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Abstract Scalar singlet dark matter is one of the sim-

plest and most predictive realisations of the WIMP (weakly-

interacting massive particle) idea. Although the model is con-

strained from all directions by the latest experimental data,

it still has viable regions of parameter space. Another com-

pelling aspect of scalar singlets is their ability to stabilise

the electroweak vacuum. Indeed, models of scalar dark mat-

ter are not low-energy effective theories, but can be valid all

the way to the Planck scale. Using the GAMBIT framework,

we present the first global fit to include both the low-energy

experimental constraints and the theoretical constraints from

UV physics, considering models with a scalar singlet charged

under either a Z2 or a Z3 symmetry. We show that if the

model is to satisfy all experimental constraints, completely

stabilise the electroweak vacuum up to high scales, and also

remain perturbative to those scales, one is driven to a rel-

atively small region of parameter space. This region has a

Higgs-portal coupling slightly less than 1, a dark matter mass

of 1–2 TeV and a spin-independent nuclear scattering cross-

section around 10−45 cm2.

1 Introduction

The discovery of the Higgs boson at the LHC makes a strong

case for the existence of fundamental scalar particles. This

observation immediately raises the question of whether there

are other fundamental scalars that may address some of the

open problems of particle physics. For example, the Stan-

dard Model (SM) of particle physics can be extended by

a gauge-singlet scalar field with a stabilising symmetry in

order to obtain a dark matter (DM) candidate [1–3]. Such a
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scalar singlet naturally interacts with the SM by coupling to

the Higgs field and thus obtains a thermal relic abundance

via the freeze-out mechanism. In spite of its simplicity, the

model possesses a number of viable parameter regions that

are consistent with all experimental constraints. Scalar sin-

glets are therefore arguably the simplest realisation of the

idea of weakly-interacting massive particles (WIMPs).

A remarkable feature of the scalar singlet DM model is

that, just like the SM, it remains valid up to very high energies

– potentially up to the Planck scale MPl ∼ O(1019)GeV. This

is in sharp contrast to many alternative DM models, which

are conceived only as effective low-energy theories. In fact,

scalar singlets can even resolve a potential problem of the SM

at high energies: for the measured values of the Higgs boson

and top quark masses, the electroweak vacuum is found to

be metastable, because the Higgs quartic coupling becomes

negative on scales � O(1015)GeV. Even though the expected

lifetime of the electroweak vacuum state far exceeds the age

of Universe, it is an appealing feature of scalar singlet models

that the additional coupling between the Higgs and the scalar

singlet affects the running of the Higgs quartic coupling at

high scales and can prevent it from becoming negative [4–

14].

In this work we present the most comprehensive study

of scalar singlet DM to date by combining the information

from low-energy observables, such as the relic abundance

of scalar singlets and experimental constraints, with a study

of the properties of the model at high energies, in particu-

lar perturbativity and vacuum stability. For this purpose we

use the GAMBIT global fitting package [15], which enables

the user to incorporate existing software via a backend sys-

tem. Specifically, we use FlexibleSUSY 2.0.1 [16,17] and

SARAH 4.12.2 [18–21] for the renormalisation group evolu-

tion needed to study vacuum stability, DDCalc 2.0.0 [22] for
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DM direct detection, gamLike 1.0.0 [22] and DarkSUSY

5.1.3 [23,24] for DM indirect detection with gamma-rays,

micrOMEGAs 3.6.9.2 [25] for the relic density calculation,

and Diver 1.0.4 and T-Walk 1.0.1 [26] for efficient sampling

of the parameter space. This approach makes it possible to

study the parameter space relevant for scalar singlets together

with a number of nuisance parameters reflecting uncertainties

in SM couplings and masses, the DM halo distribution, and

nuclear matrix elements important for calculating nuclear

scattering cross-sections. Moreover, it is easily possible to

extract additional information, such as the scale at which per-

turbativity is violated and the expected age of the Universe

in a metastable scenario.

Most studies in the past have focused on the case where a

Z2 symmetry stabilises the singlet, and makes it a viable DM

candidate [27–48]. Perturbativity, vacuum stability, direct

detection and the relic density of scalar singlets with a Z3

symmetry have also been investigated [8,49]. The latter case

introduces new phenomenology due to an additional cubic

S coupling, leading to semi-annihilations. This annihila-

tion channel can open up regions of parameter space that

would otherwise be ruled out by direct detection [8], and

impact indirect detection by modifying the injection spectra

of light particles [50]. However, vacuum stability considera-

tions limit the magnitude of the responsible coupling, leading

to an interesting interplay of different constraints. Variants

with a residual local Z2 or Z3 symmetry, arising from the

breaking of a new U (1) symmetry and including an associ-

ated Z ′ boson, have also been studied [51–53].

In this paper, we present an updated global analysis of

the model with a global Z2 symmetry, and carry out the first

global fit of the model with a global Z3 symmetry. In partic-

ular, we improve on our earlier analysis of the Z2 model [47]

by treating the singlet self-coupling λS as a free parame-

ter, including full RGE running, considering vacuum sta-

bility and perturbativity, and incorporating the latest results

from XENON1T [54,55] and PandaX [56]. As we will see,

these new direct detection results are particularly relevant,

as XENON1T has sufficient sensitivity to probe the most

interesting regions of parameter space. Intriguingly, rather

than ruling out the model, XENON1T observes an upward

fluctuation in their data, which can be interpreted as slight

preference for the model that we consider.

We give details of the models in Sect. 2, of our input

parameters and scanning procedure in Sect. 3, and of our

observable calculations and likelihood functions in Sect. 4.

The results for the Z2 and Z3 models appear in Sects. 5 and

6, respectively. We summarise our findings in Sect. 7.

GAMBIT software can be downloaded from http://gambit.

hepforge.org, and all samples, input files and best-fit points

from this paper are available from Zenodo [57].

2 Model

2.1 Z2-symmetric model

Let us first consider the case where a real scalar singlet S

is stabilised by making the Lagrangian invariant under the

Z2 transformation S → −S. The most general renormalis-

able scalar potential permitted by the Z2, Lorentz and gauge

symmetries is then [58],

VZ2
= μ2

H
|H |2 +

1

2
λh |H |4 +

1

2
λhS S2|H |2 +

1

2
μ2

S
S2

+
1

4
λS S4. (1)

The terms proportional to μ2
H

and μ2
S

are the Higgs and

singlet bare masses, the terms proportional to λh and λS

are their quartic self-couplings, and the S2|H |2 term is the

portal coupling that connects the two bosons. As S never

obtains a vacuum expectation value (VEV), the singlet exten-

sion is fully specified by the three parameters μ2
S
, λhS and

λS . After electroweak symmetry breaking we can replace

H →
[

0, (v0 + h)/
√

2
]T

, with h being the SM Higgs field

and v0 = 246 GeV the VEV of the electroweak vacuum.

Then, the portal term proportional to λhS induces couplings

of h to the scalar singlet S via the terms h2S2 and v0hS2.

Moreover, after symmetry breaking the M S singlet mass is

given by

mS =
√

μ2
S +

1

2
λhSv

2
0, (2)

where v0 is the M S Higgs VEV. The singlet pole mass, mS ,

can be obtained from this using

m2
S

= m2
S
+ �S, (3)

where �S represents loop corrections that shift the M S mass

to the pole.

The only renormalisable interaction of S with the SM is

through the “Higgs portal” S2 H2 term. It is this term that

makes it possible to have thermal production of DM in the

early Universe. This portal coupling also provides potential

annihilation signals [28–30], direct detection and h → SS

decays [31]. Notice that for scalar masses less than a few TeV,

the couplings λS and λhS necessary to explain the DM relic

density remain sufficiently small to preserve perturbativity.

The scalar field in this model can also feature in theories of

inflation [12,59–61] and baryogenesis [62–64].

Several viable parts of the parameter space of the scalar

singlet model have yet to be probed, with the DM phe-

nomenology essentially given by m S and λhS . Specifically,
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the parameters that have been identified to be compati-

ble with current experimental data exist in a number of

regions [34,46,47]:

1. A resonance region around m S ∼ mh/2, where in spite of

very small couplings (λhS � 10−2) the singlet can never-

theless account for the entire observed relic abundancce

of DM.

2. The resonant “neck” region at m S = mh/2, which can

escape detection by the combination of large couplings

and an extremely small relic S density.

3. A high-mass region with λhS of order one.

Eventually, direct detection is expected to probe much of

this remaining parameter space, leaving only large values of

λhS at which the theory begins to become non-perturbative

[34] and a small part of the resonance region at m S ∼ mh/2

untested.

Although the relic density and searches at (in)direct detec-

tion and collider experiments only probe the mass mS and

the portal coupling λhS , the quartic self-coupling λS of the

scalar singlet does become relevant for the stability of the

electroweak vacuum.1 The possibility to further enlarge the

expected lifetime of the electroweak vacuum or to even ren-

der it absolutely stable is an appealing feature of scalar exten-

sions of the SM, and one of the prime motivations for our

study of the scalar singlet DM model.

2.2 Z3-symmetric model

The symmetry group that stabilises S is not necessarily

Z2. We will also consider a complex scalar singlet charged

under a Z3 symmetry, with S transforming as S → e2π i/3S.

This is particularly interesting because, due to the cubic S3

term allowed by this symmetry, it is the simplest DM the-

ory involving semi-annihilations [50,66,67], i.e. processes

where two DM particles annihilate to an SM particle and

another DM particle.2 The most general scalar potential

respecting the Z3 and SM symmetries is given by,

VZ3
= μ2

H
|H |2 +

1

2
λh |H |4 + λhS S†S|H |2 + μ2

S
S†S

+ λS(S†S)2 +
μ3

2
(S3 + S†3), (4)

1 The quartic self-coupling also induces DM self-interactions, which

can in princple be constrained by astrophyical observations (e.g. [65]).

However, for the range of singlet masses that we consider, the self-

interaction cross section is too small to be observable even for very

large values of λs .

2 It is also possible to have an S3 term if the Lagrangian is not symmetric

under any Zn symmetry. However, such a model also requires quite some

tuning to keep the DM sufficiently metastable so that its lifetime is long

compared to the age of the Universe.

Table 1 Model parameters that we vary in our fits, as well as the ranges

over which we vary them, and the types of priors that we apply to

the sampling. The mixed prior for the parameter μ3 consists of two

separate scans. One scan employs a flat prior between 0 and 1 GeV and

a logarithmic prior from 1 to 4 TeV, whereas the other scan employs a

flat prior for the full range

Parameter Minimum Maximum Prior

λhS 10−4
√

4π = 3.54 Log

λS 10−4
√

4π = 3.54 Log

mS (full-range scan) 45 GeV 10 TeV Log

mS (low-mass scan) 45 GeV 70 GeV Flat

μ3 (Z3 model only) 0 GeV 4 TeV Mixed

where S† denotes the Hermitian conjugate of S. Unlike the

Z2 model, the scalar is no longer a self-adjoint field. Instead,

we have both S∗ and S particles, both of which contribute to

the relic abundance.

This model has received significantly less attention than

the Z2-symmetric theory, but has been studied in the con-

text of neutrino masses [68], baryogenesis [69] and in terms

of DM phenomenology [8]. The latter included constraints

from vacuum stability and perturbativity along with the relic

density, direct detection and invisible Higgs decays. Singlet

masses below ∼53 GeV were ruled out by invisible Higgs

decays, and the semi-annihilation process was shown to allow

the model to avoid direct detection constraints in parts of

parameter space where the Z2 model is excluded. However,

as we will discuss in Sect. 4.2, vacuum stability sets a limit on

μ3 and thus on the strength of semi-annihilations, so eventu-

ally this model also comes within reach of tonne-scale direct

detection experiments.

3 Input parameters and sampling

3.1 Parameters and nuisances

In Ref. [47], we studied the direct phenomenological impli-

cations of the Z2 symmetric scalar singlet model defined at

a low energy scale, without considering renormalisation of

the theory, running couplings nor vacuum stability. In this

sense, Ref. [47] treated the scalar singlet as an effective field

theory at the scale of the scalar mass. In this study, we will go

on to examine the implications of considering the scalar sin-

glet as a UV-complete theory. The input parameters and their

required ranges are necessarily different for each of these

studies.

The parameters and ranges that we scan over in our fits,

along with those that we hold fixed, are presented in Tables 1–

3.
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Table 2 Names and ranges of SM, nuclear and halo nuisance param-

eters that we vary simultaneously with scalar singlet parameters in our

fits. We sample all these parameters using flat priors

Parameter Value (± range)

Local DM density ρ0 0.2–0.8 GeV cm−3

Mean DM speed vmean 240 (24) km s−1

Galactic escape speed vesc 533 (96) km s−1

Nuclear matrix el. (strange) σs 43(24)MeV

Nuclear matrix el. (up + down) σl 50(45)MeV

Strong coupling αM S
s (m Z ) 0.1181(33)

Higgs M S mass mh(mS) 130 (50) GeV

Top pole mass mt 173.34(2.28)GeV

Table 1 gives the parameters of the scalar singlet models

and the priors on them that we adopt in our scans. We carry

out two main types of scans: the first considering masses

across the entire parameter space, from 45 to 10 TeV, and a

second focussed on masses at and below the Higgs resonance

m S ∼ mh/2, in order to obtain better sampling of this region.

Notice that we do not scan over DM masses below 45 GeV,

as this part of parameter space is robustly excluded by the

combination of direct detection searches, constraints on the

invisible decay width of the Higgs, and the singlet relic den-

sity. Note also that although the M S mass mS (at scale mS)

is the actual input parameter in our scans, our effective prior

range is defined in terms of the S pole mass, as we scan over

a larger range of m S but apply a cut on the S pole mass after

spectrum generation.

To study the phenomenology of a given model, one must

be able to compute perturbative expressions, such as pole

masses and loop-corrected scattering cross-sections. We thus

demand perturbativity as part of the likelihood analysis, by

invalidating points in parameter space where any of the

dimensionless coupling parameters exceed
√

4π . The choice

of this value is similar to that in other studies [59,70].

In addition to the scalar singlet parameters, we also vary a

number of nuclear, SM and astrophysical parameters within

their allowed experimental or observational uncertainties.

Table 2 gives the full ranges of all the nuisance parameters

that we consider, along with the central values that we adopt.

We use flat priors for sampling all nuisance parameters, as

each of the parameters is well enough constrained that the

choice of prior has no effect.

In this paper, where we include renormalisation of the

input masses, we trade the Higgs pole mass for the M S mass

mh =
√

−2μ2
H , defined at the scale mS . We then compute

the physical pole mass from the input parameters (see discus-

sion in Sect. 4.1). This relationship is affected by radiative

corrections from the scalar singlet mass, so the relationship

between mh and the pole mass is not constant throughout the

Table 3 Names and values of parameters that we hold fixed in our fits

Parameter Fixed value

Electromagnetic coupling 1/αM S(m Z ) 127.950

Fermi coupling GF 1.1663787 × 10−5

Z boson pole mass m Z 91.1876 GeV

τ lepton pole mass mτ 1.77686 GeV

Bottom quark mass mM S
b (mb) 4.18 GeV

Charm quark mass mM S
c (mc) 1.280 GeV

Strange quark mass mM S
s (2 GeV) 96 MeV

Down quark mass mM S
d (2 GeV) 4.70 MeV

Up quark mass mM S
u (2 GeV) 2.20 MeV

parameter space, and we must therefore scan a large range for

mh . The resultant value for the pole mass mh is constrained

by the likelihood function described in Sect. 4.7.

We scan over a range of ±3σ around the best estimates of

the strong coupling, top pole mass, nuclear matrix elements,

the most probable DM speed in the Milky Way halo vmean,

and the Galactic escape velocity at the solar position vesc.

We use the same parameter to control vmean and the rota-

tion speed, vrot of the galactic disk, as these can be taken

as approximately equal under the assumption of a smooth,

spherical DM halo. We apply a log-normal likelihood to the

local DM density ρ0, so we scan an asymmetric range about

the central value for this parameter. Details of the likelihoods

that we apply to these parameters, along with references for

their central values and measured uncertainties, can be found

in Sect. 4.7.

We scan over the nuclear matrix elements and local DM

density because they each have a significant impact on direct

detection. The strong coupling and Higgs mass enter into the

cross-sections for annihilation and nuclear scattering of S

[34]. In Ref. [47], we included 13 nuisance parameters. In that

study, we determined that varying the masses of the bottom,

charm, strange, up and down quarks, the Fermi coupling and

the electromagnetic couplings within their experimentally-

allowed ranges did not have any significant effect on the

results. Here we therefore fix those parameters (Table 3).

On the other hand, including the uncertainties of the local

DM velocity profile would have a more important effect. We

therefore also include the most probable DM speed vmean and

the local Galactic escape speed vesc as nuisance parameters in

our fits here. This results in a total of 8 nuisance parameters,

or 11 and 12 parameters in total for our respective scans of

the Z2 and Z3 models.

The reduction in the total number of nuisance parameters

here compared to Ref. [47] is also intended to counter-act

the increased computational requirements for this global fit.

The likelihood is significantly more demanding of comput-

123



Eur. Phys. J. C (2018) 78 :830 Page 5 of 23 830

ing resources due to the need to solve the RGEs and com-

pute pole masses, and as a result takes longer to compute. We

have also replaced the relatively small prior on the Higgs pole

mass in Ref. [47] with a much less constrained M S mass, in

order to be able to effectively sample Higgs masses around

the observed value across the whole scalar singlet parameter

space. Therefore, although we have fewer nuisance parame-

ters in these global fits, they actually require more computa-

tional resources than those of Ref. [47].

Our adopted masses for the Z boson, τ lepton and the other

quarks, as well as our chosen Fermi and electromagnetic

couplings, come from the 2017 compilation of the Particle

Data Group [71] (Table 3).

3.2 Scanning procedure

Although many directions in parameter space are well con-

strained, efficient sampling of both the Z2 and Z3 scalar sin-

glet models still requires sophisticated sampling algorithms.

We scan the parameter space with a differential evolution

sampler Diver [26], and an ensemble Markov Chain Monte

Carlo (MCMC) T-Walk [26]. Both algorithms are particu-

larly well-suited to multi-modal problems in many dimen-

sions. Diver is an optimiser best suited to mapping the pro-

file likelihood, whereas T-Walk is better suited to obtaining

the Bayesian posterior. Using Diver, we first obtain well-

sampled profile likelihoods, and make sure to identify all

modes of the likelihood surface. This provides information

about the locations able to potentially contribute to the pos-

terior. We then obtain posterior distributions using T-Walk,

making sure that it does not fail to identify any of the modes

found by Diver.

Sampling the resonance region mS ≈ mh/2 can be chal-

lenging when scanning over a large mass range. We run

an additional Diver scan in this region to ensure sufficient

sampling, employing a flat prior between m S = 45 and

70 GeV. The “neck” part of the resonance is even more dif-

ficult; here we perform a third, even more focussed scan,

excluding any points with S pole masses not in the range

m S ∈ [61.8, 63.1]GeV.

We repeat all scans of the Z3 model with both flat and

log priors on μ3, as the choice of prior on this parameter can

have a significant impact on the completeness with which the

profile likelihood of this model is sampled.

We perform identical scans with and without the require-

ment that the singlet fully stabilises the electroweak vacuum.

With this requirement imposed, models with a metastable

electroweak vacuum (such as the SM) are excluded. Although

such models are not physically invalid, the ability to make the

electroweak vacuum absolutely stable is theoretically appeal-

ing. We do not perform a scan over the low-mass range with

this additional constraint, as it is ruled out except for the

very top of the neck region (λhS � 0.2). We also carry out

Table 4 Sampling parameters for global fits of the Z2- and Z3-

symmetric scalar singlet models in this paper

Scanner Parameter Full range Low mass

Diver NP 50,000 50,000

convthresh 10−4 10−5

T-Walk chain_number 3405

timeout_mins 1380

sqrtR < 1.01

additional scans with Diver using the older 2017 XENON1T

constraint [54] instead of the recent 2018 result [55], for com-

parison.

The population and convergence settings that we use for

each sampler are given in Table 4. These settings are based

on a series of extensive tests and optimisations [26]. The

Diver scans that we present here each used 3400 Intel Xeon

Phi 7250 (Knights Landing) cores, for approximately 86 h

in total across all scans. For the 6 T-Walk scans, instead of

using a fixed tolerance associated with the sqrtR parameter,

we found that more reliable sampling could be obtained in the

current study by simply running on 1360 cores and halting

scans after 23 h, using the timeout_mins parameter newly

implemented in T-Walk 1.0.1.

The posteriors that we show come from the T-Walk scans

only. Our profile likelihood plots are based on the final

merged set of samples from all scans with common phys-

ical requirements and likelihoods. This includes both Diver

scans and any relevant T-Walk scans, any targeted low-mass

or neck scans, and scans with different priors on μ3. With-

out the requirement of absolute vacuum stability, our final

profile likelihoods (i.e. including XENON1T 2018 results)

are based on a total of 4.9 × 107 and 1.9 × 108 samples for

the Z2 and Z3 models, respectively. With the requirement of

absolute vacuum stability, the profile likelihoods are based

on 3.3×107 and 6.4×107 samples for the Z2 and Z3 models,

respectively.

We produce posteriors and profile likelihoods with pippi

[72], basing our posteriors on the maximum posterior density

requirement.

4 Physics framework and likelihood details

4.1 Pole masses and M S parameters

To investigate vacuum stability and perturbativity, and to cal-

culate observables contributing to the likelihood, we require

pole masses and running parameters consistent with known

SM data. We obtain these using the two-loop RGEs of Flex-

ibleSUSY 2.0.1 [16,17], via the SpecBit [73] interface

within GAMBIT [15]. FlexibleSUSY uses SARAH [18–21],
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along with parts of SOFTSUSY [74,75] and other higher-

order corrections [76–84].

As we vary the scalar singlet mass over two orders of

magnitude, we use the EFTHiggs mode of FlexibleSUSY,

which uses the algorithm developed in Ref. [76] and refined

in Ref. [17]. This implements a matching and running pro-

cedure for effective field theories, which is appropriate when

m S ≫ mt , while not compromising the precision of the Higgs

pole mass calculation (due to normal EFT uncertainties from

missing O(p2/m2
S
) terms) when m S is close to mt .

We use two-loop SM RGEs between the electroweak scale

and the scale of new physics. We take the scale of new physics

to be the scalar singlet running mass mS . At mS we perform a

matching between the SM and the scalar singlet DM model3

using the FlexibleEFTHiggs matching conditions given in

Ref. [17]. At scales larger than m S , we use two-loop RGEs

for the scalar singlet model.

For the Z2 model, the inputs to the FlexibleSUSY spec-

trum generator are the M S Lagrangian parameters λhS , λS ,

μH and μS , defined at the renormalisation scale Q = mS .

For the Z3-invariant version, this parameter set is extended

to include μ3(m S). The parameters λhS(mS), λS(m S) and

μ3(mS) are obtained directly from the model parameters sam-

pled by ScannerBit, while μH (mS) and μS(m S) are obtained

by inverting m2
h = −2μ2

H
and Eq. 2 respectively.4 Flexible-

SUSY fixes the remaining M S parameter λh to ensure cor-

rect electroweak symmetry breaking. It also accepts addi-

tional input data in the form of an SMINPUTS block, as

defined in the second SUSY Les Houches Accord (SLHA2)

[85]. These are given in Tables 2 and 3.

Once FlexibleSUSY has determined a consistent set of

M S parameters, it computes the singlet and Higgs pole

masses, using

m2
h = −2μ2

H
+ �H, (5)

and Eq. 3. Here �S and �H incorporate the full one-loop

self-energies generated with the help of SARAH 4.12.2

[18–21]. �H additionally includes all two-loop contribu-

tions from dominant orders, O(α2
t + αtαs). Note that in this

approach, we obtain the Higgs pole mass as an output rather

than an input parameter, and scan the parameter space by

varying the input M S mass mh . As the value of the scalar

singlet mass can have a significant impact on the relation-

ship between mh(mS) and mh , we allow mh to vary from

3 When mS < mt , we instead set the matching scale to mt , to avoid

matching to the UV theory below the scale where we extract SM param-

eters.

4 In the inversion of Eq. 2 we approximate the M S VEV as v2
0 =

1√
2GF

, where GF is the Fermi constant from Table 3. This means we

are effectively making a very mild approximation in the prior for m S ,

but no such approximation is made in the spectrum calculation, and the

impact on the result is negligible.

80–180 GeV. This is sufficient to permit a value of mh that

can give a 125 GeV pole mass throughout the scalar singlet

parameter space. We penalise all other points using a Gaus-

sian likelihood centred on the experimentally-measured mass

(mh = 125.09 ± 0.24 GeV; see Sect. 4.7).

Note that in this setup neither the Higgs pole mass mh , nor

the quartic coupling λh are inputs. Nonetheless, mh is well

constrained by the likelihood, so it is important that we can

calculate both mh and λh consistently using the procedure

described above.

4.2 Vacuum stability and perturbativity

With the running M S parameters of the scalar singlet model

obtained as described in the previous section, it is now pos-

sible to run the couplings from the electroweak scale to the

Planck scale, MPl = 1.22 × 1019 GeV and test for vacuum

stability.

We classify the stability of the electroweak vacuum in

three possible ways:

Stable If λh(Q) > 0 for all Q < MPl, the elec-

troweak vacuum is the global minimum of the

Higgs potential for all Q up to the Planck scale,

and is therefore absolutely stable with respect to

quantum fluctuations.

Metastable If λ(Q0) < 0 for any Q0 < MPl, but the

electroweak vacuum has an expected lifetime

that exceeds the age of the Universe.

Unstable If λ(Q0) < 0 for any Q0 < MPl and the

electroweak vacuum has an expected lifetime

that is less than the age of the Universe.

To distinguish between the latter two cases, and incorpo-

rate a likelihood penalty associated with vacuum decay, one

should calculate the decay rate of the electroweak vacuum. A

detailed description of how to obtain the decay rate and esti-

mate the probability that the vacuum would decay within the

age of the Universe can be found in section 2.5 of Ref. [73]

and references therein.

At large field values, the potential can be approximated

as V ≈ 1
4
λh |H |4. This can be used to find the so-called

“bounce” solution to the Euclidean equation of motion, and

obtain the bounce action [86],

B =
8π2

3 |λh |
. (6)

The rate of bubble nucleation per unit volume per unit time

can be estimated from the bounce action using,

Γ ≈ Λ4
Be−B, (7)
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where ΛB , the scale at which λh is minimised, has been

introduced following Ref. [87]. As we are interested in the

probability that the Universe would have decayed in our

past light cone, we introduce the lifetime of the Universe,

TU ≈ e140/MPl, and use it to define the volume of the past

lightcone, T 4
U . The predicted number of decays in our past

lightcone is therefore T 4
U Λ4

Be−B . We can hence define a like-

lihood contribution for no decay having occurred in our past

light cone as,

L = exp

[

−
(

e140 ΛB

MPl

)4

exp

(

−
8π2

3 |λh(ΛB)|

)

]

, (8)

based on the Poisson probability of the Universe having

decayed out of the electroweak vacuum by the present day.

The actual predicted lifetime in years is,

τ

yr
= 2.09 × 10−32

(

GeV

r

)

, (9)

where the rate r is given by,

r ≈ T 3
U Λ4

Be−B . (10)

For the SM, this gives a predicted lifetime of ∼ 1.1 × 1099

years.

Because the dominant contribution from a scalar singlet to

the running of λh is always positive, the electroweak vacuum

can only become more stable in the models we consider in

this paper than it is in the SM. As the probability of vacuum

decay is already very small even in the metastable SM, the

effect of going from a metastable vacuum to an absolutely sta-

ble one has a negligible impact on the composite likelihood.5

However, because the scenario of absolute stability is theo-

retically appealing, we repeat our global fits with the strict

condition that all models must be absolutely stable, inval-

idating all parameter combinations that give a metastable

vacuum.

In the Z3 model, low-scale vacuum stability gives an addi-

tional constraint on the μ3 parameter. If μ3 is large, the scalar

potential can posess Z3-breaking minima already at the weak

scale, which would be degenerate with or deeper than the SM

vacuum. This can be avoided by placing an upper bound on

the μ3 parameter. We adopt the condition given in Ref. [8]

for an absolutely stable SM vacuum, as an upper limit on μ3:

μ3 ≤ 2
√

λSm S . (11)

5 For this reason, in the summary above, we make a number of simple

approximations that are standard in the literature. For a discussion of

these and references to more precise calculations see section 2.5 of Ref.

[73].

This constraint can be relaxed slightly by allowing for the

possibility of a Z3-breaking minimum with a lower potential

energy than the SM vacuum, but an SM vacuum with a decay

half-life longer than the age of the Universe (see Ref. [8]).

We do not consider this possibility, as part of our interest in

studying scalar singlet DM, particularly in this global fit, is

the appeal of removing metastability from the SM altogether.

We will also require that the scalar singlet couplings

remain positive, such that the scalar singlet potential is

bounded from below. This means that we can isolate our

study of the electroweak vacuum to the Higgs dimension

only. This analysis neglects the possibility of a second min-

imum forming in the S direction of the potential, which is

possible when μ2
S < 0 and λhS is sufficiently large [29].

Due to the nature of the RGEs for the dimensionless scalar

couplings, λhS and λS , these couplings only grow with scale.

We let ΛP denote the scale where the dimensionless cou-

plings become larger than our upper bound for perturbativity√
4π ≈ 3.54. If ΛP < m S , we invalidate the point; other-

wise, we record the scale ΛP for later analysis.

There is an important caveat to our definition of vacuum

stability and how we apply this as a constraint on the parame-

ter space. In many cases, increasing the values of the dimen-

sionless couplings in the scalar singlet sector (λhS and λS)

results in the theory becoming non-perturbative at energy

scales as low as the electroweak scale. Because perturbation

theory is no longer applicable in this case, we cannot com-

pute the running of the quartic Higgs coupling to the typi-

cal scales of instability, so our analysis does not encounter

a minimum and thus renders the electroweak vacuum “sta-

ble”. Such parameter combinations therefore pass the test

for stability. This caveat is acceptable, because such models

can still be filtered out (if desired) based on the extremely

low scale at which perturbativity is broken, as given by ΛP .

Nevertheless, it is important to consider the order in which

we apply these constraints when interpreting the results in

Sects. 5 and 6.

4.3 Relic density

In the early Universe, scalar singlet DM would have been

in thermal equilibrium with SM particles. The annihilation

processes in the top two rows of Fig. 1 would have occurred

frequently compared to the Hubble expansion rate. As the

Universe expanded and cooled, the density of the scalar fields

would have decreased, making forward annihilation reac-

tions extremely rare and causing the DM abundance to freeze

out. To find this abundance, we solve the Boltzmann equation

[88]

dnS

dt
+ 3HnS = −〈σvrel〉

(

n2
S
− n2

S,eq

)

. (12)
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Fig. 1 The diagrams for annihilation, semi-annihilation, scalar-

nucleon scattering and Higgs invisible decays in the Z3 scalar singlet

model. Here N denotes nucleons, f are SM fermions and V SM gauge

bosons. Except for the semi-annihilation processes, the equivalent dia-

grams apply in the Z2 scenario but with S∗ replaced with S

Here H is the Hubble rate, 〈σvrel〉 is the thermal average

of the relative velocity of DM particles times their self-

annihilation cross-section, the number density of DM is given

by nS , and its equilibrium number density by nS,eq.

When semi-annihilation processes are possible, as in the

Z3 scalar singlet model, then Eq. (12) must be modified. The

tree-level semi-annihilation processes, where two DM parti-

cles can annihilate to a DM particle and an SM particle, are

shown in Fig. 1. In the Z3 model, the relic abundance con-

sists of equal parts S∗ and S, as each annihilation processes

requires both an S and S∗, and the semi-annihilation process

can occur equally rapidly via SS → S∗h and S∗S∗ → Sh.

We can therefore treat S and S∗ as the same particle in the

Boltzmann calculation, by including a factor of 1/2 [8].

dnS

dt
+ 3HnS = − 〈σvrel〉

(

n2
S
− n2

S,eq

)

−
1

2
〈σvrel〉SS→hS

(

n2
S
− nSnS,eq

)

,

(13)

where 〈σvrel〉 is the thermally averaged self-annihilation

cross-section without semi-annihilations, and 〈σvrel〉SS→hS

is the equivalent for the semi-annihilation channel. We define

a semi-annihilation fraction

α =
1

2

〈σvrel〉SS→hS

〈σvrel〉 + 1
2
〈σvrel〉SS→hS

, (14)

which we record for each sampled point in the Z3 parameter

space. To deal with semi-annihilations in the Z3 model, we

compute ΩSh2 using micrOMEGAs 3.6.9.2 [25], with the

setting fast = true.

As in Ref. [47], we employ the measured relic density

ΩDMh2 = 0.1188 ± 0.0010 [89] as an upper limit, allow-

ing models where the S relic abundance indicates that it is

only a fraction of the observed DM. We use a marginalised

Gaussian upper limit likelihood [15] for this purpose, adopt-

ing the default 5% theoretical uncertainty offered by DarkBit

and combining it in quadrature with the uncertainty on the

measured value. We self-consistently rescale all direct and

indirect signals for the thermal S relic density at each point

in the parameter space.

4.4 Direct detection

Scalar singlet DM is strongly constrained by limits on the

DM-nucleon scattering cross-section from direct detection.

The corresponding tree-level processes are represented in the

bottom left diagrams of Fig. 1.

We apply direct detection constraints using DarkBit,

drawing on the DDCalc [22] implementations of the experi-

mental results of LUX [90], PandaX [56,91] and XENON1T

[54,55]. We emphasise that since all three experiments have

similar sensitivity, a consistent combination of the respec-

tive likelihoods is essential to infer accurate constraints on

the parameter space.

For a given experiment, the likelihood of observing N

direct detection events, given a predicted number of signal

events Np, follows a Poisson distribution

L(N |Np) =
(b + Np)

N e−(b+Np)

N !
, (15)

where b denotes the expected number of background events

within the analysis region. We interpolate between values in

pre-calculated tables contained in DDCalc in order to deter-

mine the detector efficiencies and acceptance effects. The

likelihood in Eq. (15) is then obtained by recasting the exper-

imental results contained in DDCalc [22] for each experi-

ment.

In particular, for the recent XENON1T results [55] we

employ the data collected within the core mass of 0.65 t,

which in comparison to the full 1.3 t dataset has a substan-

tially smaller level of surface and neutron background events.

We take the total detection efficiency as a function of the

recoil energy from Ref. [55], weighting it by an additional

factor 0.65/1.3. Moreover, we only consider events within

the reference region defined as the area between the median
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of the nuclear recoil band and the 2σ quantile, leading to an

additional factor 0.475 in the detection efficiency. In our anal-

ysis, we then divide the events into two energy bins, based on

a separation of the S1 signal into the intervals [3 PE, 35 PE]
and [35 PE, 70 PE]. To this end, we convert a given nuclear

recoil energy into an expected S1 signal using Fig. 3 of Ref.

[55], and determine its probability to fall in either of the S1

bins by assuming S1 to be Poisson distributed. Furthermore,

we assume that the electron recoil background is constant

in S1, while we take the energy dependence of the neutron

background from Ref. [92]. Assuming for simplicity that the

remaining (sub-dominant) background contributions fall into

the first energy bin, this gives 0.46 and 0.34 expected back-

ground events for the lower and upper energy bins of our

analysis, respectively, compared to 0 and 2 observed events.

With these assumptions, we obtain a 90% CL upper bound on

the spin-independent scattering cross-section of DM in good

agreement with the published bound, and also reproduce the

slight preference (less than 2σ ) for a non-zero cross-section

at large DM masses.

4.5 Indirect detection

Searches for anomalous gamma-ray emission in dwarf

spheroidal galaxies constrain the DM annihilation cross-

section. The expected flux of gamma rays is,

Φi =
∑

j

〈σv〉0, j

8πm2
S

∫ Emax,i

Emin,i

d E
d Nγ, j

d E
, (16)

for an energy bin of width ΔEi ≡ Emax,i − Emin,i , where

〈σv〉0, j ≡ σv j |v→0 ≡ σv j |s→4m2
S

is the partial annihilation

cross-section into final state j in the zero-velocity limit, and

d Nγ, j/d E is the differential photon multiplicity for annihi-

lations into the j th final state.

We use a combination of analytic expressions from

Ref. [34] and micrOMEGAs to compute the annihilation and

semi-annihilation cross-sections for indirect detection. At

tree level, the zero temperature annihilation cross-section for

a pair of scalar singlet particles to SM states, 〈σv〉0, is given

by the processes in the top two rows of Fig. 1 for the Z3 model,

and equivalent processes in the Z2 model with S = S∗. The

effective cross-sections for annihilation to SM final states

in the Z3 model are a factor of two smaller than in the Z2

model, accounting for the fact that only particle-antiparticle

pairs can annihilate. We compute these by scaling the Z2

cross-sections down by a factor of two. We obtain the semi-

annihilation cross-section directly from micrOMEGAs, with

there being no equivalent in the Z2 model.

With the necessary cross-sections computed we then

obtain the predicted spectrum d Nγ /d E for each model point

by using a Monte-Carlo showering simulation, detailed in

Ref. [22]. We then use this to compute a combined likeli-

hood for all the dwarf spheroidals in the Fermi-LAT 6-year

Pass 8 dataset [93]. The details of this likelihood are given

in Ref. [47].

4.6 Higgs invisible width

When m S < mh/2, the Higgs may decay to two S bosons

(Fig. 1). The resulting S bosons would be invisible at the

LHC, so they would be identified as a missing contribution

to the total decay width. For a model with a Z3-charged scalar,

the decay width of the Higgs to S bosons is

Γ
Z3

h→SS∗ =
λ2

hS
v2

0

16πmh

(

1 − 4m2
S
/m2

h

)1/2
, (17)

where v0 is the Higgs VEV. In the Z2 model the final states

are identical, so we must include a symmetry factor of 1/2

to avoid double counting,

Γ
Z2

h→SS
=

1

2
Γ

Z3

h→SS∗ . (18)

Equations (17) and (18) show that constraints on the Higgs

invisible width exclude large λhS for small singlet masses.

With SM-like couplings (which the Higgs possesses in the

Z2 and Z3 models), the upper limit on the invisible branching

fraction of the Higgs is 19% at 95% confidence level [95]. We

employ the implementation of the full likelihood associated

with this result in DecayBit [73].

4.7 Additional likelihoods

We also include simple likelihoods for the nuisance parame-

ters varied in our fits (Table 2), via DarkBit [22] and Preci-

sionBit [73]. These quantities are well constrained by exist-

ing data.

We implement a log-normal likelihood for the local DM

density, with a central value of ρ̄0 = 0.4 GeV/cm3 (e.g. [96])

and an uncertainty of σρ0 = 0.15 GeV cm−3,

Lρ0 =
1

√
2πσ ′

ρ0
ρ0

exp

(

−
ln(ρ0/ρ̄0)

2

2σ ′2
ρ0

)

, (19)

where σ ′
ρ0

= ln(1 + σρ0/ρ0). More details can be found in

Ref. [22].

We model the speed distribution of DM in the Milky

Way as Maxwell–Boltzmann, truncated at the local Galac-

tic escape velocity vesc. We apply a Gaussian likelihood to

the mean of this distribution, characterised by a central value

of 240 km s−1 and a standard deviation of 8 km s−1. This is

based on a calculation of the circular rotation speed of the

Sun, vrot [97]. We also constrain the escape velocity using
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Fig. 2 Profile likelihoods for the Z2 scalar singlet model, with the

requirement that ΛP > max(mS, mt ) only. Results are shown in the

mS–λhS (top) and mS–λS (bottom) planes. Left panels show a zoomed-

in view of the resonance region; right panels show the full mass range.

Contour lines indicate 1σ and 2σ confidence regions, and best fit points

are indicated with stars. Shading and white contours show the result of

including the 2018 XENON1T analysis [55], whereas grey annotations

illustrate the impact of using the 2017 analysis [54] instead

a Gaussian likelihood based on vesc = 550 ± 35 km s−1,

derived from measurements of stellar velocities in the RAVE

survey [98].

We apply Gaussian likelihoods to the nuclear parameters

as well, based on the estimates σs = 43 ± 8 MeV [99] and

σl = 50 ± 15 MeV [100]. More detailed discussion of our

adopted nuclear and velocity likelihoods can be found in

Refs. [22,101].

For the Higgs mass, the top quark mass and the strong

coupling, we use Gaussian likelihoods based on mh =
125.09 ± 0.24 GeV [71,102], mt = 173.34 ± 0.76 GeV

[71,103] and αs(m Z ) = 0.1181 ± 0.0011 [71].

5 The status of the Z2 model

5.1 No vacuum constraint

In this section, we present global fits of the Z2 scalar singlet

model, with a full spectrum calculation and RGE running up

to the Planck scale. In the most general case, we allow either

a metastable or an absolutely stable electroweak vacuum. We

furthermore require that the dimensionless couplings remain

in the perturbative regime (which we define to be less than√
4π ), up to the greater of m S and mt . That is, we demand

that ΛP > max(m S, mt ). The profile likelihoods for this

scenario are presented in Fig. 2 in the m S–λhS (top) and m S–

λS (bottom) planes. All three of the regions mentioned in Sect.

2 (resonance, neck and high-mass) are clearly visible in the

upper panels. Due to the strength of the latest direct detection

constraints, and the fact that we rescale the expected signals

by the thermal relic density at each point in the parameter

space, the high-mass region is split into a TeV-scale mode and

an intermediate-mass mode situated just above mS = mh .6

The restriction to ΛP > max(mS, mt ) results in a reduc-

tion of the volume of the allowed region compared to our

6 A detailed discussion of the shape of rescaled direct detection con-

straints, and therefore the appearance of the intermediate-mass mode,

can be found in Ref. [34] in the context of Fig. 6 of that paper.
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Fig. 3 Profile likelihood for the Z2 scalar singlet model with the

requirement ΛP > max(mS, mt ). The preferred regions are expressed

as a function of m S and the spin-independent direct detection cross-

section for scattering with protons rescaled to the predicted relic abun-

dance σ SI
p · f , and compared to the exclusion bounds from various

direct detection experiments. Contour lines indicate 1σ and 2σ con-

fidence regions, and best fit points are indicated with stars. Shading

and white contours show the result of including the 2018 XENON1T

analysis [55], whereas grey annotations illustrate the impact of using

the 2017 analysis [54] instead. Coloured solid lines indicate published

limits from PandaX [56] and XENON1T [55], and the dashed line is

the projected sensitivity of LZ [94]

results in Ref. [47]. Any model with values of λhS or λS

greater than
√

4π at the input scale mS violates the pertur-

bativity condition even before RGE running, so our profile

likelihoods extend only to
√

4π in λhS and λS . In contrast,

Ref. [47] allowed up to λhS = 10.

At very large mS and λhS , the Higgs quartic coupling is

driven up by large loop corrections in the scalar sector, caus-

ing it to become non-perturbative. This excludes a region at

log10(λhS) ≈ 0.2, log10(m S/GeV) ≈ 3.6 that was previously

allowed in Ref. [47]. This consequence of the perturbativity

requirement at high m S combines with the relic density con-

straint, which pushes up at the allowed parameter region from

below, to provide a robust upper limit on the singlet mass of

ms < 4.5 TeV.

The profile likelihood of the scalar quartic coupling λS is

reasonably uniform over the prior range. This is unsurpris-

ing, given that λS has little phenomenological impact in this

model; indeed, this is why it was not included in Ref. [47].

However, as we will show, it can be important for stabilis-

ing the electroweak vacuum and/or influencing the range of

scales over which the model can remain perturbative.

In Fig. 3, we show the spin-independent nuclear scatter-

ing cross-section σ SI
p for the Z2 scalar singlet, rescaled by

the fraction f ≡ ΩS/ΩDM of the relic density explained by

each point in parameter space. Because we scale the expected

signals of each model by f when computing their likeli-

hoods, this rescaling is necessary when visually compar-

ing predicted cross-sections to published exclusion curves

(which assume f = 1). Compared to our earlier results [47],

significant amounts of parameter space are now excluded

from the high-mass modes. The new perturbativity constraint

removes parameter space at low σ SI
p , whereas the advent of

XENON1T cuts into the allowed region from above. LZ [94]

will probe a large fraction of the remaining parameter space,

even including a substantial part of the resonance region.

In Figs. 2 and 3, we also illustrate the impact of the latest

XENON1T data [55] by comparing the 1 and 2σ CL regions

with the inclusion of the 2018 (white contours) and 2017

constraints (grey contours). We see that the majority of the

impact of XENON1T compared to Ref. [47] was provided

already in 2017, with a comparatively modest additional con-

straint imposed by the 2018 data. Indeed, the small excess

above background expectation at high recoil energies in the

2018 data leads to a small increase in the size of the 1σ pre-

ferred region at large m S , where the predictions of the model

are consistent with the observed excess.

5.2 Absolutely stable vacuum

Next, we restrict the model further by imposing the additional

constraint of absolute vacuum stability (Fig. 4). We find that

values of λhS � 0.2 are required to prevent the Higgs quartic

coupling becoming negative and thereby stabilise the elec-

troweak vacuum. As a result, the low-mass resonance mode

around m S ∼ mh/2 is almost entirely ruled out except for

the very top of the neck region, where a few points are found

with λhS � 0.2 and a stable vacuum. This essentially leaves

just the high mass-modes, centred on approximately 100 GeV

and 1 TeV, where λhS is large enough to stabilise the vacuum.

In Fig. 4 we also show the marginalised posterior for the Z2

model. As in Ref. [47], we see that even without the require-

ment of absolute vacuum stability, there is a clear preference

for the high-mass region over the resonance region, due to the

need to fine-tune nuisance parameters in order to fit all exist-

ing data at any given point in the resonance region. With the

inclusion of vacuum stability, the same effect can be seen to

disfavour the medium-mass mode, where m S is O(100)GeV.

Both the profile likelihoods and the marginalised posterior

of Figs. 2 and 4 show a small diagonal strip where valid solu-

tions are difficult to come by at large m S and λhS , just below

(and running parallel to) the border of the allowed region

where the Higgs quartic coupling becomes non-perturbative.

In this region, the pole mass calculation for the Higgs runs

into numerical instabilities, and fails to converge. This is a

numerical artefact; large λhS-dependent radiative corrections

cause the Higgs pole mass calculation at mS to fail in the UV

(singlet) theory, but technically this particular iteration could

be avoided, seeing as the Higgs pole mass that we actually

adopt comes instead from the SM EFT. The true results in this

region would therefore smoothly interpolate those from the

surrounding region. This effect confirms that predictions are
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Fig. 4 Impact of the requirement of vacuum stability on the Z2 scalar

singlet model, expressed in terms of profile likelihoods (left) and pos-

terior probability densities (right). Bullets indicate posterior means and

stars indicate best fit points. Shading and white annotations correspond

to scans where the singlet is required to absolutely stabilise the elec-

troweak vacuum. For comparison, we also show the preferred regions

without this requirement in grey

becoming less stable, due to large one-loop corrections, as we

approach the perturbativity limit, and that indeed we should

not adopt any larger perturbative cutoff on the dimension-

less couplings than
√

4π . This problem can also be partially

compensated for by varying other nuisance parameters (in

particular, the top mass) within their allowed ranges, as can

be seen by the fact that this effect has a much larger impact

on the posterior than the profile likelihood.

Let us now take a closer look at just how the Z2 scalar sin-

glet model can satisfy the vacuum stability constraint. As dis-

cussed in Sect. 4.2, we apply the vacuum stability condition

by excluding points where we can show perturbatively that

the electroweak vacuum is metastable, because λh becomes

negative before the Planck scale MPl = 1.22 × 1019 GeV.

However, this means that in Fig. 4, we do not distinguish

between two quite different cases:

(i) at high scales all couplings remain perturbative and λh ≥
0,

(ii) some couplings simply run to non-perturbative values

before MPl.

In the case of (i), we have explicitly shown that the scalar sin-

glet model can help to stabilise the electroweak vacuum. In

(ii), the stability of the electroweak vacuum may be restored

by non-perturbative effects, but we are unable to determine

whether this is the case or not from our perturbative calcula-

tions. It is therefore important to discriminate between these

two cases.

In Fig. 5, we plot the scale at which perturbativity is vio-

lated in the mS–λS parameter plane, choosing the scale by

profiling the likelihood over the other parameters (i.e. plot-

ting ΛP for the best-fit points found in the scan at each com-

bination of m S and λhS). We plot the value of ΛP only within

the 2σ contours, as determined by the profile likelihood. Note

that there can exist parameters with a larger value of ΛP that

only have a slightly worse L, and are still within 2σ of the

best-fit point. As we run the couplings to a maximum scale

of 1 × 1020 GeV (well above the Planck scale, where quan-

tum gravitational effects become important), points with ΛP

equal to this value should be interpreted as valid to at least

1 × 1020 GeV.

A number of observations can be made from Fig. 5. First

of all, we note that for λS � 0.7 the scale of perturbativity

is always low, as the singlet quartic coupling quickly runs

to non-perturbative values. The dependence on mS is more

complicated and can be best understood by comparing to

Fig. 2. In the low-mass resonance mode (mS ∼ mh/2), λhS is

typically very small and the scale of perturbativity violation

can be very high as long as λS is sufficiently small. The mode

at m S ∼ 100 GeV, on the other hand, requires λhS > 1, which

renders the spectrum invalid at scales well below 1010 GeV

irrespective of λS . In the high-mass region (m S ∼ 1 TeV) it

is possible to find points with a scale of perturbativity near or

beyond the Planck scale, in particular towards smaller masses

(corresponding to smaller λhS).

In Fig. 6 (left), we show ΛP as function of λhS and m S

in the high-mass region, imposing absolute vacuum stabil-

ity. There is a rough correlation between λhS and ΛP , which

is only broken for the small λhS tip of the high-mass mode,

where ΛP decreases rapidly. This is because such small val-

ues of λhS are insufficient to stabilise the electroweak vac-

uum, so our requirement that λh not run negative only finds

solutions where λS contributes to the running of λh . How-

ever, since the impact of λS on the running of λh is indirect

and only mild, large values of λS are required, rendering the
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Fig. 5 Scale of perturbativity violation with respect to m S andλS for the
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Fig. 6 Left: Scale of perturbativity violation for the Z2 scalar sin-

glet model with the requirement of a stable electroweak vacuum.

Right: Profile likelihood when furthermore imposing the requirement

ΛP > 1015 GeV. The 1σ and 2σ confidence regions are delineated by

white contours, and the best-fit by a white star. Grey contours on the

right panel correspond to the 1σ and 2σ confidence regions of the left

panel

model non-perturbative below the scale of vacuum instability

(thus rendering it “stable” according to our definition). This

can also be seen as the cause for the difference in the profile

likelihood and the posterior in the tip of this region in Fig.

4, reflecting the fact that λS must be tuned in order to find

permitted models in this area.

The competing interests of vacuum stability and pertur-

bativity become more problematic when we ask what values

of ΛP are acceptable. The metastability of the electroweak

vacuum in the SM is the result of the Higgs quartic cou-

pling becoming negative near the grand unified theory (GUT)

scale, at ∼ 1015 GeV. If we are concerned about vacuum sta-

bility, then we should generally also demand that our theory

is perturbative to at least this scale. The electroweak vac-

uum is stable in the Z2 theory in some parts of the other-

wise allowed parameter space, but in others the model sim-

ply becomes non-perturbative at scales well below the GUT

scale. It therefore makes sense to impose another selection

requirement on our samples, in order to identify only those

points that remain perturbative to high scales.

In the right panel of Fig. 6, we show the profile likeli-

hood after excluding all models where ΛP < 1015 GeV (in

addition to requiring a stable electroweak vacuum). Due to

the competing influences of direct detection, the relic den-

sity, vacuum stability and perturbativity, the allowed param-

eter space of the model is reduced considerably. Neverthe-

less, even when limiting the parameter space to points with

ΛP > 1015 GeV, the model is certainly not ruled out. In
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Fig. 7 As in Fig. 3, but with the added requirements of vacuum stability

and perturbativity to large scales, ΛP > 1015 GeV

the next section, we will explicitly identify parameter points

for which couplings remain perturbative up to the typical

instability scales, and the electroweak vacuum is stabilised,

showing that these points can still give a good fit to the data

– and can even explain the entirety of DM.

In Fig. 7, we show the impacts of demanding absolute

vacuum stability and perturbativity to high scales on sig-

nals at direct detection experiments. If the Z2 model is

to stabilise the electroweak vacuum, it must lie in a nar-

row region with effective nuclear scattering cross-section

5 × 10−46 < σ SI
p · f < 10−45 cm2 and mass 600 GeV <

m S < 2 TeV. Here we again show both the result with the

2018 (shading and white contours) and 2017 XENON1T like-

lihoods (grey contours). Even with vacuum stability imposed,

the new XENON1T data remains consistent with the allowed

region. Future multi-ton experiments such as LZ [94] will

definitively detect or exclude this scenario.

5.3 Best-fit point

The best-fit point for our global fit of the Z2 model is

located at λS = 6.24 × 10−3, λhS = 2.32 × 10−4 and

m S = 62.48 GeV. This point is located in the low-mass res-

onance region, the electroweak vacuum is metastable with a

lifetime of ∼1.1 × 1099 years, the minimum of λh occurs at

∼ 3 × 1013 GeV, and the model is perturbative up to at least

1020 GeV. Details of this point can be found in Table 5. The

mass at this point is within 0.03 GeV of the best-fit found in

Ref. [47], and the portal coupling is approximately a factor

of three smaller. Given that the profile likelihood is quite flat

with respect to λhS around the best-fit, the difference in λhS

is not significant.

Indeed, we expect this best-fit point to be similar to what

we found in Ref. [47], as the constraint ΛP > max(m S, mt )

and the variation of λS do not have a significant impact on

the phenomenology at small couplings. Nevertheless, we find

Δ ln L = 0.317 relative to the ideal likelihood (where each

individual likelihood takes its maximum value), compared

to Δ ln L = 0.107 in Ref. [47]. This difference is due to

the contribution from the new 2018 XENON1T likelihood,

which exhibits a slight preference for a non-zero DM sig-

nal and hence slightly disfavours the low mass region (see

Table 6).

When the constraint of absolute vacuum stability is

imposed, the location of the best fit necessarily moves away

from the resonance region, where λhS is too small to sta-

bilise the vacuum. In this case we find a best-fit point at

λS = 2.28 × 10−3, λhS = 2.03 and m S = 3.97 TeV. In this

case we find Δ ln L = 0.503, which corresponds to a slight

penalty over the metastable case. Note in particular that this

second point gives a better fit to the data from XENON1T,

but the combined likelihood from all direct detection exper-

iments is worse due to the contribution from LUX and Pan-

daX. Although the vacuum is classified as stable at this point,

it is an example of a point where the couplings are so large

that they cannot be run all the way to the typical scale of

vacuum instability, leading to ΛP ∼ 26 TeV. This reduces

the theoretical appeal of this point.

By excluding all samples with ΛP < 1015 GeV, we can

find points that have a stable vacuum and are more theo-

retically interesting (see Fig. 6). We find a best-fit point

that is absolutely stable and has ΛP = 1.0 × 1015 GeV,

at λS = 6.59 × 10−4, λhS = 7.36 × 10−1, m S = 1.93 TeV.

This point has Δ ln L = 1.121, with the largest contributions

coming from direct detection likelihoods. This corresponds

to a likelihood ratio Λ = 0.448 relative to the overall best-

fit point, which places it inside the generally-preferred 1σ

parameter region.

Although the requirement of an absolutely stable vacuum

and perturbative couplings up to at least the GUT scale leads

to some mild tension with direct detection limits, it is intrigu-

ing to observe that this tension has not grown with the latest

XENON1T results, even though the expected sensitivity of

XENON1T would have been sufficient to comprehensively

test these solutions. The reason is that in precisely this param-

eter region, the model accommodates the slight preference

for a non-zero DM signal in XENON1T. It will therefore be

extremely interesting to include the results from the next gen-

eration of direct detection experiments in a similar analysis.

Finally, we consider points with relic densities within 1σ

of the Planck measured value, with stable vacua, and that

remain perturbative to at least 1015 GeV. The best-fitting

of these points is located at λS = 2.59 × 10−3, λhS =
6.80 × 10−1 and m S = 1.94 TeV, and has Δ ln L = 1.455,

still within 1σ of the global best-fit point. The four best-fit

points, the corresponding relic densities and the scale of per-

turbativity violation are presented in Table 5. The individual

likelihood contributions for each point are given in Table 6.
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Table 5 Details of the best-fit points for the Z2 scalar singlet model

when different physical restrictions are imposed on the model. Points

that have an absolutely stable electroweak vacuum are indicated by a

tick in the first column. Points with a singlet relic density within 1σ

of the Planck observed value (ΩSh2 ∼ ΩDMh2) are indicated with a

tick in the third column. We omit the values of the nuisance parame-

ters, as they are not significantly different to the central values of their

respective likelihood functions

Stable vac. ΛP (GeV) Relic density λS λhS mS (GeV) ΩSh2 log(L) Δ ln L σ SI
p (cm2)

∼ ≥ 1020 ≤ 6.240 × 10−3 2.316 × 10−4 6.248 × 101 9.2472 × 10−2 43.11 0.32 1.15 × 10−49

� 2.59e + 04 ≤ 2.278 × 10−3 2.031 3.969 × 103 1.0407 × 10−1 43.30 0.50 9.33 × 10−46

� 1.00 × 1015 ≤ 6.590 × 10−4 7.357 × 10−1 1.928 × 103 9.7236 × 10−2 43.92 1.12 9.77 × 10−46

� 9.12 × 1015 � 2.589 × 10−3 6.804 × 10−1 1.938 × 103 1.1316 × 10−1 44.25 1.45 8.36 × 10−46

Table 6 Individual contributions to the Δ log-likelihood for the vari-

ous best-fit points (see Tables 5 and 7) compared to an ‘ideal’ case. We

take this to be the background-only likelihood for exclusions, and the

central observed value for detections. Note that because each likelihood

is dimensionful, the absolute values are less meaningful than the off-

set with respect to another point (see section 8.3 of Ref. [15] for more

details on the normalisation). The best-fit points are labelled as follows:

A represents a fit with the only constraint that ΛP > max(mS, mt ), B

is a fit with the additional constraint of absolute vacuum stability, C

includes the constraint of ΛP > 1015 GeV and D also includes the

requirement that ΩSh2 be within 1σ of the observed relic density

Likelihood contribution Ideal Δ ln L

Z2A Z2B Z2C Z2D Z3A Z3B Z3C Z3D

Relic density 5.989 0 0.001 0 0.120 0 0 0.034 0.142

LUX Run II 2016 −1.467 0.001 0.112 0.221 0.207 0.001 0.095 0.528 0.592

PandaX 2016 −1.886 0 0.071 0.140 0.131 0.001 0.059 0.339 0.380

PandaX 2017 −1.550 0.001 0.156 0.298 0.280 0.002 0.130 0.678 0.752

XENON1T 2018 −3.440 0.210 0.003 0.218 0.179 0.209 0.074 1.465 1.770

γ rays (Fermi-LAT dwarfs) −33.244 0.105 0.148 0.165 0.170 0.105 0.112 0.196 0.207

Higgs invisible width 0.000 0 0 0 0 0 0 0 0

Hadronic elements σs , σl −6.625 0 0.001 0.016 0.019 0 0 0.099 0.043

Local DM density ρ0 1.142 0 0.010 0.039 0.101 0 0.001 0.547 0.499

DM velocity v0 −2.998 0 0 0 0.001 0 0 0.001 0.013

DM escape velocity vesc −4.474 0 0 0 0.005 0 0 0.002 0

αs 5.894 0 0 0 0.002 0 0.001 0.004 0.001

Higgs mass 0.508 0 0 0 0.043 0 0 0.082 0.004

Top quark mass −0.645 0 0 0.022 0.196 0 0 0 0.041

Vacuum stability 0.000 0 0 0 0 0 0 0 0

Total 0.317 0.503 1.121 1.455 0.318 0.473 3.975 4.443

By interpreting Δ ln L as half the “likelihood χ2” of Baker

and Cousins [104] and assuming either one or two degrees of

freedom, we can obtain an approximate p-value for each of

our best-fit points. For the best fit with metastability allowed,

we find p ≈ 0.4–0.7. With vacuum stability required, p

drops to 0.3–0.6. For the case where the couplings are per-

turbative up to 1015 GeV and the electroweak vacuum is

absolutely stable, we find p ≈ 0.15–0.3. This decreases to

p ≈ 0.1–0.25 when also requiring that the S relic density

is within 1σ of the Planck value. Each of these p-values is

acceptable, although requiring the UV properties of pertur-

bativity and vacuum stability does have a notable impact.

6 The status of the Z3 model

6.1 No vacuum constraint

We now turn to the Z3 scalar singlet model. The main differ-

ence compared to the Z2 model is the presence of an addi-

tional parameter μ3, which has a significant impact on phe-

nomenology because it can lead to semi-annihilations. Fig. 8

presents the profile likelihoods in the m S–λhS parameter plane

(left) and in the mS–μ3 parameter plane (right), based on

scans over the full range of mS . Note that the allowed region

for μ3 is constrained by the vacuum stability condition given

in Eq. (11), particularly at small singlet masses.

We find that the allowed resonance region in the Z3 model

is practically identical to the corresponding region in the
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Fig. 8 Profile likelihoods for the Z3 scalar singlet model, with the

requirement that ΛP > max(mS, mt ) only. Results are shown in the

λhS–mS (left) and in the μ3–mS (right) planes. Contour lines indicate

1σ and 2σ confidence regions, and best fit points are indicated with

stars. Shading and white contours show the result of including the 2018

XENON1T analysis [55], whereas grey annotations illustrate the impact

of using the 2017 analysis [54] instead
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Fig. 9 The semi-annihilation fraction α with respect to λhS and m S

(left) and with respect to μ3 and mS (right) for the Z3 scalar singlet

model without the requirement of an absolutely stable electroweak vac-

uum, but imposing ΛP > max(mS, mt ). The 1σ and 2σ confidence

regions are delineated by white contours, and the best-fit by a white star

Z2 model. We therefore do not include a version of Fig. 8

zoomed in to low masses. At larger masses, however, there

are notable differences between the Z2 and Z3 models. The

allowed parameter region with m S ∼ 200 GeV is substan-

tially larger in the Z3 model, and extends to much smaller

values of λhS . This difference in shape can be understood

by considering the fraction of semi-annihilation. In Fig. 9

we plot the semi-annihilation fraction α, defined in Eq. (14),

within the 2σ confidence regions. As expected, the extended

allowed parameter region in the intermediate mass range cor-

responds to α ≈ 1, meaning that the semi-annihilation chan-

nel dominates. As a result, the same relic abundance can be

achieved with smaller values of the portal coupling λhS . In

other words, the bound ΩSh2 ≤ ΩDMh2 can be evaded at

much lower values of λhS , by invoking a large contribution

from semi-annihilation. Similarly, at large values of λhS the

contribution from semi-annihilation brings the relic density

lower than in the Z2 model, and direct detection constraints

are more easily avoided (given that we consistently rescale

signals for the local density of singlet particles).

For larger masses, semi-annihilations become less effi-

cient, as the semi-annihilation fraction is proportional to

μ3λ
2
hS

/m6
S

at leading order [8]. As a result, the shape of

the allowed parameter region is similar to the Z2 model for

m S � 1 TeV. The likelihood of this region is however much

smaller, and is in fact outside the global 1σ confidence region.

The reason is that the Z3 model requires a complex scalar,

whereas we have considered a real scalar for the Z2 model.
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Fig. 10 Profile likelihood for the Z3 scalar singlet model with the

requirement ΛP > max(mS, mt ). Regions are shown as a function

of mS and the spin-independent direct detection cross-section for scat-

tering with protons, rescaled by the predicted relic abundance σ SI
p · f ,

and compared to the exclusion bounds from various direct detection

experiments. Contour lines indicate 1σ and 2σ confidence regions, and

best fit points are indicated with stars. Shading and white contours show

the result of including the 2018 XENON1T analysis [55], whereas grey

annotations illustrate the impact of using the 2017 analysis [54] instead.

Other lines indicate limits from PandaX [56] and XENON1T [55], and

the projected sensitivity of LZ [94]

The coupling λhS must therefore be a factor of two larger in

the Z3 model to achieve the necessary effective annihilation

cross-section required to avoid DM overproduction, increas-

ing the degree of tension between the relic density constraint

and bounds from direct detection experiments.

Figure 10 illustrates the impact of current and future direct

detection experiments on the parameter space of the Z3

model. Here we have again rescaled σ SI
p by the relic den-

sity fraction f = Ωs/ΩDM. Similar to the case of the Z2

model, the resonance region extends three orders of magni-

tude below current direct detection limits, and even a next-

generation experiment such as LZ will not be able to probe

the full parameter space at m S ≃ mh/2. However, the allowed

parameter region at mS ∼ 200 GeV, even though it is sub-

stantially larger than its counterpart in the Z2 model, will

eventually be fully explored by direct detection searches.

6.2 Absolutely stable vacuum

As with the Z2 model, we now investigate the preferred

parameter regions more closely by imposing additional phys-

ical requirements. In the top panel of Fig. 11, we show how

the profile likelihoods change when requiring absolute vac-

uum stability. The corresponding marginalised posteriors are

shown in the central panel of Fig. 11 for a scan with flat prior

on μ3, and in the bottom panel for a scan with logarith-

mic prior on μ3. Although the likelihood is maximised for

m S ∼ 100 GeV, the majority of the posterior mass is found

at higher masses, m S > 1 TeV. The reason is that at larger
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Fig. 11 Impact of the requirement of vacuum stability on the Z3 scalar

singlet model, expressed in terms of profile likelihoods (top) and pos-

terior probability densities with flat prior on μ3 (centre) and with log-

arithmic prior on μ3 (bottom). Bullets indicate posterior means and

stars indicate best fit points. Shading and white annotations correspond

to scans where the singlet is required to absolutely stabilise the elec-

troweak vacuum. For comparison, we also show the preferred regions

without this requirement in grey

masses, the relic abundance becomes independent of μ3 and

therefore benefits strongly from marginalisation (rather than

profiling) over μ3. Comparing the middle and lower panels,
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Fig. 12 Left: Scale of perturbativity violation for the Z3 scalar singlet

model with the requirement of a stable electroweak vacuum. Right Pro-

file likelihood when also imposing the requirement ΛP > 1015 GeV.

The 1σ and 2σ confidence regions are delineated by white contours, and

the best-fit by a white star. Grey contours on the right panel correspond

to the 1σ and 2σ confidence regions of the left panel

this conclusion is independent of the choice of prior on μ3.

The choice of prior on μ3 has a relatively small impact over-

all, essentially just translating into a stronger preference for

large m S when taken flat rather than logarithmic, due to the

restriction to lower values of μ3 at lower m S coming from

Eq. 11.

Figure 11 demonstrates that most of the parameter space

opened up by semi-annihilations in the intermediate mass

range remains viable when imposing absolute vacuum sta-

bility. This observation raises the question whether the sta-

bilisation is due to the influence of μ3 on the running of λh

or whether the new parameter simply leads to a breakdown

of perturbativity. We therefore show the scale of perturba-

tivity violation in the left panel of Fig. 12. Indeed, we find

that ΛP is extremely low (less than 1010 GeV) throughout

the 2σ preferred region of the new parameter space, such the

points with a ‘stable’ vacuum are not actually as theoretically

appealing as might have naively been expected on the basis

of Fig. 11. This is also the reason for the persistence of part

of the resonance reason in Fig. 11 after absolute vacuum sta-

bility is required, unlike in the corresponding Z2 plot (Fig.

4). Z3 models remaining in this region after absolute vacuum

stability is required are just those with the highest values of

λS , allowing them to combine with non-zero values of μ3 to

send λS non-perturbative at relatively low scales, and thereby

avoid having to actually stabilise the electroweak vacuum.

The reason that large couplings are required in the interme-

diate mass range is related to the need for semi-annihilations

in this part of parameter space. A large semi-annihilation

fraction requires that the coupling μ3 is larger than about

300 GeV (see Fig. 9). This in turn forces λS to be large in

order to satisfy Eq. (11), which leads to the couplings becom-
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Fig. 13 As in Fig. 10, but with the added requirements of vacuum

stability and perturbativity to large scales, ΛP > 1015 GeV

ing non-perturbative at a low scale.7 Thus, the new regions

of parameter space opened up by semi-annihilations in the

Z3 model are of limited theoretical appeal from the point of

view of stabilising the electroweak vacuum.

In the right panel of Fig. 12, we present the profile like-

lihood after also imposing the requirement Λ > 1015 GeV.

We find that this not only removes the resonance region,8

but also the intermediate mass range. In fact, only a tiny

region around m S ∼ 1 TeV remains. Judging from Fig. 8,

we expect this remaining parameter space to have a much

lower likelihood than the resonance region. In Fig. 13 we

7 Note, in particular, that μ3 does not directly impact the running of

λS ; as a dimension-1 parameter, it cannot enter the RGE of λS (which

is dimensionless).

8 That is, except for the very tip of the neck at large λhS , as noted earlier

in the context of the Z2 model and visible in one luckily-sampled bin

in the bottom-left of Fig. 13.
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Table 7 Details of the best-fit points for the Z3 scalar singlet model

when different physical restrictions are imposed on the model. Points

that have an absolutely stable electroweak vacuum are indicated by a

tick in the first column. Points with a singlet relic density within 1σ

of the Planck observed value (ΩSh2 ∼ ΩDMh2) are indicated with a

tick in the third column. We omit the values of the nuisance parame-

ters, as they are not significantly different to the central values of their

respective likelihood functions

Stable vac. ΛP (GeV) Relic density λS λhS mS (GeV) μ3 (GeV) ΩSh2 log(L) Δ ln L σ SI
n (cm2)

∼ 6.33 × 108 ≤ 4.827 × 10−1 3.207 × 10−4 6.248 × 101 1.180 × 101 9.7001 × 10−2 43.12 0.32 2.21 × 10−49

� 1.68 × 102 ≤ 3.523 3.498 1.438 × 102 5.367 × 102 6.2920 × 10−7 43.27 0.47 5.02 × 10−42

� 1.29 × 1015 ≤ 3.083 × 10−2 6.604 × 10−1 1.314 × 103 3.419 × 102 1.0990 × 10−1 46.77 3.98 1.72 × 10−45

� 1.89 × 1015 � 1.194 × 10−1 5.917 × 10−1 1.206 × 103 5.399 × 102 1.1367 × 10−1 47.24 4.44 1.67 × 10−45

show the nuclear scattering cross-section (rescaled as usual

by the fraction f of the DM relic density constituted by sin-

glet scalars) as a function of m S . This plot qualitatively con-

firms our expectation that this region should lie outside the

preferred region in the global scan, as the 90% C.L. upper

bound from XENON1T [55] already excludes the 2σ con-

fidence regions. In the following, we will make this point

more explicit by studying the best-fit point in this region,

and showing that it is in considerable tension with data.

6.3 Best-fit point

The best-fit point in the Z3 model with metastability allowed

is at λS = 4.83 × 10−1, λhS = 3.21 × 10−4, μ3 =
11.8 GeV and m S = 62.48 GeV. This point has a lifetime

of ∼ 1.4 × 1099 years, and a minimum in its Higgs quar-

tic coupling at ∼ 3 × 1013 GeV. For this point we find

Δ ln L = 0.318, essentially the same as for the equivalent

best-fit point in the Z2 model. This result is expected, as the

semi-annihilation fraction at this point is α = 0.

With the additional constraint of absolute vacuum sta-

bility, the best-fit is located at λS = 3.52, λhS = 3.50,

μ3 = 537 GeV and mS = 144 GeV. In this case the semi-

annihilation fraction is α = 0.72 and we find Δ ln L =
0.473. Compared to the equivalent point in the Z2 model,

this represents a small improvement due to the contribution

from semi-annihilations. However, ΛP at this point is only

168 GeV, due to the large value of λS , making it less than

appealing in a theoretical sense.

Demanding that ΛP ≥ 1015 GeV, we find a best-fit point

with an absolutely stable vacuum, ΛP = 1.29 × 1015 GeV

and α = 0.004. This point is located at λS = 3.08 × 10−2,

λhS = 6.60 × 10−1, μ3 = 342 GeV and m S = 1.31 TeV.

This point has Δ ln L = 3.975, with the dominant contri-

butions coming from the most recent direct detection exper-

iments. This corresponds to a likelihood ratio Λ = 0.026,

which places this point more than 2σ away from the overall

best-fit point. In other words, we find considerable tension in

the Z3 model between direct detection limits and the require-

ment for the model to be absolutely stable and perturbative

to at least the GUT scale.

Finally, we consider a point that is perturbative to at least

1015 GeV, has a stable electroweak vacuum and has a singlet

relic density within 1σ of the Planck measured value. The

best-fit point under these requirements is located at λS =
1.19 × 10−1, λhS = 5.92 × 10−1, μ3 = 540 GeV and m S =
1.21 TeV. This point has ΩSh2 = 0.1137 and ΛP = 1.89 ×
1015 GeV as well as Δ ln L = 4.443, making it even more

strongly disfavoured than the corresponding best-fit model

with subdominant singlet DM.

We present the four best-fit points, their relic densities and

the scales at which their couplings become non-perturbative

in Table 7.

As with the Z2 model, we can obtain approximate p-

value ranges by assuming either one or two degrees of free-

dom. For the best-fit point with metastability allowed, we

find p ≈ 0.4–0.7, while the best fit with vacuum stability

has p ≈ 0.3–0.6. Both of these ranges are very similar to

those for equivalent constraints on the Z2 model, despite

semi-annihilations opening up a large region of parame-

ter space. For the model with ΛP > 1015 GeV, we find

p ≈ 0.005–0.02, reducing to p ≈ 0.003–0.01 when also

imposing the relic density requirement. This illustrates once

again that the Z3 model, which requires a complex scalar,

is disfavoured by data as a joint mechanism to stabilise the

electroweak vacuum and to provide a DM candidate.

7 Conclusions

In this work we have investigated two realisations of scalar

singlet DM: a real scalar stabilised by a Z2 symmetry and

a complex scalar stabilised by a Z3 symmetry. In addition

to potentially accounting for the observed DM relic abun-

dance via the freeze-out mechanism, these models have the

attractive feature that in large regions of parameter space they

remain valid up to very large scales. This makes it possible to

study the RGE evolution of the various parameters and deter-

mine the impact of the scalar singlet on the running of the

Higgs quartic self-coupling. Indeed, we find that this addi-

tional contribution may stabilise the electroweak vacuum,

thus resolving an apparent deficiency of the SM.
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Nevertheless, models of scalar singlets face a large number

of experimental and theoretical constraints. The most impor-

tant experiments are those aimed at direct detection of DM,

most notably the very recent results from XENON1T [55].

In spite of observing a small upward fluctuation, XENON1T

places strong constraints on the DM-nucleon scattering

cross-section. The most important theoretical requirement

that we have considered is for couplings to remain perturba-

tive up to the scales where the stability of the electroweak

vacuum may become an issue.

By performing a global fit to all available data, we have

shown that it is still possible to explain DM and stabilise the

electroweak vacuum through the addition of a scalar singlet

field charged under a Z2 symmetry, while at the same time

satisfying all experimental constraints. Although in much

of the allowed parameter space we find the scale at which

couplings become non-perturbative to be quite low, there is an

allowed parameter region with scalar masses of about 2 TeV,

where the theory remains perturbative up to at least 1015 GeV.

Moreover, it is possible in this parameter region for scalar

singlets to constitute all of the DM. This parameter region is

in slight tension with direct detection, but is consistent with

the small preference for a non-zero signal contribution at high

DM mass in recent XENON1T results. The next generation

of experiments will therefore fully explore the viability of

this scenario.

The alternative possibility of a complex scalar singlet

with a Z3 symmetry opens up large regions of the param-

eter space, because the semi-annihilation channel allows the

same relic density to be achieved for much smaller singlet-

Higgs couplings than in equivalent parts of the Z2 param-

eter space. However, the presence of a large trilinear cou-

pling drives the couplings non-perturbative at a relatively

low scale, making it impossible to calculate the running of

Higgs self-couplings to high scales. When requiring a stable

electroweak vacuum as well as perturbative couplings up to

at least 1015 GeV, the semi-annihilation channel ceases to be

relevant and the remaining parameter space resembles the

one of the Z2 model. However, the relic density constraint

is more severe for a complex scalar than for a real scalar, so

that the Z3 model is in fact more tightly constrained. Indeed,

the parameter region with m S ∼ 1 TeV is disfavoured more

than 95% confidence, irrespective of whether or not the scalar

singlets constitute all of DM.

Scalar singlets have frequently been advocated as one

of the simplest realisations of the WIMP idea. The non-

observation of a DM signal in any type of experiment

designed to search for WIMPs therefore clearly increases

pressure on these models. While the low-mass (resonance)

region remains challenging to probe experimentally, we have

focused on the more interesting high-mass region, which may

help to address the issue of a metastable electroweak vacuum.

While this solution is now essentially ruled out for the case of

a complex scalar singlet (stabilised e.g. by a Z3 symmetry),

it remains an interesting possibility for real scalars (with a Z2

stabilising symmetry). The next generation of direct detec-

tion experiments will be able to reach a definite verdict on

these models, including the exciting possibility that they may

confirm the slight excess seen in XENON1T.
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