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ABSTRACT

The impact of different surface vegetations on long-term surface temperature change is estimated by

subtracting reanalysis trends in monthly surface temperature anomalies from observation trends over the

last four decades. This is done using two reanalyses, namely, the 40-yr ECMWF (ERA-40) and NCEP–

NCAR I (NNR), and two observation datasets, namely, Climatic Research Unit (CRU) and Global His-

torical Climate Network (GHCN). The basis of the observation minus reanalysis (OMR) approach is that

the NNR reanalysis surface fields, and to a lesser extent the ERA-40, are insensitive to surface processes

associated with different vegetation types and their changes because the NNR does not use surface obser-

vations over land, whereas ERA-40 only uses surface temperature observations indirectly, in order to

initialize soil temperature and moisture. As a result, the OMR trends can provide an estimate of surface

effects on the observed temperature trends missing in the reanalyses. The OMR trends obtained from

observation minus NNR show a strong and coherent sensitivity to the independently estimated surface

vegetation from normalized difference vegetation index (NDVI). The correlation between the OMR trend

and the NDVI indicates that the OMR trend decreases with surface vegetation, with a correlation � �0.5,

indicating that there is a stronger surface response to global warming in arid regions, whereas the OMR

response is reduced in highly vegetated areas. The OMR trend averaged over the desert areas (0 � NDVI

� 0.1) shows a much larger increase of temperature (�0.4°C decade�1) than over tropical forest areas

(NDVI � 0.4) where the OMR trend is nearly zero. Areas of intermediate vegetation (0.1 � NDVI � 0.4),

which are mostly found over midlatitudes, reveal moderate OMR trends (approximately 0.1°–0.3°C de-

cade�1). The OMR trends are also very sensitive to the seasonal vegetation change. While the OMR trends

have little seasonal dependence over deserts and tropical forests, whose vegetation state remains rather

constant throughout the year, the OMR trends over the midlatitudes, in particular Europe and North

America, exhibit strong seasonal variation in response to the NDVI fluctuations associated with deciduous

vegetation. The OMR trend rises up approximately to 0.2°–0.3°C decade�1 in winter and early spring when

the vegetation cover is low, and is only 0.1°C decade�1 in summer and early autumn with high vegetation.

However, the Asian inlands (Russia, northern China with Tibet, and Mongolia) do not show this strong

OMR variation despite their midlatitude location, because of the relatively permanent aridity of these

regions.
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1. Introduction

Global mean surface temperature time series derived

from in situ observations reveal the interdecadal global

warming over the last several decades (Houghton et al.

2001). Many studies reported that this upward trend is

significantly a result of primary human impacts such as

greenhouse gases (Houghton et al. 2001) and land use

(Pielke et al. 2002). The anthropogenic land-use impact

on surface warming may become more important as the

surface vegetation changes in the form of urbanization,

agricultural activity, and deforestation.

The impact of surface temperature changes forced by

different regional vegetation types is not well docu-

mented. Only urban impact has been assessed by com-

paring observations in cities with those in rural areas

(Easterling et al. 1996; Hansen et al. 2001). But this

approach is only applicable to urban effects, and the

estimated signals vary with the criteria in classifying

urban and rural areas.

The present study is motivated by the difficulty in

separating the surface temperature change signals due

to global and regional forcings in the observed data.

The basis of this study is the fact that the surface tem-

perature change response to land vegetation types is

not present in the National Centers for Environmental

Prediction–National Center for Atmospheric Research

(NCEP–NCAR) reanalysis (NNR) surface data, and is

only partially present in the 40-yr European Centre for

Medium-Range Weather Forecasts (ECMWF) reanaly-

sis (ERA-40), while the station data include not only

local surface forcings but the large-scale atmospheric

warming signal resulting from greenhouse effects, natu-

ral decadal variability, and volcanoes (Pielke et al.

2002; Kalnay and Cai 2003; Zhou et al. 2004; Frauenfeld

et al. 2005; Lim et al. 2005; Kalnay et al. 2006). Impact

of the vegetation cover can extend to some extent into

the free atmosphere and thus may influence the atmo-

spheric and surface reanalysis (Kabat et al. 2004), but

NNR is substantially insensitive to surface processes

associated with different vegetation types because it

does not use surface observations over land in the as-

similation (Kistler et al. 2001; Kalnay and Cai 2003).

Instead, NNR surface temperature fields are estimated

from the upper-air information combined with model

parameterizations of surface processes (Lim et al. 2005)

so that the NNR provides a dynamically complete

dataset of atmospheric variables. ERA-40 is somewhat

more sensitive to local surface processes than NNR be-

cause the surface temperature observations are used in

the initialization of soil temperature and moisture (Sim-

mons et al. 2004).

Evaluation of reanalyzed tropical temperature time

series archived from ERA-40 (Palmer et al. 1990; Betts

et al. 2003; Simmons et al. 2004) and NNR (Kalnay et

al. 1996; Kistler et al. 2001) indicates that the climatic

trend derived from reanalysis data capture the upward

surface temperature trends but that the trend is not

identical to that of observed data (Chelliah and

Ropelewski 2000; Hegerl and Wallace 2002; Kalnay and

Cai 2003; Simmons et al. 2004; Lim et al. 2005; Pepin et

al. 2005; Kalnay et al. 2006). Specifically, Simmons et al.

(2004) and Lim et al. (2005) reported that the hemi-

spheric average in two reanalyses (ERA-40 and NNR)

have a smaller warming trend than that of observations.

They suggest that this smaller trend arises from the fact

that the reanalysis data do not adequately reproduce

the long-term surface climatic trend driven by the im-

pact of independent land-cover types.

These characteristics of the reanalysis provide us

with the possibility of detecting surface temperature

change signals due to regional land vegetation types by

taking the difference between observed and reanalysis

temperature time series [observation minus reanalysis

(OMR)]. The present study, therefore, has as objectives

1) to find the relationship between OMR trend and the

regional land vegetation types in terms of surface veg-

etation index and 2) to estimate the temperature

change signal as a function of surface vegetation in-

dexes.

It has been argued that errors such as reanalysis in-

homogeneity in time, model systematic errors, includ-

ing the lack of trends in the greenhouse gases, and ob-

servation biases could contaminate the true surface

temperature change signal (Trenberth 2004; Vose et al.

2004; Cai and Kalnay 2004). Cai and Kalnay (2005)

showed analytically that a reanalysis made with a model

without anthropogenic forcing could capture the ob-

served trends if they are present in the observations

assimilated. Our OMR analysis tries to minimize the

impact of those errors by 1) averaging for the relatively

homogeneous reanalysis period, 2) computing the trend

of the anomalies with respect to the annual cycle, and 3)

choosing the most reliable observation data currently

available.

There have been several studies using OMR trends

for estimating the regional surface warming signal

driven by different land vegetation types. Kalnay and

Cai (2003) assessed the decadal surface warming trend

associated with regional land uses over the eastern

United States by subtracting the reanalysis trend from

the observed one. Kalnay et al. (2006) found regions of

OMR warming and cooling, in good agreement with

the regional trends obtained by Hansen et al. (2001)

when using nightlights to identify rural and urban sta-

tions. Zhou et al. (2004), Frauenfeld et al. (2005), and
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Lim et al. (2005), using the same method, estimated

reasonable values for surface warming trends caused by

Chinese urbanization, Tibetan Plateau land uses, and

the Northern Hemispheric land vegetation types, re-

spectively. All these studies except Lim et al. (2005)

concentrated on regional geographical areas, and thus

are not sufficient to draw an overall conclusion for the

globe.

In summary, the advantage of the OMR approach is

that the removal of the reanalysis estimates from the

surface observations makes it possible to isolate the

near-surface warming signals associated with the re-

gional surface vegetation types from the warming sig-

nals resulting from large-scale atmospheric forcings

(e.g., greenhouse gases and volcanoes). As a result, it is

expected that the OMR trends can give an estimate of

the surface temperature change signal arising from the

different types of regional surface vegetation. In the

present study, we will attempt to find the relationship

between OMR surface warming patterns and land veg-

etation types in terms of surface vegetation status using

normalized difference vegetation index (NDVI; Sellers

1985; James and Kalluri 1994) made from satellite-

derived greenness values.

Section 2 introduces the observation and the reanaly-

sis temperature data, and the vegetation index data

used in this study. Surface temperature time series of

observation, reanalysis, and the OMR averaged over

major landmasses are shown in section 3. Section 4 de-

lineates the geographical distribution of the surface

vegetation index, the relationship between OMR

trends and the surface vegetation index, and estimates

the surface temperature change signal associated with

NDVI. The variation of the OMR in response to the

seasonal NDVI change is described in section 5, fol-

lowed by a summary and discussion given in section 6.

2. Data

For this study we use monthly surface temperature

from two reanalyses (NNR and ERA-40) and from two

gridded datasets based on surface observations [Global

Historical Climatology Network (GHCN) (http://www.

ncdc.noaa.gov; Peterson and Vose 1997) and Climatic

Research Unit (CRU) (http://www.cru.uea.ac.uk; Jones

and Moberg 2003)], all covering the period 1960–99.

We downloaded observational (GHCN and CRU) data

available on a 5° � 5° grid. For consistency, the reanaly-

ses data have also been linearly interpolated to the

same 5° � 5° GHCN and CRU grid.

Since the station coverage declined during the 1990s

in the CRU measurements, CRU anomalies were cal-

culated with respect to normals for 1961–90. For con-

sistency, anomalies of other data have been calculated

with respect to their own climatic normals for 1961–90.

Like the reanalyses, surface observational datasets

may also have some limitations, because the observa-

tions themselves have some biases. The quality of sur-

face measurement variables tends to depend on the

coverage of the surface observation network, homoge-

neity, and the accuracy of surface measurements. In the

present study, we use the CRU and GHCN surface

temperatures as observed datasets. CRU and GHCN

data values are similar, since they draw from over 90%

common data, and differ mostly in their processing.

Jones and Moberg (2003) indicate that the gridded

(5° � 5°) database available on the CRU Web site

(http://www.cru.uea.ac.uk) comprises 5159 station

records, which are more densely distributed over mid-

latitudes. The data are also corrected by newly homog-

enized series with adjustment of the variance of indi-

vidual gridbox series to remove the effects of changing

station numbers through time. As to GHCN (Peterson

and Vose 1997), the quality of surface temperature val-

ues are enhanced by including a century-scale dataset

with monthly surface observations from �7000 stations

from around the world, which makes it possible to im-

prove regional-scale analyses, particularly in previously

data-sparse areas. Rigorous and objective homogeneity

adjustments are performed to decrease the effect of

nonclimatic factors on the time series. Therefore, these

two observation datasets are accepted as a reliable basis

for investigating and assessing surface temperature

change signal associated with different vegetation types

from the OMR time series. However, we note that both

CRU and GHCN have fewer station data per grid point

in the tropics than in the midlatitudes, which could re-

duce the reliability of the gridded observation data in

the tropical region.

NDVI data (Sellers 1985; James and Kalluri 1994),

downloaded from http://daac.gsfc.nasa.gov/, are used to

find out if there is a relationship between the distribu-

tion of the surface vegetation and its seasonal changes,

and the decadal OMR trends. The NDVI satellite-

derived surface greenness values (Bounoua et al. 2000)

are produced using the measurements from the Ad-

vanced Very High Resolution Radiometer (AVHRR)

on board the National Oceanic and Atmospheric Ad-

ministration (NOAA) polar-orbiting meteorological

satellites. The dataset contains the global monthly com-

posites of the NDVI at 1° resolution covering the pe-

riod from 1981 to 1994. The reflectance measured from

channel 1 (visible: 0.58–0.68 �m) and channel 2 (near-

infrared: 0.725–1.0 �m) are used to calculate the index.

The NDVI value is defined as the ratio of the difference

to the total reflectance: (channel 2 � channel 1)/(chan-
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nel 2 � channel 1). Green leaves commonly have larger

reflectances in the near-infrared than in the visible

range. Clouds, water, and snow have larger reflectances

in the visible than in the near-infrared, so that negative

values of the vegetation index may correspond to snow

or ice cover, whereas the difference in reflectance is

almost zero for bare soils such as deserts. As a result,

NDVI values can range from �1.0 to 1.0, but typical

ranges are from 0.1 up to 0.7, with higher values asso-

ciated with greater density and greenness of plant cano-

pies. We have also made comparisons with another

NDVI dataset derived from Global Inventory Model-

ing and Mapping Studies (GIMMS; Tucker et al. 2005)

and the results remained similar.

3. Regional surface temperature time series of

observation and reanalysis

Surface temperature anomalies averaged over major

land regions in the Northern Hemisphere (NH) derived

from the two reanalyses and two observations are plot-

ted in Fig. 1. Anomalies are further adjusted to have

zero mean over the last 10 yr (1993–2002) since the

biases of reanalyses are smallest for the most recent

years (Simmons et al. 2004). The key features in Fig. 1

are as follows:

(i) The two surface observation datasets (CRU and

GHCN) in each panel on the left are nearly indis-

tinguishable (Figs. 1a–d), showing a gradual up-

FIG. 1. Time series (10-yr running mean) of the surface temperature anomalies (°C) aver-

aged over the (a) east Asia, (b) Europe and west Asia, (c) North and South America, and (d)

Africa area. Anomaly values are obtained by removing the 30-yr mean from 1961 to 1990 and

they are further adjusted to have zero mean over the last 10 yr (1993–2002). (e)–(h) As in

(a)–(d) but for their OMR (CRU–ERA-40, CRU–NNR, GHCN–ERA-40, and GHCN–NNR)

time series.
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ward trend of surface temperature over Asia, Eu-

rope, North and South America, and the Africa

region. The two reanalyses are also in remarkable

agreement with the observations in terms of cap-

turing the interannual variability and the long-

term trends.

(ii) Nevertheless, it is evident that the reanalyses ex-

hibit a smaller warming trend than observations,

as reported in Kalnay and Cai (2003) and Lim et

al. (2005). This feature is found in all regions (Figs.

1a–d). Because of this, the OMR time series (Figs.

1e–h) obtained by subtracting reanalyses from ob-

servations show a positive trend in every region.

(iii) The right panels in Fig. 1 indicate that overall, the

OMR time series with ERA-40 yields a smaller

warming trend than that derived from the NNR

(Figs. 1e–h). This is to be expected because ERA-

40 uses to some extent the surface observation in

their assimilation system, while the NNR does not

use the surface information. Land surface tem-

perature and soil moisture in the ERA-40 are es-

timated by assimilating the CRU surface observa-

tions (Jones and Moberg 2003) in an offline mode.

Therefore, a portion of the surface warming trend

associated with regional characteristics above the

surface (land-cover types) may be reflected in the

ERA-40, resulting in a smaller OMR trend than

that derived from NNR (Simmons et al. 2004; Lim

et al. 2005) (Figs. 1e–h), although ERA-40 could

also contain bias passed from the in situ surface

measurements. From Fig. 1 we conclude that both

reanalyses could serve as a dataset for surface tem-

perature trend analysis because they do not use

the surface temperature observations directly, but

for the purpose of assessing the surface tempera-

ture trend associated with surface vegetation char-

acteristics, the NNR has the advantage of not us-

ing surface observations to initialize the soil tem-

perature and moisture.

4. The OMR trends associated with surface

vegetation

a. Geographical surface vegetation field and its

annual range

Figure 2 represents the geographical distribution of

the NDVI for (a) all 12 months, (b) June–August

(JJA), (c) December–February (DJF), and (d) the sea-

sonal difference (JJA–DJF). The maps depict the pat-

tern of global greenness, along with their annual ranges.

The well-known desert areas such as Sahara, Middle

East, western China, and Mongolia are classified in the

least vegetated region (Figs. 2a–c). These areas show

little seasonal vegetation change (Fig. 2d). Arctic areas

are also characterized by small NDVI in summer and

negative NDVI (frozen water) in winter. On the other

hand, tropical evergreen forest regions including the

equatorial Africa, Southeast Asia, and the Maritime

Continent, central America, and Amazon areas show a

large vegetation index with little seasonal change (Figs.

2a–c). Note that there are several grids over India and

Indochina peninsula where the wintertime NDVI is

greater than that in summer. This is because seasonal

vegetation growth is a few months out of phase with

monsoon precipitation over those regions. Monthly

NDVI fields (not shown here) reveal that the leaf area

index in the Indian region has its minima in the pre-

monsoon season (April, May) and begins to increase

slowly with the onset of the Indian summer monsoon.

The summer monsoon gets to central India only by

mid-June, and the period prior to that is very stressful

for vegetation given the scorching heat and dryness of

the premonsoon period. Rainfall in June–July is a re-

lief, and vegetation begins to come back, reaching the

largest NDVI values in the postmonsoon season. The

main crop cycle, wheat, called “rabi crops” begins with

planting in fall and is nurtured by the milder winter

monsoon rainfall; harvesting occurs in spring. There-

fore, although initially surprising, the slightly higher

NDVI in winter than in summer observed over India is

representative of the actual vegetation characteristics.

We have found that the same spatial NDVI features are

reproduced in the other NDVI dataset derived from

GIMMS (http://gimms.gsfc.nasa.gov/) group (Tucker et

al. 2005).

Midlatitude regions, which generally comprise crop-

land, mixed (broadleaf and needleleaf) forests, shrub-

land, grass, and needleleaf tree forests, have a much

more conspicuous seasonal change (Figs. 2b–d). In

those regions the large vegetation index in the JJA pe-

riod drops drastically during the DJF period. While the

seasonal vegetation change is strong in the European

countries and North American region, midlatitude cen-

tral Asia (Russia, northern China, and Mongolia)

shows a relatively weak seasonal NDVI change due to

the annually consistent aridity (e.g., Gobi Desert) over

the region (Fig. 2d).

b. Relationship between the OMR trend and the

vegetation index

We now relate the surface temperature change sig-

nals estimated by OMR to the different surface vegeta-

tion indexes. To this end, the decadal OMR trend at

each grid is scatterplotted as a function of annual mean
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FIG. 2. Surface vegetation map derived from NDVI. Vegetation index is averaged over (a)

1981–94, (b) summer (JJA), and (c) winter (DJF). (d) The seasonal NDVI difference (JJA–

DJF).
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NDVI (Bounoua et al. 2000). This kind of approach is

also found in Hanamean et al. (2003) in relating NDVI

to the 850–700-hPa-layer mean temperature change de-

rived from the NNR for the Colorado area.

As in Kalnay and Cai (2003), the OMR trend per

decade at each grid point is obtained by taking the

average of two decadal mean differences, that is, 1990s

� 1980s and 1970s � 1960s, to avoid the small jumps in

the reanalysis associated with the major addition of sat-

ellite observations in 1979. The decadal observation,

reanalysis, and OMR trends are scatterplotted with the

NDVI values for the 20°S–50°N latitudinal band and all

longitudes, an area where most of landmass is found

(Hurrell and Trenberth 1998). NH high latitudes, in-

cluding the Arctic zone, are not included in this analysis

due to their different climate response mechanism to

surface vegetation (Robock 1983; Wang and Key 2005)

compared with mid- and low-latitude regions. Analysis

of high-latitude regions is not within the scope of this

study and will be investigated later.

As shown in Fig. 3a, decadal trends in GHCN obser-

vations show no significant relationship with the NDVI

(r � �0.07), presumably because they reflect all climate

change signals. However, the trend in NNR reanalysis

(Fig. 3d) is significantly proportional to the vegetation

index (r � 0.56), indicating that it is missing the rela-

tionship demonstrated in modeling experiments (Xue

and Shukla 1993; Dai et al. 2004; Hales et al. 2004)

showing stronger surface warming in arid areas with

low vegetation. This lack of reproduction of the surface

temperature change signal associated with the impact

of vegetation types is also present to a lesser extent in

the ERA-40 reanalysis (r � 0.17), as shown in Fig. 3b.

Partial inclusion of surface information in ERA-40

makes the correlation with NDVI less positive than

NNR. The outliers in the scatterplots, that is, large

negative ERA-40 trends and large NDVI, were all in

the tropics, within 20° latitude (Fig. 3b), whereas no

such outliers were found for NNR (Fig. 3d).

Because of these characteristics of reanalysis data,

the decadal OMR trend obtained from GHCN–ERA-

40 and GHCN–NNR, respectively, is negatively corre-

lated with the surface vegetation index (r � �0.32,

r � �0.67), demonstrating that the strong (weak) sur-

face warming response to the surface aridity (green-

ness) is adequately represented by OMR, especially for

“observation minus NNR.” As shown in Figs. 3c and 3e,

the inverse proportionality of decadal OMR trend to

vegetation index is clearer for GHCN–NNR than

GHCN–ERA-40 because the former better extracts the

surface temperature change signal associated with veg-

etation types.

Figure 4 is the same as Fig. 3 but with the CRU

instead of the GHCN observations. The key features in

Fig. 4 are identical to those delineated in Fig. 3. While

CRU observation trends are not correlated with the

NDVI (r � 0.11), the OMR trends have strong negative

correlation with surface greenness, especially for CRU

� NNR (r � �0.58).

c. Surface temperature change as a function of

vegetation index

Decadal OMR trends with respect to the surface veg-

etation index are assessed. Figure 5 depicts the annual

mean OMR trends as a function of NDVI values with

0.1 intervals. The OMR trend values at each grid point

are averaged for the same surface vegetation index val-

ues. Trend values are represented by closed circles,

along with the error range at 95% significance level by

cross marks. The number of stations used for calcula-

tion of these trends is given in Table 1.

The two independent reanalyses appear to have a

very similar dependence of the OMR trends with re-

spect to surface vegetation as well as their statistical

significance levels. The key features in the OMR trends

for the approximately 20°S–50°N latitudes are

(i) The OMR trend decreases with the surface veg-

etation index. The quantitative estimate from the

NNR reanalysis reveals that for vegetation index

greater than 0.4 there is near-zero additional near-

surface contribution to temperature change (Figs.

5a,b). Error ranges at 95% significance level sup-

port the statistical confidence of this assessment.

The highest vegetation index area generally com-

prises the broadleaf forest over tropical forest re-

gions. As discussed in modeling works by Shukla

et al. (1990), Xue and Shukla (1993), and Giam-

belluca et al. (1997), this area is characterized by

the strong transpiration and evaporative cooling

feedback from the leaves, resulting in the suppres-

sion of surface warming.

(ii) The OMR trends over the moderate surface veg-

etation index (approximately 0.2–0.4) area are in

the range of approximately 0.1°–0.2°C decade�1

(CRU–NNR and GHCN–NNR) (Figs. 5a,b).

These areas are mainly composed of midlatitudi-

nal crop and grass land, deciduous broadleaf or

needleaf trees, and shrubs. Because they are less

green than the tropical forest areas, the cooling

feedbacks from leaves are weaker than those in

tropical forest areas. This contributes to the mod-

eration of surface warming over these areas.

(iii) Areas of less than 0.1 greenness with sparse veg-

etation show the largest warming associated with

surface effects, �0.3°C decade�1 (CRU–NNR and
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GHCN–NNR) (Figs. 5a,b). In areas where soil

moisture is very limited and the land surface is

characterized by bare soil, the evaporation nega-

tive feedback would be negligible, explaining a

larger regional surface warming response under

the same amount of radiative forcings, as discussed

in Shukla et al. (1990), Bounoua et al. (2000),

Hoffmann and Jackson (2000), Dai et al. (2004),

Hales et al. (2004), Diffenbaugh (2005), and Saito

et al. (2006).

(iv) The OMR trends for the ERA-40 reanalysis (Figs.

5c,d) are similar but less pronounced than the

trends for the NNR due to the partial inclusion of

the surface processes associated with land vegeta-

FIG. 3. Scatter diagram between the NDVI and the decadal surface temperature trend of (a)

GHCN, (b) ERA-40, (c) GHCN–ERA-40, (d) NNR, and (e) GHCN–NNR over the 20°S–

50°N, 0°–360°E region. Data have been spatially smoothed to remove the extreme outliers.

Here r is the correlation coefficient of all the data points.
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tion types in the ERA-40, which are not included

in the NNR.

5. Surface temperature trend response to the

seasonal vegetation change

a. Monthly variation of correlation between OMR

trend and vegetation

As shown in Fig. 2, the vegetation index has a sea-

sonal variation, especially for midlatitudes. The spatial

correlations between the NDVI and the OMR trend for

each month is now calculated to understand the sea-

sonal variation of OMR trends associated with seasonal

vegetation changes. Since the NDVI shows seasonal

changes at fixed location, we expect that the OMR

trend would also exhibit a temporal variation in re-

sponse to the seasonal vegetation change. Month-to-

month variation of correlations between the NDVI and

the OMR trend identifies that they range from �0.6 to

�0.35 (Fig. 6, lines with cross mark). The observed

FIG. 4. As in Fig. 3 but for (a) CRU, (c) CRU–ERA-40, and (e) CRU–NNR.
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negative correlations indicate that the OMR trend sat-

isfies the negative relationship with the NDVI through-

out the year; that is, there is an increase (decrease) in

OMR trend with decreasing (increasing) vegetation.

Seasonal difference in the OMR trend also indicates

that the trend is more negatively correlated with NDVI

when the overall vegetation is low (in the winter) than

when it is high (the summer). On the other hand, the

observed decadal trends (GHCN and CRU) show weak

correlations with NDVI seasonal variations (less than

0.2), indicating little significant relationship with sur-

face vegetation types throughout the year, because, as

observed before, the observed trends are dominated by

combined atmospheric and surface warming effects, not

only by vegetation effects (Fig. 6, lines with open

circles).

b. Variation of the OMR trend with the seasonal

vegetation change

Based on the understanding that the OMR trend var-

ies with the temporal vegetation change, the seasonal

variation of the OMR trends is estimated for several

major regions over the NH. Five different regions are

chosen here to investigate the response of the OMR

TABLE 1. The number of grid points used for calculation of OMR trends in Fig. 5.

NDVI � 0.1 0.1 � NDVI � 0.2 0.2 � NDVI � 0.3 0.3 � NDVI � 0.4 0.4 � NDVI � 0.5 0.5 � NDVI

GHCN–NNR 52 35 35 67 88 74

CRU–NNR 57 35 37 70 95 82

GHCN–ERA-40 52 35 35 67 88 74

CRU–ERA-40 57 35 37 70 95 82

FIG. 5. Assessment of annual mean OMR trend (°C decade�1) (lines with filled circles) as

a function of annual mean NDVI. The OMR trend for the (a), (b) NNR reanalysis and (c), (d)

ERA-40 reanalysis. Lines with cross mark represent the error range at 95% significance level.
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trends for the NNR to the variation of the surface veg-

etation. In Fig. 7 we consider two extremes with low

amplitude in the NDVI seasonal cycle. First, desert ar-

eas (Sahel and Middle East) are selected as areas of

little vegetation, limited soil moisture, and little sea-

sonal vegetation change. Second, low-latitude broad-

leaf forests (equatorial Africa, Amazon, Indochina pen-

insula, and Maritime Continent) are chosen as repre-

sentative of high vegetation, abundant soil moisture,

and evergreenness. In Fig. 8, by contrast, we select ar-

eas of strong seasonal vegetation change between sum-

mer and winter in midlatitudes, for example, Europe

and United States, and the arid midlatitude central

Asia.

The seasonal variation of the OMR trend for NNR

clearly shows that strong surface warming (�0.4°C de-

cade�1) beyond what would be expected from atmo-

spheric warming is observed over the desert area

throughout the year (see solid lines with closed circles

and squares in Fig. 7a) as the NDVI remains close to

zero (solid line with open circles). Limited soil moisture

and little evaporative cooling feedback year-round ap-

pear to drive the consistent strong warming over this

area (Dai et al. 2004; Hales et al. 2004).

In contrast, tropical evergreen forest area in Fig. 7b

shows little surface warming throughout the year (solid

lines with closed circles and squares) due to the ever-

greenness (solid line with open circles). Surface cooling

by evaporation, transpiration, and soil moisture associ-

ated with surface greenness and tropical humid climate

remains effective throughout the year, yielding little

surface warming in every month (Xue and Shukla

1993).

In midlatitudes such as Europe (Fig. 8a) and the

United States (Fig. 8b), OMR trends exhibit a strong

annual cycle as the NDVI has strong seasonal changes,

with high vegetation in the summer and low vegetation

in the winter. The corresponding OMR trend fluctuates

seasonally almost out of phase with the seasonal NDVI

oscillation. Therefore, we can conclude that the surface

warming response to the regional vegetation status over

the midlatitude tends to be strong in winter and early

spring (approximately 0.2°–0.3°C decade�1) when the

vegetation is low but weak in summer and early autumn

(0.1°C decade�1) with high vegetation.

The OMR trend over the midlatitude central Asia

(Russia, northern China, and Mongolia) does not show

a strong seasonal variation, as shown in Fig. 8c. As seen

in the NDVI, this area is characterized by being arid

throughout the year. Therefore, the OMR trend re-

mains high with little seasonal change despite being in

a midlatitude geographical location.

We clearly demonstrated how sensitively the OMR

trend for NNR responds to the seasonal vegetation

change. However, the variation of OMR trend for

ERA-40 does not show any significant relationship with

the seasonal vegetation change in Figs. 7 and 8 (see

dashed line). As discussed before, the partial inclusion

of surface temperature information in the ERA-40

makes the OMR temperature change signal associated

with seasonal vegetation change weaker.

FIG. 6. Month-to-month variation of the correlation between

NDVI and the decadal OMR trend over the 20°S–50°N, 0°–360°E

region. The trend values have been temporally smoothed by

5-month running mean to remove the extreme outliers. Lines with

open circle denote the CRU (long dash) and the GHCN (solid),

and the plus signs denote the CRU–NNR (long dash) and

GHCN–NNR (solid).

FIG. 7. Seasonal variation of the OMR trend (°C decade�1) in

response to the seasonal vegetation change over (a) desertic area

(Sahara and Middle East) and (b) tropical evergreen forest (equa-

torial Africa and Asia, and Amazon). Solid lines with closed circle

and closed square denote the seasonal variation of OMR trend of

GHCN–NNR and CRU–NNR, respectively. Dashed lines are

plotted by switching NNR to ERA-40 reanalysis. Seasonal NDVI

change is denoted by solid line with open circles.
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6. Summary and discussions

Anomalies in monthly surface temperature time se-

ries derived from two reanalyses (NNR and ERA-40)

and two observational datasets (GHCN and CRU) are

analyzed by the OMR approach (observation minus re-

analysis) to 1) investigate the relationship between the

OMR trend and land vegetation types and 2) assess the

surface temperature change signal by the impact of in-

dependent land vegetation types from the OMR. The

rationale for the OMR approach is that while reanaly-

ses contain the large-scale temperature change signals

that could be forced by greenhouse gases, volcanoes,

and natural decadal variability, the NNR and (to a

lesser extent) the ERA-40 are insensitive to regional

surface processes associated with different land vegeta-

tion types because little surface data or information

were used in the data assimilation process. Pronounced

features identified from analysis are as follows:

1) The long-term trends for both observations and re-

analyses averaged over several areas show a gradual

warming, with greater upward trend in observations

over the last 4 decades. This is caused by the poor

reproduction of surface temperature change signal

associated with impacts of regional vegetation types

in the reanalyses data. As a result, the difference

time series between observation and reanalyses

(OMR) grows with time.

2) The positive OMR trend is larger for NNR than for

ERA-40 because of the different data assimilations

used in the two reanalyses. The NNR used no sur-

face observations over land, whereas ERA-40 used

surface temperature observations to initialize soil

temperature and moisture. This makes the NNR re-

analysis more insensitive to surface processes than

the ERA-40. As a result of this lack of surface in-

formation in the NNR, more surface temperature

change signal resulting from the impact of different

land vegetation types are captured in the OMR time

series using NNR than ERA-40 (Kalnay and Cai

2003; Zhou et al. 2004; Frauenfeld et al. 2005; Lim et

al. 2005). This fact gives an indication that the OMR

time series for NNR would provide useful informa-

tion to assess the multidecadal surface temperature

change signal with regard to different land vegeta-

tion types. Nevertheless, the general dependence of

OMR on vegetation type is clearly similar between

the two reanalyses.

3) For a clearer demonstration of the relationship, the

decadal OMR trends at each grid were correlated

with NDVI. The results prove that the decadal

OMR trend is inversely proportional to NDVI

with statistical significance (correlation � �0.5).

The OMR trend for the NNR yields a more nega-

tive correlation with NDVI [correlation � �0.58

(CRU–NNR) and �0.67 (GHCN–NNR)] than the

OMR trend for the ERA-40 does [correlation �

�0.26 (CRU–ERA-40) and correlation � �0.32

(GHCN–ERA-40)]. This suggests that the decadal

trend of the “observation–NNR” substantially ac-

counts for the impact on surface warming effects

associated with different land vegetation types, ab-

sent in the NNR. This feature is robust with respect

to seasonal changes in the NDVI. Correlations

range from �0.6 to �0.35 throughout the year, in-

dicating that for the NNR the decadal OMR trend

varies with seasonal NDVI change at fixed locations

to maintain the negative correlation.

4) The surface temperature change signal inferred

from the OMR trend is also assessed as a function of

surface vegetation index. It shows that the trend is

very sensitive to the different surface greenness. The

strongest warming trend due to surface processes is

found over the desert areas [Sahara, Middle East,

western China (Tibet), and Mongolia] (�0.3°–0.4°C

decade�1) whereas tropical forest areas (equatorial

FIG. 8. As in Fig. 7 but for the midlatitude landmass: (a) Eu-

rope, (b) United States, and (c) central Asia with aridity covering

Russia, northern China, and Mongolia.
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Africa, Southeast Asia, Maritime Continent, and

Amazon), are associated with negligible warming or

slight cooling (�0°C decade�1). These results are

consistent with Dai et al. (2004), Hales et al. (2004),

and Diffenbaugh (2005), who argue that there is

stronger (weaker) warming in barren (vegetated) ar-

eas due to the response of surface albedo, soil mois-

ture, and evaporative cooling feedback to solar ra-

diative forcing. Several midlatitude areas where the

vegetation density lies in between desert and tropi-

cal forest show a moderate decadal warming

(�0.2°C decade�1).

5) The OMR trend patterns are strongly dependent on

seasonal vegetation change for midlatitude areas

such as Europe and North America, where the

strong seasonal vegetation that takes place shows a

weak warming trend (�0.1°C decade�1) in summer

and early autumn and strong warming (approxi-

mately 0.2°–0.3°C decade�1) in winter and early

spring. This is in agreement with the studies of

Shukla et al. (1990) and Xue and Shukla (1993) who

have shown that vegetation changes by forestation

(deforestation) suppresses (enhances) the surface

warming effect.

In contrast, tropical forest areas and desert areas (Sa-

hara and Middle East) tend to show a constant OMR

trend throughout the year, as their regions exert little

vegetation change with season. Despite the geographi-

cal midlatitude location, the OMR trend in the central

Asia region remains high without any noticeable sea-

sonal change because of the stationary aridity through-

out the year.

The findings obtained in this study support our argu-

ment that the surface temperature change signal asso-

ciated with different land vegetation types are reason-

ably well captured by the OMR approach. The analysis

demonstrates that lower long-term trends in the re-

analysis surface temperature than observations are at-

tributable to the absence in surface data in the data

assimilation procedure. As a result, the OMR approach

facilitates isolating the impact of vegetation types on

long-term surface temperature trend by removing

large-scale global warming signal as recorded in the

reanalysis from the surface observation.

These findings could be affected by other errors that

might arise from the reanalysis inhomogeneity in time,

from model systematic errors and observation biases.

Our OMR analysis tried to minimize the impact of

those errors by 1) averaging the trends for relatively

homogeneous reanalysis periods, 2) calculating the

trends for the anomalies with respect to a 30-yr annual

cycle, and 3) choosing the most reliable observation

data currently being used. The clear relationship be-

tween the OMR trend and NDVI suggests that the ef-

fect of these errors is relatively small in comparison

with the temperature change signal that we tried to

isolate.

Note also that the NDVI is applied under the as-

sumption that the global distribution of the surface veg-

etation for each calendar month is approximately con-

stant. The real NDVI time series for each calendar

month exhibit some interannual variation (not shown),

but the amplitude of the changes is small, especially on

a decadal scale. We believe that this assumption is rea-

sonable since there have been no large interannual

NDVI changes (e.g., a switch between forest and de-

sertic bare soil) on a 5° � 5° horizontal grid scale that

would be needed to have a noticeable effect on the

OMR trend values.
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