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Abstract

Much work has been done on the study of the biochemical mechanisms that result in ultrasensitive 

behavior of simple biochemical modules. However, in a living cell, such modules are embedded in 

a bigger network that constrains the range of inputs that the module will receive as well as the 

range of the module’s outputs that network will be able to detect. Here, we studied how the 

effective ultrasensitivity of a modular system is affected by these restrictions. We use a simple 

setup to explore to what extent the dynamic range spanned by upstream and downstream 

components of an ultrasensitive module impact on the effective sensitivity of the system. 

Interestingly, we found for some ultrasensitive motifs that dynamic range limitations imposed by 

downstream components can produce effective sensitivities much larger than that of the original 

module when considered in isolation.

Keywords

signaling; transfer function; ultrasensitivity; dynamic range

I. Background

Cells continuously sense external and internal cues using specific molecular components in 

order to elaborate appropriate responses which help to cope with a challenging environment. 

During the last 15 years, a great deal of experimental and theoretical effort has been devoted 

to understand the underlying biochemical reaction network responsible for these capabilities. 

Much of the advance in the field, along with the development of new areas such as synthetic 

biology, was conceived under a system-level perspective in which signal sensing, 

transduction, and information processing mechanisms are analyzed in terms of interacting 
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modules or minimal functional motifs [Tyson et al 2003, Benner and Sismour 2005, Alon 

2006]. The modular description of molecular biochemical networks is based on the 

hypothesis that system-level properties may in fact be derived from the analysis of 

interactions among operationally defined subsets of molecular species, i.e. functional 

modules [Hartwell et al 2000, Kholodenko et al 2002, Sneppen et al 2010].

Among the plethora of biologically plausible functional units sigmoidal input-output 

response modules constitute one of the fundamental motifs found in several cellular contexts 

[Zhang et al 2013]. Sigmoidal responses have a threshold input level below which low 

output signals are produced, and above which high response levels are achieved. The 

steepness of the transition between low to nearly maximum response is referred to as the 

module’s sensitivity. Biochemical modules with steeper transitions than that obtained in a 

hyperbolic Michaelis-Menten response are called ultrasensitive [Goldbeter and Koshland 

1981], and in the extreme, they behave like an all or none (digital) switch. At a first 

approximation, ultrasensitive responses may be described by a Hill equation of the form: y = 

A xnH/(EC50nH + xnH), where x and y represent the system’s input and output, respectively. 

The parameter EC50 is associated to the input level for which half-maximal output is 

achieved, A is the maximal output, while nH is known as the Hill coefficient, and is usually 

used to quantify the global sensitivity of the corresponding transfer function.

At the molecular level, several mechanisms can produce ultrasensitive or even switch-like 

responses. For example, under a competition by stoichiometric inhibitor scenario [Ferrell 

1996, Buchler and Louis 2008] switch-like responses could arise because the input signal 

has to overcome the effect of the inhibitors in order to produce appreciable responses. The 

same kind of mechanism could produce ultrasensitive behavior when translocation 

sufficiently raises the local concentration of a signaling protein to partially saturate the 

enzyme that inactivates it [Ferrell 1998]. In covalent cycles, so called zero-order 

ultrasensitivity could arise when phosphatase and kinases work under saturation and 

imbalances between phosphorylation and de-phosphorylation rates drive drastic changes in 

substrate phosphorylation levels [Goldbeter and Koshland 1981]. Multistep activation 

processes - like multisite phosphorylation [Ferrell 1996, Markevich et al 2004, 

Gunawardena 2005] or ligand binding to multimeric receptors [Rippe 1997] – may also 

result in ultrasensitive dose-response curves. In these cases, the ultrasensitivity arises as a 

result of a common regulation of two or more concomitant biochemical processes.

At a system level, sigmoidal modules might be used to implement the switch-like responses 

that are at the core of cellular decision systems, as well as to provide the necessary 

nonlinearities upon which more complex behaviors, such as adaptation [Srividhya et al 

2011], bistability [Angeli et al 2004, Ferrell and Xiong 2001], and oscillations [Kholodenko 

2000] can emerge. Many theoretical concepts and operational tools for the analysis of the 

sensitivity features of functional modules have been developed for the analysis of signal 

propagation through molecular cascades. A module-based analysis of this kind of systems 

relays on Hartwell’s idea of functional modules. They can be conceptualized as discrete 

entities, composed by different types of molecular species, capable of introducing a well-

defined and identifiable functionality into the biochemical system they are embedded on.
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Within a modular-based perspective, Goldbeter & Koshland (GK) described in a series of 

influential contributions sensitivity amplification capabilities of covalent modification 

cycles, and provided analytical tools to quantify the total amplification in multicyclic 

cascades [Goldbeter and Koshland 1981, Goldbeter and Koshland 1982]. Rooted in GK’s 

work, a similar framework was presented by Kholodenko et al [Kholodenko et al 1997] to 

quantify information transfer in signal transduction pathways. Using concepts borrowed 

from metabolic control analysis they used response coefficients, which describe fractional 

changes in response levels due to fractional changes in input signals. They showed that, in a 

multi-level arrangement of consecutive signal processing units (i.e. in a cascade lineup), the 

global response coefficient equals the product of the response coefficients of each level of 

the cascade [Kholodenko et al 1997, Brown et al 1997]. Interestingly, J.E. Ferrell pointed 

out in a complementary contribution that the overall global sensitivity (assessed by its Hill 

coefficient n) of two consecutive Hill-type modules, could be at most the value obtained by 

the multiplication of individual module sensitivities (i.e.: n ≤ n1 * n2). The actual value 

depended on the relationship between the first module’s output level and the concentration 

needed to achieve maximal activation of the second module [Ferrell 1997]. As a 

consequence of this kind of analysis, a classification scheme was coined in terms of the sub-

multiplicative, multiplicative or supra-multiplicative character of module-based systems, for 

cases where the overall system sensitivity, n, was found to be lower, equal or larger than the 

product of the constituent module’s ultrasensitivities, ni. [Racz and Slepchenko 2008, 

O'Shaughnessy et al 2011].

The very notion of module implies that it should be somehow separable from the rest of the 

system. This separation depends on chemical isolation, which can originate from spatial 

localization or from chemical specificity [Hartwell et al 2000]. For instance, neglecting 

enzyme-substrate complex formation, a MAPK cascade can be analyzed in terms of three 

independent modules, characterized by their respective transfer functions, arranged in a 

linear setup. Importantly, when enzyme concentrations cannot be disregarded, a 

mechanistic-description that takes into account every possible interaction between cascade 

molecular components should be considered instead [Ventura et al 2008].

As modular-based analysis, mechanistic approaches also support the idea that the biological 

value of this ubiquitous motifs relies in their ability to convert graded or modestly 

ultrasensitive responses into markedly switch-like responses. Using a mechanistic model, 

Ferrell and collaborators could gain system-level insights from their experimental study of 

steady-state responses of the MAPK cascade in Xenopus oocyte extracts [Huang and Ferrel 

1996]. With the aid of their biochemical model they were able to quantify the incremental 

sensitivity amplification along the cascade levels, and concluded that the cascade 

arrangement might contribute to the all-or-none character of oocyte maturation.

As already stated, some limitations of the module based description are expected to be found 

for cases where enzyme concentrations could not be disregarded. Bluthgen et al. showed 

that, due to sequestration effects (i.e. accumulation of active kinase in complex with its 

substrate), the response coefficients in the Ferrell model [Huang and Ferrell 1996] were 

lower than expected from the modular-based description of the same cascade [Bluthgen et al 

2006]. In connection with this behavior, De Racz & Slepchenko analyzed multilevel 
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cascades of activation-deactivation cycles, and found that the sensitivity lost due to 

sequestration does not occur when the covalent modification cycles are asymmetric (in 

particular when phosphatase enzymes are saturated but not the kinases) [Racz and 

Slepchenko 2008]. Taking into consideration effects like sequestration of shared 

components1 [Ventura et al 2008, DelVecchio et al 2008], it is clear that the integration of a 

given well-characterized module with upstream and downstream components often alters its 

information-processing capabilities. This is relevant when trying to understand the behavior 

of a modular processing unit immersed in its physiological context, or when engineering 

functional modules for synthetic biology purposes [Ray et al 2011, Kittleson et al 2012, Ang 

et al 2013].

In the present contribution, we focused on the effect of a specific factor that can 

qualitatively alter the effective performance of sigmoidal modules, i.e. the actual response 

dynamic ranges between consecutive modules. In connection with this, Slepchenko and 

collaborators briefly commented on the effect of a so-called ‘misalignment’ between two 

coupled covalent cycles [Racz and Slepchenko 2008]; and along the same lines, Bluthgen et 

al. [Bluthgen and Herzel 2003] also identified these effects in the case of MAP kinase 

cascades. Here, we present a general framework that fits these previous observations and 

that enables a systematic analysis of the system level sensitivities for modules with 

sigmoidal input-output transfer functions. In particular, we will explore the effective 

sensitivity of a three-module system as a function of a) the range of inputs that a central 

sigmoidal module receives from an upstream component (upstream or input constraint), and 

b) the range of this module’s output that a downstream component is able to detect 

(downstream or readout constraint). As we will show, these constraints on input and readout 

dynamic ranges can result in effective sensitivities much lower or, quite unexpectedly, 

larger, than the sensitivity of the original module considered in isolation.

We adopted in this work a deterministic methodology to describe the phenomenology 

displayed by the analyzed motifs. We acknowledge that the probabilistic character of 

biochemical reactions could induce non-negligible fluctuations in species concentration in 

the limit of small number of molecules [Thattai and Van Oudenaarden 2001, Paulsson 

2005]. Sensitivity attenuation [Berg 2000, Voliotis 2013], low-pass filtering capabilities in 

long cascades [Hooshangi 2005], and other interesting noise-related phenomena have 

already been reported in the literature [Ferrell 1998, Thattai and Van Oudenaarden 2002, Raj 

and Van Oudenaarden 2009, Ray and Igoshin 2012]. Even though protein fluctuations are 

ubiquitous in biological systems, we found that our deterministic approach– that becomes 

accurate whenever proteins are present at large numbers [Berg 2000] – still provide useful 

insights on the analyzed system’s behavior.

The paper was organized as followed. We began with a brief introduction to basic concepts 

and operational tools used to quantify the sensitivity of general sigmoidal transfer functions. 

Then, we introduced the considered methodological setup and the relevant parameters used 

1More subtle phenomena, also related to sequestration effects, were reported by Ventura et al [Ventura et al 2008]. They proposed a 
method to deal with the tension that exists between a fully mechanistic and a phenomenological module-based description of a 
covalent cycle cascade. Using a standard singular perturbation analysis they discovered the presence of a loading effect in the cascade 
that induces an intrinsic negative feedback from each cycle to its predecessor.
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in order to quantify input and readout dynamic range restrictions. A detailed analysis of 

input and output dynamic range constraints on several ultrasensitive sigmoidal motifs is then 

presented. In the last section, we discussed particular and general observed trends and finally 

conclusions were drawn.

II. Basics on Sigmoidal response curves

A variety of mechanisms can produce ultrasensitive and even switch-like responses. Even 

though the detailed shape of each stimulus–response curve differs from mechanism to 

mechanism, all of them are associated to processes in which, in the vicinity of certain 

threshold value of the input signal, small relative variations in the stimulus can produce 

large relative changes in the response.

As we already mentioned, ultrasensitive responses may be described by a Hill equation and 

even in the absence of any formal mechanistic foundation, this function is widely used as a 

phenomenological mathematical description of ultrasensitive processes. In general, the 

following operational definition of the Hill coefficient may be used to calculate the 

sensitivity of sigmoidal modules:

[1]

where xr is the signal value producing the r fraction level of maximal response. The Hill 

coefficient measures the fold increase needed to drive the output from the non-activated 

state (arbitrarily defined as the 10% of the maximum output) to the fully activated state 

(defined as the 90% of the maximum output). The 81 value in equation [1] is set to produce 

a nH=1 for hyperbolic response functions (such as those obtained with simple biochemical 

reactions that follow the Michaelis-Menten approximation). This means that for this kind of 

transfer functions, an 81-fold change in input signal is necessary to drive the system output 

from 10% to 90% of its maximal response. Response functions with nH values higher than 1 

are called ultrasensitive responses. They produce the same amount of system’s output 

change, with a much smaller fold change in the input signal (e.g. in a nH=2 case, only a 9-

fold input signal increase is needed to achieve the aforementioned level of change in the 

output level).

It is worth noting that, differently from the paradigmatic Hill function case, many signaling 

motifs display non-symmetrical response functions. As will be further discussed in next 

sections, this kind of transfer functions could arise in many relevant biochemical contexts 

such as in covalent modification cycles, multistep activation modules, and when molecular 

titration or stoichiometric inhibition are dominant processes in a particular bio-molecular 

motif.

For covalent cycles described by Goldbeter-Koshland equations, imbalance in enzyme 

saturation levels induces asymmetries in the sensitivity before and after the EC50 value 

[Uribe et al 2007]. In this case transfer functions in which the sensitivity displayed for lower 

input values is larger than the one observed for high input values, can be observed when the 

phosphatase is in saturation but not the kinase (see Sup Mat SM1) [Uribe et al 2007]. Motifs 
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involving molecular titration mechanisms are also relevant examples of this kind of non-

symmetrical response functions. In these units ultrasensitivity could arise when the inhibitor 

exists in a large quantity and the signaling molecule has a higher binding affinity for the 

inhibitor than for the target molecule [Buchler and Louis 2008, Zhang et al 2013]. A small 

increase in signaling molecule concentration cause an explosive response when free 

inhibitor molecules, forming inactive complexes, are exhausted. This produces a much 

larger sensitivity for input values below the EC50 input level, than for large input signals, 

for which a smoother saturation behavior is observed.

Here we proposed to extend the sensitivity quantification provided by equation [1], in order 

to provide a better characterization of these kinds of non-symmetrical response functions. In 

this way, left, , and right, , Hill coefficients can be defined as:

[2]

Left, symmetric, or right-ultrasensitivity behaviors can then be distinguished and associated 

to  values larger, equal or lower than one, respectively. In the same way that dose-

response curves with symmetric ultrasensitivity are usually describes by Hill functions, 

asymmetric ultrasensitivity functions could be adjusted by a pricewise Hill function,

Global sensitivity assessments (equations [1] and/or [2]) do not exhaust the characterization 

of ultrasensitive sigmoidal curves. A complementary way to quantify the ultrasensitive 

character of this kind of response curves is given by the response coefficient, R, also known 

as logarithmic gain or elasticity (term used in metabolic control analysis)[Savageau 1977, 

Kholodenko et al 1997]:

[3]

The response coefficient estimates the local polynomial order of the response, providing a 

local description of relative changes of input (x) and output (y) levels.

As shown in figure S1 for several examples, quantities such as the polynomial order of the 

response function (equation [3]) and/or sensitivity asymmetries (equation [2]) can be used to 

unveil and quantify differences between diverse ultrasensitive responses. As we will discuss 

below, these differences in local sensitivity features are extremely relevant and have 

noticeable consequences when dynamic range constraints are considered on a given module.
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III. Upstream and downstream restrictions

Sigmoidal response modules may be found in many different cellular contexts, integrated 

with diverse upstream and downstream components. In this section we present a simple 

setup designed to quantify how the sensitivity of the combined system is affected by 

constraints imposed on the effective input and output dynamic range of the ultrasensitive 

module (see figure 1).

In order to focus our analysis on effects exclusively due to dynamic range restrictions on the 

analyzed ultrasensitive unit, hyperbolic responders were chosen as upstream and 

downstream components of the three module system.

Transfer functions like the ones considered in our analysis present two characteristic 

concentration scales: one associated to its EC50 value and the other to its maximum 

response level, Omax. As can be easily appreciated from Figure (2a), both quantities provide 

natural scales that may determine the ultimate behavior emerging from the interaction 

between the ultrasensitive module under analysis and its input and output (readout) 

components. The interplay between these relevant concentration scales of consecutive 

components can be described by upstream, Qup, and downstream, Qdown restriction 

coefficients, defined as follows:

[4]

where Omax represents the maximum output level and M, up and down subscripts refer to 

parameters of the ultrasensitive module, upstream component and downstream component 

respectively.

For small values of Qup the full input dynamic range of the ultrasensitive module is explored 

by the output generated by the upstream component. Similarly, for small values of Qdown the 

saturation of the downstream component occurs at output concentrations well beyond the 

central module’s maximum output. Hence, when both, Qup and Qdown display values much 

lower than one, the interaction of the upstream and downstream components with the 

sigmoidal central module is linear and the overall system’s sensitivity is expected to be the 

same as that of the central module in isolation (left panel of figure 2).

On the other hand, large values of the upstream restriction coefficient Qup imply that the 

central module’s EC50 is much larger than the maximum output concentration produced by 

the upstream component. As can be seen from the example depicted in the center panel of 

figure 2, a severe reduction in the central module’s effective working range (i.e. the range of 

inputs that would actually stimulate it) could take place when Qup ≫ 1 and Qdown ≪ 1. In 

this case, we will say that the module is in an upstream saturation or upstream limited 

regime. Considering the toy model introduced in figure 1b, this would correspond to a 

situation in which the upstream module’s maximum response (Omaxup = [BT],) activates 

only a small amount of [C]. In this case, Omaxup would be lower than the input needed by 

the ultrasensitive module’s to achieve its half maximum response (i.e. Omaxup ≪ EC50M) 

resulting in Oup ≫ 1.
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Finally, large values of the downstream restriction coefficient, Qdown, correspond to setups 

where the central module’s maximum output is much larger than the EC50 of the 

downstream component. In cases like the one depicted in the right panel of figure 2, where 

Qdown ≫ 1 and Qup ≪ 1, the range of different outputs of the central module cannot be 

fully “read” by the downstream unit, and thus its readout range could be severely limited. In 

this case we will say that the module is in a downstream saturation or downstream limited 

regime. In the presented toy model this would occur whenever a small amount of [C*] is 

enough to fully activate [D]. This scenario will corresponds to the case in which the 

maximum module’s output is much higher than the ultrasensitive module’s input needed to 

achieve the half maximum response (OmaxM ≫ EC50down) and hence Qdown ≫ 1 (a 

quantitative characterization of upstream and downstream saturation regimes is provided in 

Suplementary Material SM2 for the case of a Hill module).

IV. Analysis of constrained ultrasensitive modules

In either downstream or upstream saturation scenarios, input and readout processes can 

constrain the explored dynamic range of the sigmoidal module, making local sensitivity 

features of the analyzed transfer function become relevant to understand the overall system 

behavior. To illustrate this point, in this section we present a systematic analysis of the 

sensitivity of generic ultrasensitive responders coupled to input and readout hyperbolic 

modules, under different dynamic range restriction conditions. We start by analyzing the 

case where the ultrasensitive central module’s response function is described by a Hill-type 

mathematical form. We then proceed to extend the analysis to several ubiquitous 

ultrasensitive motifs, whose ultrasensitive transfer functions can be derived from the 

corresponding mechanistic models.

A. Hill-type modules

The use of Hill mathematical forms to fit experimental data is a fairly common practice. It is 

then worth studying the impact of input and readout dynamic range restrictions in this case 

(without loss of generality we will consider an nH=3 ultrasensitive Hill module).

We start our analysis writing down the expression of the overall system’s output as a 

function of the input signal, O(I), calculated through a simple mathematical composition of 

the respective single-module transfer functions:

[5]

where  and  Iup is the input 

signal of the upstream hyperbolic module (i.e. the input signal for the entire system).

Using equations [5] and [1], we obtained the following analytical expression for the 

system’s Hill coefficient, η:
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[6]

where y10 and y90 are the y values which produces the 10% of Õmaxdown and 90% of 

Õmaxdown in equation [5].

Figure 3a shows the dependency of the system’s overall sensitivity η on parameter κ given 

by equation [6]. It can be observed that increasing κ results in a loss of the system 

sensitivity, up to a point where for κ ≥ 1, the range-constraint effect is fully developed and 

the global system achieves its minimal sensitivity. Noticeably, for κ ≪ 1 the global 

sensitivity equals that of the central Hill module.

Equation [6] reveals that for this particular system the effect of upstream and downstream 

restrictions on the system sensitivity is in fact a function of a single parameter, κ. 

Noticeably, this parameter is proportional to the Qup restriction coefficient, but decreases 

with increasing Qdown values. In this way, for this kind of modules, upstream restrictions 

degrade the module sensitivity level whereas downstream restrictions tend to preserve it. In 

order to further analyze this result it is worthy to describe the system behavior as a function 

of Qup and Qdown coefficients. In addition this would allow us to establish meaningful 

comparisons with the analysis of other ultrasensitive motifs, for which an analytic 

expression cannot be easily obtained.

In figure 3b we present a color-coded systematic characterization of the Hill module’s 

effective sensitivity, numerically estimated using equation [1] as a function of Qup and 

Qdown coefficients. A κ(Qdown, Qup) = 1 line was included in the panel (gray line) to 

delineate the (upper) area of severe ultrasensitivity reduction.

It can be observed that in the absence of dynamic range restrictions (Qdown and Qup<<1, 

bottom-left area of figure 3b) the system’s estimated sensitivity equals that of the central 

module. This is the expected behavior from figure 3a as in this case κ ≪ 1.

On the other hand, as expected from equation [6] and the κ dependency on Qup and Qdown, 

parameters, it can be recognized from figure 3b that upstream and downstream constraints 

have different effects on the system behavior. For a given Qdown level, a clear diminution of 

the system’s sensitivity can be observed for setups displaying increasing values of the 

upstream restriction coefficient Qup. On the contrary, for a given Qup value, a rise in the 

downstream restriction coefficient value Qdown, corresponds to a decrease in the κ parameter 

level, and results in an increase system’s sensitivity levels.

Analysis of highly constraint situations—Analytical expressions for the overall 

response function can be obtained for highly constraint situations (i.e. when Qup ≫ 1 and/or 

Qdown ≫ 1). The dynamic range effectively spanned by the Hill’s module when input and/or 

readout saturation takes place in this system is actually limited to the module’s low input 

region (see Sup. Mat SM3, and figure 2). In any of these saturation scenarios the central 

module response function can be approximated by:
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[7]

with IM, the input signal of the analyzed central module M.

As we show in Suplementary Material SM2, when equation [7] is a valid approximation, the 

readout unit restricts the module’s effective working range whenever . In this 

case the condition κ ≪ 1 is satisfied and no sensitivity reduction is expected to take place in 

the system. Accordingly, for situations where the downstream component’s output reaches 

saturation, and the upstream module works in its linear regime (i.e. Iup spans the linear 

region of the upstream module’s transfer function, see Sup Mat SM2 for mathematical 

details) the input unit’s response function can be approximated by Oup(Iup) ~ OmaxupIup/

EC50up, and the whole system transfer function results in

[8]

where  and . Equation [8] shows that under this regime, when it is 

the readout module the only one that saturates, the system responds as a Hill function with 

η=nH. The analyzed situation corresponds to the right-bottom corner of figure 3b where, as 

expected, the numerically estimated η value was found to be close to nH.

On the other hand, saturation takes place at the upstream unit whenever 

(see Sup. Mat. SM2). This corresponds to κ getting values larger than one, and the system is 

expected to achieve its minimal sensitivity level (see figure 3a). In this case the upstream 

module saturates and the downstream readout module, on the contrary, operates nearly in the 

linear regime, so we can speak of an upstream saturation regime. The response function of 

the downstream readout module can be approximated by Odown(Idown) ~ OmaxdownIdown/

EC50down, and the entire system transfer function can be expressed as

[9]

Equation [9] does not have the general Hill functional form. Instead, powers of y of orders 

between 0 and n now appear in the denominator, resulting in a drop of the system’s effective 

sensitivity, in concordance with the behavior expected from figure 3a. This working regime 

corresponds to the entire upper area in figure 3b, where the condition  holds 

(see Sup. Mat SM2 and SM4).

B. The general sigmoidal case for constraint situations

The above-presented analysis may be easily generalized to sigmoidal response functions 

that, as the Hill mathematical function case, could be approximated in the low input signal 

range (i.e. in the input’s range actually covered under a downstream/upstream limited 

situation) by
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[10]

Here n is a positive constant that equals the mean polynomial order of the transfer function 

for small input signals, and A is a proportionality constant.

Whenever equation [10] holds, equations [8] and [9], valid for downstream and upstream 

saturation situations respectively, can be recast into the following expressions:

[11]

[12]

It is worth noting that it is the mean polynomial order exhibited at low input ranges, n, and 

not the Hill coefficient, nH, of the analyzed transfer functions, what affects the system’s 

effective sensitivity value.

Equation [11] states that the overall system response is of the Hill function mathematical 

form, but importantly, it has η = n (and not nH) as its Hill exponent. Importantly, this means 

that downstream saturation could produce super-multiplicative behavior for transfer 

functions which present low-input polynomial order values, n, larger than the overall 

displayed ultrasensitivity, nH (i.e. satisfying n>nH).

Left and right ultrasensitivities are related to the global Hill coefficient by the following 

simple expression that holds for the general case:

As the global Hill coefficient nH is the harmonic mean of left and right coefficients, it will 

be biased towards the minimum value between  and . Hence, for left-ultrasensitive 

transfer functions (for which ), it is expected that  hold for them. 

Therefore, left-ultrasensitive units are in principle capable to display supra-multiplicative 

behavior under downstream constraint situations. As will be further explored in the next 

sections this last observation is particularly relevant for several biochemical motifs with left-

ultrasensitivity, like: asymmetric Goldbeter-Koshland modules, and titration-based and 

multistep-activation ultrasensitive units.

C. Goldbeter-Koshland modules

The term ultrasensitivity was originally coined by Goldbeter and Koshland (GK) to describe 

amplification sensitivity capabilities displayed by covalent modification cycles, such as 

phosphorylationdephosphorylation [Goldbeter and Koshland 1981] (see figure 4). For these 
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systems, GK derived an analytical expression of the corresponding response function (i.e. 

the GK response function) valid when enzymes are in much lower concentration than their 

substrates. Moreover, they showed that a substantial increase of the system’s sensitivity can 

be observed when both, kinases and phosphatases, are saturated. Given the prominent role 

played by this motif as a building block of signaling cascades, this way of generating 

ultrasensitivity - termed zero-order ultrasensitivity mechanism– has received a lot of 

attention [Ferrell 1996, Racz and Slepchenko 2008, O'Shaughnessy et al 2011].

In order to analyze the effect of dynamic range limitations on this important motif, we 

considered a GK ultrasensitive module where both, kinase and substrate, were equally 

saturated (without loss of generality we fixed the system’s parameters to achieved an nH=3). 

For this ultrasensitive module we proceeded to numerically estimate using equation [1] the 

overall system’s sensitivity, η, in different upstream and downstream constraint scenarios 

(figure 5a).

As in the above analysis, when input and/or readout saturation effects were noticeable, the 

module’s effective working range was constrained to its low input signal region (see figure 

2). However, in this case, the polynomial order of the GK transfer function tends to n=1 for 

low enough input signals (see Figure S1b). As a consequence, there is now a loss of 

sensitivity not only for upstream limited regimes, when the input module saturates, but also 

for large values of Qdown, in the downstream limited regime (right-bottom region of figure 

5a).

It is interesting to consider the case of asymmetric GK ultrasensitive functions, where only 

one of the enzymes is saturated (i.e. either the phosphatase is saturated and not the kinase or 

the kinase is saturated and not the phosphatase), producing left or right-ultrasensitive 

response curves (see Sup Mat SM1). Right and symmetric cases exhibit no differences in 

their qualitative behavior (figure 5b). However noticeable differences arise in the effect of 

constraints on the central module’s dynamic range for the case of a left-ultrasensitive GK 

function (figure 5c). As for the symmetric case, a loss of sensitivity can be observed for 

upstream limited regimes (upper area of figure 5c). However, for intermediate downstream 

saturation levels in absence of upstream saturation (bottom-center in figure 5c) a strong 

increase in sensitivity can be observed. In this regime, the readout range encompasses the 

most sensitive part of the left-ultrasensitive curve, increasing the effective system’s 

sensitivity. For higher values of the downstream restriction coefficient, the module’s 

effective output dynamic range is further reduced, the polynomial first order nature of the 

response becomes dominant (n=1), and the system’s sensitivity is severely lost reaching η = 

1 (bottom-right in figure 5c).

D. Multistep activation modules

In a multistep activation module, a common input signal simultaneously regulates more than 

one biochemical process that synergistically produces an output response [Zhang et al 

2013]. These motifs are relevant in many biological situations, for instance for multiple 

distributive phosphorylation processes [Gunawardena 2005] or in the context of gene 

regulation, when the promoter region of a transcription factor’s target gene has multiple 

binding sites [Rippe 1997]. We analyze here an instance of the latter scenario, but equivalent 
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conclusions could be drawn for multiple phosphorylation systems in the limit of non-

saturated reactions [Gunawardena 2005].

We proceed by considering the biochemical scheme of reactions taking place inside the 

transcriptional module shown in figure 6, where, for the sake of simplicity, we assumed that 

there are only two cis-regulatory response elements. In this scheme A is the transcription 

factor, and B the associated transcribed mRNA.

Assuming mass action kinetics, the steady state module’s transfer function can be written as:

[13]

where Ki=ki
−/ ki

+ is the equilibrium dissociation constant for the ith binding site. In the case 

where v1 ~ 0 (i.e. protein transcription can be neglected for single-site binding) the module 

can achieve the maximal sensitivity value, nH=2, in the limit of K1>>K2, which corresponds 

to high cooperativity between binding sites [Rippe1997]. On the other hand, for K1<<1 the 

response tends toward a hyperbolic functional form presenting nH=1.

It is worth noting that the polynomial order (i.e., the response coefficient) of the transfer 

function given by equation [13] in the low input region is quadratic. As we have described 

above, this implies that under a downstream restriction regime, this module could achieve 

an effective sensitivity of ηH ~2. Notably, this arises directly from a structural property of 

the module, independently of the particular choice of its internal parameter values. This 

means that even in the case of no-cooperativity (for instance, if K1 and K2 were of the same 

order) maximal ultrasensitivity may be achieved in the regime where the readout module 

saturates. We show in figure 7a the transfer function corresponding to equation [13], for a 

choice of internal parameter values compatible with a module sensitivity level of nH=1.36. 

The response function presents a left-ultrasensitive character (with  and ). 

In fact, for low input signals the module can display sensitivity levels larger than nH=1.36 

(n=2), and consequently the overall system’s sensitivity could increase under downstream 

restrictions. To illustrate this point, in figure 7b we show the analysis of the three module 

system’s sensitivity. As expected, it can be appreciated that for large values of the 

downstream restriction coefficient, a sensitivity level of η = 2 can be achieved, similarly to 

what it could have been obtained from an isolated module displaying high levels of 

cooperativity.

E. Competition modules

Molecular titration and stoichiometric inhibition processes can lead to left-ultrasensitive 

behavior if an inhibitor B is abundant and has high affinity for a signaling species A [Ferrell 

1996, Buchler and Louis 2008, Rowland et al 2012]. At low values of total A, all of it is in 

the form of an inactive complex B:A. This will be true up to the point where all B is 

consumed by the complex. At this threshold point all the buffering capacity of B is 

exhausted and a small signal increment, ΔA, will be almost entirely available for activating a 

downstream target, leading to a sizeable increase in the response function. As an example of 

this type of ultrasensitive motif we studied a simple model of protein sequestration and 
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transcriptional response proposed by Buchler and Cross [Buchler and Cross 2009] (see 

figure 8).

According to the Buchler and Cross model (see Sup. Mat. SM5) the equilibrium 

concentration of a transcription factor A, that can reversibly bind to a stoichiometric 

inhibitor B, can be expressed as:

[14]

where AT and BT are total concentrations of the signaling and inhibitor species, respectively. 

Kd =k1
−/k1

+ is the reaction dissociation constant, given as a ratio of the backward and 

forward kinetic constants, k1
− and k1

+, respectively. In addition, A can also bind to a single 

DNA-binding site, activating a transcriptional response at a rate O. If basal transcription can 

be disregarded, the steady state system’s transcriptional response is given by

[15]

where ε=k2
−/k2

+ is the EC50 of the hyperbolic response function and Omax is the maximal 

induced mRNA transcription rate (see Sup. Mat. SM5 for details).

We show in figure 9 the corresponding module response function, O= O(AT), for a case 

where the buffering effect of B is expected to be sizable (Kd/BT << 1). The input-output 

curve has a marked threshold for AT~BT (around a value of 100 in figure 9a). The module’s 

transfer function is strongly left asymmetric (nH=2, nH
L=3.7, nH

R=1.4). This implies that if a 

downstream readout module imposed constraints on the effective dynamic range, the left-

ultrasensitive character of the module response function could be exploited to obtain a large 

sensitivity for the complete constrained system.

It is important to point out that the left Hill coefficient is also a global measure, and might 

not reflect the existence of much higher levels of local sensitivity (see Sup Mat SM1). This 

is indeed the case here, and the reason why, even though the left Hill coefficient is only 3.7, 

an overall effective sensitivity of about 12 may be obtained for this system in a downstream 

restriction regime. This is reported in figure 9b, where up to a six-fold global sensitivity 

increase can be observed for mild downstream limited regimes (bottom-center region of 

figure 9c).

F. Arrangement of two covalent cycles

In this section we aim to illustrate how the concepts introduced so far could be used to 

analyze more general setups in which dynamic range misalignments could also play a major 

role in connection with the ultrasensitive character of the system

Slepchenko and collaborators showed that linear arrangements of covalent cycles acquire a 

Hill sensitivity that exceeds the multiplicative limit for situations where activators are much 

less saturated than inhibitors [Racz and Slepchenko 2008]. In this regime, sequestration 

effects are negligible, and we can use our general framework to analyze the supra-
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multiplicative behavior they reported. Moreover, it is worth noting that in these 

asymmetrical configurations the corresponding transfer functions present a markedly left-

ultrasensitive character suggesting that the observed increase in sensitivity could be 

explained in terms of read-out dynamic range restrictions operating on the composed 

system.

In order to evaluate this possibility, we numerically generated an ensemble of asymmetric 

bicyclic covalent cascades using the same parameter sampling procedure used by 

Slepchenko in [Racz and Slepchenko 2008]. For each cascade instance we considered the 

second module as the read-out unit of the first one, and estimated the corresponding 

downstream restriction coefficient values, Qdown (see Sup. Mat. SM6 for details). In 

addition, we assessed the observed supra-multiplicative character of the system defining the 

oversensitivity coefficient: , which is larger, lower or equal to 1 when 

the two cycles combines supramultiplicatively, submultiplicatively or multiplicatively 

respectively. For the sake of completeness, relevant features of the considered model, and of 

the sampling procedure are summarized in the supplemental material SM6.

We found (green points in figure 10) that supra-multiplicative behavior (π >1) occurs for 

almost every cascade realization when the analysis was constrained to exactly the same 

subspace of parameters (see Sup. Mat. SM6 for details) that was explored by Slepchenko 

and collaborators in [Racz and Slepchenko 2008]. It can be recognized from the figure that 

the sampled realizations spanned mild downstream restriction coefficient values. When we 

relaxed some of the constraints of the original sampling methodology (see Sup. Mat. SM6) a 

wider interval of Qdown could be spanned (blue points in figure 10) revealing a non-

monotonous behavior of π=π(Qdown).

The observed peak in the oversensitivity is entirely compatible with the behavior reported 

for mild downstream limited scenarios found in the two downstream constraint left-

ultrasensitive response functions: asymmetric GK cycles and competition modules (see 

bottom part of figures 5c and 9b). These findings suggest that the behavior of the overall 

sensitivity level of the compound system could be understood in terms of the downstream 

restriction concepts introduced in this paper.

V. Discussion and Conclusion

Despite the success of module-based approaches to disentangle the complexity of cellular 

biochemical networks, on a general basis, care should be taken when realistic, integrated 

systems are analyzed, to accommodate the cases where the properties of individual 

components change upon interconnection.

In the present contribution we asked if the simplest possible non-trivial form of distortion by 

interconnection, i.e. limitations on the input and/or output effective working ranges of a 

given module imposed by upstream and downstream components, could produce substantial 

changes to the ultrasensitive features of a sigmoidal module.
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We made use of a three-module setup, and considered the case where different ultrasensitive 

modules of interest were coupled to Michaelis-Menten-type modules, acting as input and 

read-out components. We evaluated the overall system sensitivity considering, for each 

analyzed case, different working-range misalignment situations assessed in terms of 

upstream and downstream restriction coefficients, Qup and Qdown.

We found that, independently from the detailed mechanism involved, whenever the 

upstream module acts as the limiting component (i.e. large Qup values), the global 

ultrasensitivity character of the system is severely reduced. On the other hand, we found a 

much richer dependency of the overall system’s ultrasensitivity on the downstream 

restriction coefficient, Qdown. Whenever the downstream unit is the limiting element of the 

cascade (i.e. for large Qdown values, and small Qup values) different behaviors arise 

depending on the specific non-linearities displayed by the analyzed ultrasensitive module 

(GK vs Hill, for example).

In the light of these results, downstream dynamic range restrictions should be particularly 

taken into consideration when analyzing modules presenting left-ultrasensitive responses. 

We already analyzed molecular titration modules based on a threshold model of 

transcription presented by Buchler and Cross [Buchler and Cross 2009]. In a recent 

analytical study, Gunawardena found that ordered distributive multisite phosphorylation 

systems could also have response functions of the same mathematical form than the one 

depicted in figure 9a (compare this figure with figure 2 in Gunawardena’s work 

[Gunawardena 2005]). He reasoned that this kind of transfer function creates an efficient 

threshold. The system response is maintained close to 0, for input signals below a suitable 

threshold (input ≤100 in the case of figure 9). However, above the threshold, the response 

does not switch between 0 and 1 abruptly, as would be the case for an efficient switch. In 

this context, it is worth noting that, even though such a module could be considered a bad 

switch when working in isolation, a downstream-limited readout unit could easily convert it 

into a good switch taking advantages of the local non-linearities of the module’s response 

curve, as was demonstrated in figure 9b for the competition module.

In addition, our general framework allowed us to analyze distinctive features displayed by 

specific biochemical motifs. For instance we noticed that, irrespectively of their specific 

degree of cooperativity, multistep activation modules could produce high levels of 

sensitivity under downstream limited regimes. Interestingly, when left-ultrasensitive transfer 

functions were involved, the system overall ultrasensitivity could be significantly enhanced 

for relatively mild downstream constrained situations. For these cases, one may imagine that 

the downstream component’s EC50 value is fine-tuned, in the sense that only the most 

sensitive part of the sigmoidal module’s output is read by the downstream unit just before it 

reaches its saturation levels. In this way, downstream saturation could be considered as a 

new mechanism on its own, capable of building a highly ultrasensitive device, from an 

original asymmetrical and modestly ultrasensitive module.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Panel A) Setup of the extended system used to analyze the effects of the dynamic range 

limitations imposed by upstream (red) and downstream (green) components on an 

ultrasensitive module (blue). The maximum output level of the upstream unit, Omaxup, sets 

the extent of the spanned input range of the ultrasensitive module (red horizontal axis on the 

blue panel). On the other hand, input values, Idown, in the sensitive region of the downstream 

component (i.e. Idown<EC50down) set the effective readout range of the ultrasensitive 

module (green vertical axis on the blue panel). Panel B) Representative toy model involving 

a zero-order ultrasensitive phosphorylation-dephosphorylation module (R3 and R4 

biochemical reactions), connected to an upstream catalytic activation unit (R1,R2) and a 

downstream deactivation hyperbolic units (R5,R6). For this example Iup = [A], Oup = IM = 

[B*], OM = Idown = [C*] and Odown = [D*]. When sequestration processes between the 

ultrasensitive module and the upstream component is negligible ([C − B*] ≪ [B] + [B*] a 

module-based description can be adopted. The transfer function of upstream and 

downstream components follow a Michaelis-Menten curve, while the transfer function of 

the ultrasensitive module follows a G-K function.
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Figure 2. 
(a) Schematic response function diagrams for a given ultrasensitive module are shown in 

left, center, and right panels for no-limitation, upstream limitation, and downstream 

limitation regimes respectively. In each case a red horizontal and a green vertical line, 

aligned with panel axis, represent the module’s input and read-out operative ranges imposed 

by upstream and downstream components respectively. The effective module’s working 

ranges are highlighted in each panel. In the left most panel Qup, Qdown <<1 

(Omaxup>EC50M and EC50down>OmaxM), and saturation of the input and readout modules 

do not play a role in the system response. For large values of Qup (Omaxup<EC50M) an 

upstream saturation regime can be defined, in which the upstream module’s maximum 

output level do limit the spanned input range of the ultrasensitive module (central panel). On 

the other hand, large values of Qdown (EC50down<OmaxM) correspond to downstream 

saturation situations where the readout module limits the effective output range of the 

ultrasensitive module (rightmost panel). (b) A diagram to illustrate, through graphical 

composition, how an input signal, Iup=Ii, is transmitted along the entire system is shown in 

the left most panel for a non-constraint regime. Transfer functions of the upstream 

component, ultrasensitive-module, and downstream unit are depicted in the lower-right, 

upper-right, and upper-left quadrants respectively. The same colors and labels as in panel (a) 
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were used. Similar diagrams are shown in center and right-most panels for upstream 

saturation and downstream saturation regimes respectively.
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Figure 3. 
(a) System's Hill coefficient, η, dependency on the parameter κ (see equation [6]) were 

estimated for several Hill type ultrasensitive modules. nH=1, 2, 4 and 8 are shown with red, 

green, light blue and violet colors respectively. It can be seen that for κ>1 the system’s 

sensitivity is strongly attenuated, while for κ<<1 no sensitivity reduction takes place. (b) 

Heat-maps of system's Hill coefficient (η) as a function of Qup and Qdown
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Figure 4. 
Goldbeter and Koshland covalent cycle. (a) Scheme, (b) biochemical reactions.
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Figure 5. 
Heat-maps of Hill coefficient (η) calculated for different GK ultrasensitive modules coupled 

to input and readout hyperbolic modules for different values of Qup and Qdown. (a) 

Symmetric ultrasensitive GK module, with  (b) Right ultrasensitive 

GK module, with  and  (c) Left ultrasensitive GK module, with 

 and . Transfer functions and response coefficients of these 

modules in isolation are shown in figure S1. All the panels have the same color code, lines 

in (a) and (b) represent the same η values, which are different from those in (c).
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Figure 6. 
Simple model of a transcription factor A, which can binds to a promoter with multiple 

binding sites. (a) Scheme, (b) biochemical reactions.
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Figure 7. 
(a) The transfer function for the multistep activation module (equation [13], with v1=0 and 

v2 =K1 = K2 =δ=1) and a Hill function of the same Hill coefficient, nHill=1.36, are shown as 

a green-continuous, and a red-dashed line respectively. Both curves have the same EC50 but 

the multistep green curve lies below the red Hill curve. Therefore, the multistep transfer 

function presents a higher left-ultrasensitivity coefficient, and a lower right ultrasensitivity 

coefficient value.

(b) Heat-map for the system's Hill coefficient for the same multistep activation module as 

panel (a). It can be seen that under downstream saturation (Qdown>>1 and Qup <<1), the 

system displays an effective sensitivity value η ~2, as it is expected for a transfer function 

with a quadratic initial increase.
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Figure 8. 
Simple model of protein sequestration and transcription. Active transcription factor A is 

sequestered by inhibitor B into an inactive AB complex that cannot bind DNA. (a) Scheme, 

(b) biochemical reactions.
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Figure 9. 
(a)Transfer function for the competition module, O= O(AT) (equations [14] and [15)], with 

Omax=1, BT=100, Kd =k1
−/k1

+ =0.05 and ε=k2
−/k2

+=100. The high asymmetry observed in 

terms of left and right ultrasensitivity makes this module a good molecular implementation 

of a threshold device. In fact The input-output curve has a marked threshold for AT~BT. (b) 

Heat-map of system's Hill coefficients for a competition module with the same parameters 

than panel (a). As was the case for other left-asymmetric response functions (e.g. the 

asymmetric GK case shown in figure 3c) a marked increase in overall global sensitivity 

arises for mild downstream restrictions. Because of the linear character displayed by the 

transfer function for low input signal levels, the system sensitivity tends to η=1 for 

extremely downstream constraint situations (Qdown ≫ 1 and Qup ≪ 1).
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Figure 10. 
Over-sensitivity as a function of Qdown calculated for an ensemble of 2000 cascades. Green 

points correspond to 1000 cascade realizations from the original Slepchenko sampling 

procedure. Points obtained considering an extended interval log(c) in [−3,−1.2] and no 

restriction on ymax value are shown as light-blue points. Vertical lines mark Qdown 

boundaries for which supramultiplicativity is observed for the original Slepchenko sampling. 

A non-monotonous behavior of π=π(Qdown) could be easily recognized for the extended 

sampling case.
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