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Abstract:  Since blood flow is tightly coupled to the health status of 
biological tissue, several instruments have been developed to monitor blood 
flow and perfusion dynamics. One such instrument is laser speckle imaging. 
The goal of this study was to evaluate the use of two velocity distribution 
assumptions (Lorentzian- and Gaussian-based) to calculate speckle flow 
index (SFI) values.  When the normalized autocorrelation function for the 
Lorentzian and Gaussian velocity distributions satisfy the same definition of 
correlation time, then the same velocity range is predicted for low speckle 
contrast (0 < C < 0.6) and predict different flow velocity range for high 
contrast.  Our derived equations form the basis for simplified calculations of 
SFI values. 

©2007 Optical Society of America  

OCIS codes: (120.6150) Speckle imaging; (120.7250) Velocimetry; (170.3340) Laser Doppler 
velocimetry; (999.9999) Blood flow velocity. 
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1.  Introduction  
 
Noninvasive monitoring of a therapeutic intervention is desired to provide the clinician or 
scientist with insight into the efficacy of the treatment. Since blood flow is tightly coupled 
into the health status of biological tissue, several instruments have been developed to monitor 
blood flow and perfusion dynamics, including laser Doppler flowmetry [1,2] and Doppler 
optical coherence tomography [3,4]. 
       Fercher and Briers [5] proposed a technique for flow visualization by means of single-
exposure photography. It uses the spatial statistics of time-integrated speckle (essentially the 
speckle contrast) and was originally developed for the measurement of retinal blood flow. 
Recently, this laser speckle imaging (LSI) method has been developed into a digital, quasi 
real-time technique for the mapping of blood flow [6,7].  LSI has been used to monitor 
noninvasively blood flow and perfusion dynamics in the brain [1,8-12], retina [5,13], and skin 
[14-17]. We have employed LSI to monitor blood flow dynamics during photodynamic 
therapy [16] and have observed marked changes in the measured speckle flow index (SFI) 
values which is proportional to the blood flow velocity.  Cheng and Duong [18] recently 
proposed a simplified imaging equation that addresses a reported discrepancy [19] between 
the Fercher and Briers speckle imaging equation and that of Goodman [20, 21].  The authors 
proposed that this equation is valid for T/τc > 100, where T is image exposure time and τc is 
speckle correlation time. 

The goal of this study was to evaluate the use of two velocity distribution assumptions to 
calculate SFI [6]. To achieve this goal, we employed Mandel´s definition of correlation time 
[20]. 

2.  Lorentzian and Gaussian velocity distributions 

When coherent light is used to illuminate an object, a speckle pattern is evident.  If the object 
contains moving optical scatterers (i.e., red blood cells), the speckles will fluctuate in time. A 
time-integrated image will show a reduction in the speckle contrast due to averaging of the 
intensity of each speckle. This reduction in contrast is related to the flow velocity. The higher 
the velocity, the faster the intensity fluctuations, and therefore, the larger the reduction in 
contrast that occurs over a given exposure time. 
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Based on speckle statistics, Fercher and Briers [5] derived the following relationship 
between the speckle contrast (C) and the normalized autocorrelation function of the remitted 
light: 
 

( )∫== T dttTIC 0
2)(/12/22 γσ                                                  (1) 

 
where σ is the variance, I is the mean and )(tγ  is the normalized autocorrelation function of 

the remitted light. For a Lorentzian velocity distribution: 
 

)/exp()( ctt τγ −= ,                                                                (2) 

 
Substitution of Eq. 2 into Eq. 1 yields [5]: 
 

( ) ( )[ ]{ } 2
1

/2exp12/ cc TTC ττ −−=                                                      (3) 
 
Briers et al. [22] performed a similar analysis for a Gaussian velocity distribution assumption, 
obtaining: 

( )( ) ( )[ ] 2
1

//2/2
1

cc TerfTC ττπ=                                                    (4) 
 
We postulate that Briers et al. employed the following expression for the normalized 
autocorrelation function representing a Gaussian velocity distribution: 
 

)2/exp()( 22
ctt τγ −= ,                                                           (5) 

 
Substitution of Eq 5 into Eq. 1 yields Eq 4.   

Figure 1 demonstrates that the use of the two velocity distribution assumptions result in 
different SFI values (SFI = 1/τc ∝ blood flow velocity) for given values of C. Moreover, for  
T/ τc > 2, Eqs 3 and 4 can be simplified to the following algebraic expressions: 
 

)/(2
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2/12

2

πτ
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cl

=

=
 ,                                                         (6) 

 
where τcl and τcg are the correlation times for the Lorentzian and Gaussian approximations, 
respectively.  This result is in agreement with the simplified imaging equation obtained by 
Cheng and Duong [18]. 

From Eq 6: 
( )( )clcg τπτ /1/1 2/1=                                                            (7) 

 

suggesting that for T/τc > 2, the velocity predicted by the Gaussian approximation is π times 
the velocity predicted by the Lorentzian approximation. 

In Ref [6], the authors developed an experiment for which the actual decrease in the 
computed speckle contrast was from 0.15 to 0.01. Adopting the Lorentzian model (Eq. 3) the 
authors obtained an approximated velocity change from 55 to 120 μm/s and adopting the 
Guassian model (Eq. 4), it suggested a velocity change from 100 to 200 μm/s; this 
discrepancy is predicted by the Eq. 7. These results, obtained by Briers et al [6], suggest that 
the velocity distribution model does impact the relationship between speckle contrast and τc. 
In the next paragraphs we re-derived an equation for the Gaussian model to address the 
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discrepancy mentioned above and demonstrate that the mapping can indeed differ at high 
speckle contrast values, but for the large majority of speckle contrast values (0 to 0.6) 
encountered in practice, the two velocity distributions result in identical mapping between 
speckle contrast and τc. 

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Use of either Lorentzian and Gaussian velocity distributions (Eqs. 3 and 4 respectively) 
result in distinct relationships between C and the ratio T/τc (which is proportional to SFI) 

 

3.  Rederived Gaussian equation 

In many applications it is desirable to have a precise definition of the term “correlation time”. 
Such a definition can be made in terms of )(tγ , but there are different expressions of )(tγ  
reported in the literature [23].  We employed Mandel´s definition of the correlation time: 
 

∫
∞

∞−
= dttc

2
)(γτ                                                                (8) 

 
It is straightforward to show that Eq 2 satisfies Eq 8, but Eq 5 does not. To address this 

discrepancy, we propose an alternate expression for the Gaussian normalized autocorrelation 
function: 

)2/exp()( 22
ctt τπγ −=                                                     (9) 

 
which satisfies Eq. 8. Substituting Eq. 9 into Eq. 1, we obtain: 
 

     ( )( ) ( )[ ] 2
1

2/1 //2/1 cc TerfTC τπτ=                                               (10) 
 
which is similar to Eq. 4.  Furthermore, the argument of the error function in Eq. 10 is similar 
to that described previously by Goodman (Eq. 6.1-20 in [20]) for a Gaussian spectral profile. 

For T/ τc > 2, Eq. 10 becomes: 
22TCcga =τ                                                            (11) 

where τcga is the correlation time for the re-derived Gaussian-based speckle imaging equation.  
Note that this equation is identical to that derived using the more common Lorentzian velocity 
distribution assumption (Eq. 6, top row).  
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Thus, when the normalized autocorrelation function for the Gaussian and Lorentzian 
velocity distributions satisfy the same definition for the correlation time (Eq. 8), then both 
approximations predict the same SFI values for low C values (Fig. 2, 0 < C < 0.6).  
  

For T/ τc <<1, Eqs. 3 and 10 can be approximated as 
 

( )
( ) ( ) 2

1
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2
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−=

πτ

τ
                                          (12) 

 
demonstrating that use of either the Lorentzian or rederived Gaussian velocity distribution 
assumption predict different τc (and hence SFI) values.  Although T/τc<<1 is not encountered 
in typical LSI experiments, Eq. 12 demonstrates that only in this range of ratios (T/τc<<1) will 
the velocity distribution assumption affect the mapping between speckle contrast and τc. 

From Goodman’s theory on integrated intensity [20], which takes into account the 
triangular averaging of the correlation function [19], it is straightforward to obtain: 
 

( ) ( )( ) ( )[ ][ ] 2
1

1/2exp/2/1/ lg
2

lglg −−+= ccc TTTC τττ                              (13) 

and  

( ) ( ) ( )( ) ( )[ ]{ }( ) 2
1

222/1 /exp1//1// cggcggcggcgg TTTerfTC τπτπτπτ −−−= ,             (14) 

 
where τclg and τcgg are the correlation times for the Lorentzian and Gaussian approximations, 
respectively. For T/ τc > 2, Eqs. 13 and 14 can be simplified to the following expressions: 
 

cggc TC ττ /1/1/1 2
lg ==                                                (15) 

 
The relationship between τclg and C is similar to that derived by Cheng and Duong [18]. 

Once again, Eq. 15 suggests that for T/ τc > 2 (i.e., 0 < C < 0.6, see Fig. 2), Goodman’s 
theory predicts the same SFI range for the Lorentzian and Gaussian velocity distributions.  
Moreover, from Eqs. 6 (top row), 11 and 15, the SFI values predicted by Goodman`s model 
are directly proportional to the Lorentzian and the rederived Gaussian-based speckle imaging 
equations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 2. Use of either Lorentzian and rederived Gaussian speckle imaging equations (Eqs. 3 and 
10 respectively) results in identical mapping of C to the ratio T/τc for 0 < C < 0.6. 
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In Ref [20], the signal-to-noise ratio associated with measurement of (1/C2) is given by: 

crms TNS τ/)/( = .                                                    (16) 

The (S/N)rms associated with Eq. 15 is greater than 2 . At higher (C > 0.6) speckle contrast 

values, (S/N)rms is less than 2 , which is unacceptably low for practical application.  Eq. 16 
is valid for both the Briers and Goodman models. 

Briers et al. [6] first noted that experimental C values did not reach the theoretical limit of 
unity for completely stationary objects; they instead observed a maximum value of 0.6.  
Experimental data from Yuan et al. [10] also achieved a maximum C value of 0.6.  Dunn et al. 
[1] and Bolay et al. [12] presented experimental data taken from cortical tissue with maximum 
C values of ~0.15. In experimental LSI data that we acquire from rodent dorsal window 
chamber models [15-17], we typically observe C values greater than 0.6 in less than 1% of the 
pixels (Fig. 3). It is important to note that measured C values may differ among LSI 
instruments due to differences in parameters such as quality of imaging optics and camera, 
coherence length of incident light source, etc.  Nevertheless, we believe these studies 
collectively justify the rationale for other researchers employing LSI to utilize the proposed 
simplified speckle imaging equation (Eq. 15).  An advantage of Eq. 15 over either use of 
approximate solutions or look-up tables to extract τc from the speckle imaging equation is that 
it represents an exact analytical solution for C < 0.6. 

 

 
Fig 3.  Representative speckle contrast image of a microvascular network in a rodent dorsal 
skinfold window chamber model.  Of the ~1.4 million pixels comprising the image, only 2718 
(~0.2%) of the pixels have C values greater than 0.6. 

 
Cheng and Duong [18] stated that typically-encountered ratios of T/τc are 100 to 400.  

Values greater than 100 are encountered in clearly defined blood vessels, but the ratio is much 
lower for pixels that map to poorly-perfused regions of tissue.  For example, a speckle 
contrast of 0.6, which is encountered experimentally, maps to a ratio of two.  Our analysis 
demonstrates that, even for such a low ratio, the simplified imaging algorithm can be used 
with high accuracy. 

4.  Conclusions 

When the normalized autocorrelation function for the Lorentzian and Gaussian velocity 
distributions satisfy the same definition of correlation time, the same SFI values are predicted 
for low contrast (0 < C < 0.6) conditions and different values predicted for high contrast 
conditions. A similar trend is predicted by Goodman`s model.  Previously, the only ways to 
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extract τc from the imaging equation involved either an approximate solution to or use of 
look-up tables.  Based on our own unpublished experimental data, we have shown that a 
simplified speckle imaging equation (Eq. 15) will cover the vast majority of practical 
experimental conditions. 
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