Metabolic processes indicate stroma-influenced
Warburg effect

Previous experimental studies focused on specific meta-
bolic hallmarks of Warburg phenomenon recently identi-
fied a reverse Warburg effect, where stromal cells act as

important drivers of the metabolic phenotype of cancers
(10, 11, 14, 15, 33). Given this previous literature and the
correlation between metabolic phenotype and wound

response genomic signature, we conducted cocultures that
modeled basal-like and luminal metabolic microenviron-
ments to assesswhether fibroblast characteristics, cancer cell

characteristics, or interactions between the 2 were impor-
tant in tumor metabolism. Basal-like microenvironments
were modeled with SUM149 basal-like breast cancer cells
and with basal-like CAFs (BCAFs). Luminal microenviron-

ments weremodeled withMCF7 luminal breast cancer cells
and luminal CAFs (LCAFs). Results showed a complex
interplay of stromal and epithelial cells in determining

metabolic phenotype.
Consistent with the observation that more aggressive

subtypes have more extreme metabolic phenotypes,

SUM149 (basal-like) cells displayed higher glucose uptake

thanMCF7 (luminal) cells inmonoculture (Supplementary
Fig. S1A). However, SUM149 cells had even greater glucose
uptake when grown with BCAFs (Fig. 4A), showing a 2.9-

fold increase in observed relative to expected (P < 0.001).
BCAFs also increasedMCF7 glucose uptake (1.9-fold higher
than expected, P ¼ 0.001). In contrast, LCAFs suppressed
glucose uptake in MCF7 cocultures but had no effect in

coculture with SUM149 cells. Overall, BCAF cocultures had
a 2.8-fold increase in glucose uptake when compared to
LCAF cocultures (P ¼ 0.04).

Once glucose is taken up, utilization includes glucose
oxidation, glycogen synthesis, and lactate production,
which are endpoints of oxidative metabolism, storage, and

glycolysis, respectively. Basal-like cells had higher glucose
oxidation in monoculture (Supplementary Fig. S1). How-
ever, glucose oxidation was suppressed in all luminal cocul-

ture conditions (MCF7 cells or LCAFs present, Fig. 4B).
Increased glucose oxidation among SUM149 cells occurred
only when these cells were cocultured with BCAFs (2.1-fold
higher glucose oxidation than SUM149s with LCAFs, P <

0.001). This is interesting, suggesting that both stromal and
epithelial factors contribute to glucose oxidation.

Glucoseoxidation in the cell is balancedbynon-oxidative

glucose utilization, including glycogen synthesis. Stored
cellular glycogen can promote cell survival in conditions
of hypoxia (33). Glycogen synthesis was increased in all

cocultures relative to monocultures (Fig. 4C); however, the

Figure 2. PCA reveals a separation

of tumor phenotype by key

metabolite groups. Four classes

of metabolites—(A) amino acids,

(B) nucleic acids, (C) TCA cycle

metabolites, and (D)

carbohydrates/sugars—

distinguish normal breast tissue

samples, tumors in the less

aggressive metabolite cluster

(cluster 1), tumors in the more

aggressive metabolite cluster

(cluster 2), and metastatic tumors.
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Table 2. Mean metabolite levels and trend for four key groups

Mean value

Metabolitea Normal Cluster 1 Cluster 2 Mets b Value (SE)b Ptrend
c

Amino acids

Alanine 22.2 23.3 24.9 26.1 1.36 (0.12) <0.001

Proline 21.4 22.7 24.2 25.3 1.36 (0.15) <0.001

Glycine 21.8 23.8 25.5 26.7 1.67 (0.16) <0.001

Histidine 18.7 20.0 21.4 22.3 1.27 (0.16) <0.001

Leucine 21.4 22.5 23.8 24.8 1.18 (0.15) <0.001

Isoleucine 20.3 20.9 22.3 23.2 1.04 (0.17) <0.001

Valine 21.0 21.9 23.1 24.0 1.05 (0.14) <0.001

Threonine 19.4 20.6 22.0 23.1 1.30 (0.16) <0.001

Methionine 20.3 21.1 22.4 23.1 1.00 (0.14) <0.001

Serine 20.4 21.7 23.0 23.7 1.18 (0.15) <0.001

Phenylalanine 22.9 23.4 24.5 25.1 0.82 (0.13) <0.001

Tyrosine 21.8 22.5 23.6 24.3 0.88 (0.13) <0.001

Lysine 19.0 20.2 21.0 21.7 0.90 (0.13) <0.001

Tryptophan 21.4 21.9 22.9 23.8 0.83 (0.13) <0.001

Arginine 18.4 19.1 19.8 20.4 0.68 (0.13) <0.001

Asparagine 17.2 18.8 19.6 20.3 0.97 (0.15) <0.001

Glutamine 20.8 21.7 22.5 23.5 0.87 (0.17) <0.001

Taurine 16.2 18.7 19.2 19.1 0.90 (0.15) <0.001

Ornithine 17.0 17.3 17.8 20.0 0.86 (0.18) <0.001

Carbohydrates/sugars

Lactate 23.7 25.4 27.0 27.9 1.49 (0.15) <0.001

Mannose-6-phosphate 14.4 15.4 17.4 17.8 1.34 (0.18) <0.001

N-acetylglucosamine 6-phosphate 14.8 15.5 16.9 17.3 0.95 (0.13) <0.001

Isobar: ribulose 5-phosphate, xylulose 5-phosphate 15.2 15.4 16.9 16.7 0.76 (0.19) <0.001

Fructose-6-phosphate 15.1 16.6 18.2 18.7 1.31 (0.17) <0.001

N-acetylneuraminate 15.8 16.2 17.5 18.5 0.98 (0.16) <0.001

Glucose-6-phosphate 15.9 18.2 19.9 20.5 1.58 (0.21) <0.001

Erythronate 14.5 15.4 16.8 18.8 1.43 (0.19) <0.001

UDP-N-acetylgalactosamine 16.0 18.9 20.9 21.3 1.87 (0.30) <0.001

Glucose 22.4 20.8 19.5 20.5 �0.84 (0.27) 0.004

Glycerate 15.8 15.9 16.4 17.4 0.51 (0.11) <0.001

Xylitol 17.6 17.8 16.9 18.1 �0.11 (0.19) 0.564

Sedoheptulose-7-phosphate 14.1 13.2 14.2 14.1 0.23 (0.21) 0.273

Maltose 16.7 17.0 17.9 19.4 0.87 (0.23) <0.001

1,5-Anhydroglucitol 17.7 17.7 18.5 18.7 0.41 (0.20) 0.040

Sorbitol 16.8 18.0 17.3 19.0 0.38 (0.23) 0.099

Fructose 17.6 16.2 16.6 18.6 0.29 (0.22) 0.204

3-Phosphoglycerate 16.2 16.7 17.2 18.0 0.57 (0.18) 0.004

Mannose 16.8 17.1 16.7 18.1 0.20 (0.19) 0.309

Mannitol 17.6 18.5 18.7 20.9 0.85 (0.27) 0.003

N-acetylmannosamine 17.1 18.0 17.9 17.6 0.13 (0.19) 0.485

Pyruvate 17.3 18.0 17.9 16.6 �0.15 (0.17) 0.391

Phosphoenolpyruvate 15.5 15.3 15.3 15.8 0.13 (0.13) 0.636

Nucleic acids

Uracil 14.9 18.1 20.2 21.5 2.21 (0.20) <0.001

Guanine 15.4 18.2 20.3 18.3 1.32 (0.28) <0.001

Adenine 17.6 17.6 16.0 16.6 �0.64 (0.23) 0.010

Thymine 17.6 18.0 17.1 16.9 �0.38 (0.20) 0.059

(Continued on the following page)
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increase in glycogen synthesis was most noticeable among

SUM149 cocultures.
Finally, we assessed lactate as a measure of anaerobic

glycolysis. Lactate production was higher in basal-like can-

cer cells and CAFs than in luminal cells in monoculture

(Supplementary Fig. S1A); however, all coculture models

showed about a 1.5-fold higher-than-expected lactate pro-
duction that was not subtype-driven (Supplementary Fig.
S1B). Considering all of these metabolites, coculture of

basal-like epithelial cells with basal-like fibroblasts revealed

Table 2. Mean metabolite levels and trend for four key groups (Cont'd )

Mean value

Metabolitea Normal Cluster 1 Cluster 2 Mets b Value (SE)b Ptrend
c

TCA cycle

Phosphate 24.2 25.6 27.1 28.1 1.35 (0.10) <0.001

Fumarate 15.3 16.9 18.8 19.1 1.44 (0.14) <0.001

Malate 16.4 18.5 20.5 21.0 1.66 (0.17) <0.001

a-Ketoglutarate 13.9 14.0 14.7 19.7 1.56 (0.26) <0.001

Citrate 18.6 17.9 17.4 17.8 �0.35 (0.19) 0.082

Pyrophosphate (PPi) 18.9 19.9 20.1 20.4 0.47 (0.11) <0.001

Succinate 15.7 15.8 16.1 18.0 0.016 (0.25) 0.016

aData are reported as mean-normalized median-centered metabolite levels.
bb value (SE) corresponding to linear regression of metabolite level on an ordinal variable equal to 1 for normal, 2 for cluster 1, 3 for

cluster 2, and 4 for metastases.
cPtrend column indicates statistical significance of the b value.
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Figure 3. Schematic representing

major metabolic pathways in the

Warburg effect and their relative

levels in distinct groups of breast

tumors. Red boxes indicate an

increase in metabolite levels in

cluster 2 compared with the less

aggressive cluster 1, whereas a

green box indicates decreasing

levels. Thedotted redbox indicates

marginally increased metabolite

levels. Glucose processing

through glycolysis to pyruvate and

lactate provides ATP, whereas the

pentose phosphate shunt (PPS)

generates key intermediates in

nucleotide biosynthesis. Glucose-

derived citrate is exported to the

cytosol to contribute to lipid

production. Glutamine is

converted into glutamate and is

transported to the mitochondria

where it is deaminated to generate

a-ketoglutarate, an intermediate in

the TCA cycle. Aromatic AA,

aromatic amino acids; OAA,

oxaloacetate; acetyl CoA, acetyl

coenzyme A; and succinyl CoA,

succinyl coenzyme A.
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the strongest phenotype of elevated glucose metabolism
including glycolysis, oxidation, and storage.

Glucose uptake regulated by tumor–stromal
interactions between GLUT1 and HGF

Given the importance of stromal cells in altering glucose
metabolismof cancer cells in previous literature (10, 32, 33)
and our coculture data, we hypothesized that the expression

of glucose transporters may be regulated by tumor–stromal
interactions. GLUT1–4 are class I integral membrane pro-
teins responsible for the transport of glucose.We focused on

GLUT1 because it is responsible for basal levels of glucose
uptake in all cells and glucose levels inversely regulate its
expression (34). GLUT1 has also been shown to be the
predominant glucose transporter in human breast carcino-

mas and mouse mammary carcinomas (35, 36). GLUT1
protein levels were higher in the more aggressive SUM149
monocultures than in MCF7 monocultures (Fig. 5A).

Coculture conditions further increased GLUT1 protein
levels in both cell types, showing a role for stroma in the
regulation of glucose metabolism (Fig. 5A). To identify

soluble factors and specific pathways regulating this change
in GLUT1, cytokine protein arrays were conducted. These
results indicated significantly higher levels of HGF in cocul-
ture conditions (Fig. 5B). Consistent with previous data in

muscle (37), we hypothesized that HGF was playing a
regulatory role in GLUT1 expression. We were able to
completely block GLUT1 RNA expression by inhibiting

HGF levels in the media, confirming our hypothesis (Fig.
5C). To further confirm this mechanism and its down-
stream effects on metabolism, we compared levels of glu-

cose uptake in stromal–epithelial cocultures with and with-

out HGF inhibition. Our results show 65.6% decrease in
glucose uptake (P ¼ 0.055) with HGF inhibition in

SUM149:RMF cocultures (Fig. 5D).

Discussion

Gillies and Gatenby (38) have argued that adaptations to
resource scarcity are fundamental in the evolution of car-
cinogenesis and have shown that a variety of pathways

dysregulate aerobic glycolysis in tumors (39). Consistent
with metabolic adaptation during carcinogenesis, metabo-
lite profiles can distinguish cancer from non-cancer (40).

However, while it has been increasingly recognized that
cancers evolve into distinct breast cancer subtypes, few
studies have evaluated evolution of metabolic differences
between breast cancer subtypes (39, 41–44). Our study

shows that tumors differ from normal samples in their
metabolomic profiles but extended this to describe meta-
bolomic heterogeneity within tumors. High-resolution

quantitative profiling of metabolites from normal and
tumor tissue identified 2 metabolic subgroups that were
associated with aggressive tumor characteristics. Interest-

ingly, although these metabolic subtypes did not strongly
correlate with established PAM50 or claudin-low tumor
gene expression subtypes. While larger studies are war-
ranted to allow better powered analysis of how intrinsic

subtype affects metabolism, an important next step was to
understand whether other genomic signals correlate with
metabolic subgroups.

We hypothesized that interactions between tumor epi-
thelium and stroma can be detected in genomic data and
that these interactions contribute to the evolutionof distinct

metabolic microenvironments. Previous genomic studies

Figure 4. Glucose metabolism is

regulated by aggressiveness of both

tumor and stroma. Glucose uptake is

increased by BCAFs. SUM149 cells

had higher levels of glucose uptake

than MCF7 cells in coculture

regardless of fibroblast type (A).

Glucose oxidation was suppressed

in luminal cocultures (MCF7 or

LCAF), whereas SUM149 cells

cocultured with BCAFs had

increased glucose oxidation (B).

Finally, analysis of glycogen

synthesis (C) revealed an increase in

all coculture conditions relative to

monocultures, with the strongest

fold change among basal-like breast

cancer cells (SUM149). All fold

change values are expressed relative

to the expected levels based on

coculture composition and

monoculture metabolism, as

described in Materials and Methods.
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have emphasized the importance of host–tumor interac-

tions in progression (45), suggesting possible pathways to
test in association with metabolomic subtype. Frommicro-
array studies, a wound response is tumor promoting in the

presence of initiated cells (46, 47) and wound response
gene signatures are prevalent in tumor-adjacent, stroma-
enriched tissue (25). Thus, we tested an in vivo wound
response signature and found its expression to be strongly

associated with metabolic subtype. These results show that
integrated analyses of metabolite and gene expression data
can identify phenotypically distinct groups of breast

cancers.
Other recent articles have conducted integrated analyses

of metabolomics and gene expression datasets, emphasiz-

ing identification of genes associated with individual
metabolite levels or identification of metabolic phenotypes
associated with specific tumor characteristics (48–51). A

large study of metabolite profiles across 289 tumor samples

identified groups of tumors corresponding to hormone

receptor status and grade, however, that study did not seek
to identify associated genomic changes beyond these tumor
characteristics (49). Borgan and colleagues analyzedmetab-

olite profiles of 46mostly luminal A breast cancers (48) and
linked metabolic heterogeneity within the luminal A breast
cancers to gene expression differences, including differences
in extracellular matrix (ECM) genes. Their observation of

the importance of ECM genes in metabolism is consistent
with our finding that metabolism was strongly correlated
with stromal signature and stromal–epithelial interactions.

Also consistent with our findings, Borgan and colleagues
noted heterogeneity within the luminal A subtype, showing
that intrinsic subtype alone does not determine metabolic

phenotype (48). In our study, we aimed to include a more
diverse sample set with 6 different subtypes of breast cancer
and an approximately even distribution of ERþ and ER�

tumors. Our power to conduct comprehensive assessments

Figure 5. HGF-dependent

regulation of GLUT1 expression

in breast cancer. GLUT1 protein

expression is elevated in coculture

(cc) models compared to

monocultures of RMF, MCF7,

and SUM149 cells (A). Cytokine

arrays identify HGF as a key factor

significantly induced in coculture

for both luminal (MCF7) and basal-

like (SUM149) breast cancer cells

(B), when blocked using an HGF-

neutralizing antibody (a-HGF),

the GLUT1 receptor is inhibited

at the RNA level (C). Levels of

glucose uptake decrease by 66%

(P ¼ 0.055) in SUM149 cells when

HGF is inhibited using antibody (D).
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of subtype-specific changes was limited due to sample size,

but our results do suggest heterogeneity of response within
classes defined by tumor subtype.
Few integrated, observational studies of gene expression

and metabolomics data, including our own dataset, have
been of sufficient size to evaluate both tumor and stromal
characteristics. To address this limitation, we combined our
tissue-based observations with well-established cell cul-

ture–based models that mimic the tumor interactions with
microenvironment (5) to confirm the pathway changes
seen in our gene expression and metabolomics data. While

we were unable to measure all metabolites, we selected the
metabolism of glucose for more focused investigation
because it is central to many of the Warburg-like changes

observed in the full metabolic profile. Our results show that
metabolic phenotype is a complex interplay between tumor
characteristics and the surrounding stromal biology. Basal-
like breast cancer epithelial cells more readily take up

glucose from surrounding tissue than luminal breast cancer
cells. Furthermore, basal-like CAFs also stimulate marked
increases in glucose uptake, even in luminal breast cancer

cells. Conversely, luminal CAFs produce no change or can
slightly decrease glucose uptake and oxidation in basal-like
breast cancer cells. Glucose oxidation depended on both

stromal and epithelial characteristics, whereas glycogen
synthesis appears to be less sensitive to the differences
between luminal CAFs and basal-like CAFs, correlating

most strongly with epithelial cell content. This latter pattern
of metabolite production in coculture suggests an acquired
capability—increased glycogen storage in response to
microenvironmental signals—and raises the question as to

whether increased glycogen synthesis is a hallmark of basal-
like breast cancers.
While primary CAFs used in this study show that there is

interindividual variation in the effect of CAFs, to establish
central trends for basal-like versus luminal stroma will
require greater numbers of cell lines. However, these results

underscore the importance of understanding variation in
tumor stroma.Characteristics of fibroblasts, such as agingor
senescence phenotypes, can also altermetabolism as shown

in recent studies (52). Our results confirm that understand-
ing which metabolites are sensitive to stromal factors and
which are dominated by epithelial characteristics is neces-
sary if metabolic processes are to be targeted for cancer

treatment or prevention.
Future metabolic-targeted treatment demands under-

standing of not just the metabolomics phenotypes but the

genomic signals/pathways that drive these phenotypes. We
conducted cytokine arrays to identify factors induced in
coculture that could explain the shift to greater glucose

uptake. Having observed large fold changes in HGF secre-
tion, we conducted a literature search that suggestedGLUT1

expression is downstream of HGF-cMET signaling in liver
and muscle (53, 54). Therefore, we hypothesized that the

same pathway may be active in breast cancer. Previous
literature shows a role for HGF/cMET in breast cancer
aggressiveness. MET receptor protein tyrosine kinase regu-

lates cellmotility and invasion (55, 56) and is stimulated by

HGF (57, 58). Together, the HGF-MET pathway has been

shown to regulate stromal–epithelial interactions in mul-
tiple cancers (59–63). In breast cancer, HGF/c-MET signal-
ing promotes tumorigenesis (64), increases metastasis (65,

66), and mediates drug resistance in most aggressive breast
cancers (67–69). Our results show that HGF regulates
GLUT1 expression, which in turn regulates glucose uptake.
Inhibition of exogenous HGF completely blocks GLUT1

expression and decreases glucose uptake. Given the success
of small-molecule inhibitors of c-MET in the clinic, the
HGF/c-MET pathway may also be a target for the regulation

of tumor cell metabolism.
In summary, reciprocal interactions between cancer epi-

thelial cells and the surrounding microenvironment have

an established impact on tumor growth (5, 6, 46) and a
broad range of other metabolic and signaling processes
(26, 43, 70). Previous studies by Castello-Cros et al. have
shown extensive evidence in vitro for the stromal role in

Warburg metabolism through matrix remodeling (2), stro-
mal autophagy (11), and stromal–epithelial lactate
exchange (71).Our results further show that both fibroblast

and epithelial characteristics modulate specific metabolic
phenotypes in vitro and pairs one of these changes, glucose
uptake, with specific targetable gene expression changes

(HGF/GLUT1). This study shows that integration of mul-
tiple data types in human tumor studies, together with in

vitro experimental studies that dissect heterotypic interac-

tions, can yield important advances in understanding the
complex metabolic and genomic interactions during tumor
evolution.
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