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The authors evaluated whether statistically significant violations of Hardy-Weinberg equilibrium (HWE) or the
magnitude of deviations from HWE may contribute to the problem of replicating postulated gene-disease associ-
ations across different studies. Forty-two gene-disease associations assessed in meta-analyses of 591 studies
were examined. Studies with disease-free controls in which HWE was violated gave significantly different results
from HWE-conforming studies in five instances. Exclusion of the former studies resulted in loss of statistical
significance of the overall meta-analysis in three instances and more than a 10% change in the summary odds
ratio in six. Exclusion of HWE-violating studies changed the formal significance of the estimated between-study
heterogeneity in three instances. After adjustment for the magnitude of the deviation from HWE for the controls,
formal significance was lost in another three instances. Studies adjusted for the magnitude of deviation from HWE
tended to become more heterogeneous among themselves, and, for seven gene-disease associations, between-
study heterogeneity became significant, while it was not so in the unadjusted analyses. Gene-disease association
studies and meta-analyses thereof should routinely scrutinize the potential impact of HWE violations as well as
nonsignificant deviations from the exact frequencies expected under HWE. Postulated genetic associations with
modest-sized odds ratios and borderline statistical significance may not be robust in such sensitivity analyses.

association; bias (epidemiology); genes; genetics; meta-analysis

Abbreviations: HWE, Hardy-Weinberg equilibrium; ID, (operational) identification number.

Genetic associations for complex diseases are important
to establish because they are expected to cumulatively ac-
count for a substantial proportion of susceptibility to many
diseases of considerable public health impact (1, 2). How-
ever, concerns are increasing about the lack of replication of
proposed gene-disease associations (3–5). Various reasons
have been proposed for this phenomenon, including, among
others, exaggerated early results (3), publication bias and

time-lag bias against ‘‘negative’’ studies (3, 6), differences
between small and larger studies (7), and population strati-
fication and ‘‘racial/ethnic’’ heterogeneity (8). Empirical
evidence has been accumulating on the relative role of some
of these potential problems (3, 4, 7–9).

An additional major theoretical concern is that asso-
ciations may be spurious if the distribution of genotypes
in the healthy control groups in genetic case-control studies
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deviates from Hardy-Weinberg equilibrium (HWE). HWE
depends on a series of assumptions about the tested popu-
lation, including, for example, no new mutation, no selec-
tion, and random mating (10). Departures from HWE, if not
due to chance or violation of these assumptions, therefore
may point to genotyping error or other biases (11, 12). Em-
pirical evidence suggests that in about 10 percent of case-
control studies in the field, the distributions of genotypes in
the healthy control group violate HWE; that is, they show
formally statistically significant deviations from the HWE-
expected frequencies (12–14). Nevertheless, investigators
uncommonly report appropriately on testing and departures
from HWE, even in genetics journals (14). Moreover, given
the fact that most studies in the field have relatively small
sample sizes, the power of available statistical tests to detect
HWE violation is limited (14).

Despite these concerns, there is no known large-scale
empirical evidence on whether HWE deviations may cause
serious bias when estimating the magnitude of genetic as-
sociations in gene-disease association studies. Here, we
examine whether studies that violate HWE give systemat-
ically different genetic effect sizes compared with studies
in which HWE is not formally violated, and whether
between-study heterogeneity may be explained in part by
HWE violations. We also evaluate whether deviations
from the exact frequencies expected under HWE, even if
not formally statistically significant, may still affect the
postulated genetic associations.

MATERIALS AND METHODS

Database

We used a database of 134 meta-analyses of binary disease
outcomes with genetic markers not belonging to the human
leukocyte antigen (HLA) system (last update, May 2004);
details on the selection criteria, the search algorithms, and
data extraction have been described previously (3, 7, 8). In
brief, these meta-analyses 1) contained at least three studies
published over two different calendar years and 2) pertained
to binary outcomes. A comprehensive algorithm was used to
select the main genetic contrast (3). Study-level numerical
data were extracted either from the meta-analysis publica-
tion or after communication with the authors of each meta-
analysis. Separate case-control comparisons of different
‘‘racial/ethnic’’–descent populations described in the same
report were treated as separate studies (8).

All these meta-analyses were screened for eligibility for
the current project. Only those of biallelic markers were
retained (15). Meta-analyses in which controls were not
disease free and those in which the genotype frequencies
in the controls were not available per study were also ex-
cluded because HWE testing was not possible. Relying on
investigators’ claims regarding HWE testing is known to be
unreliable (14).

Information on genotype distribution in the controls in-
cluded in each constituent study was recorded from each
eligible meta-analysis. Data were extracted by two investi-
gators. Discrepancies were discussed and were resolved in
a consensus meeting.

HWE testing

In each constituent study, we tested for HWE by using an
asymptotic v2 test or an exact test (16) among the disease-
free controls. The exact test was preferred when the ex-
pected count under the Hardy-Weinberg law was less than
five for any of the three genotypes. For consistency, in this
paper we use the terms ‘‘violations’’ to describe departures
from HWE that reach formal statistical significance and
‘‘deviations’’ to describe any departure from the exact fre-
quencies expected under HWE, regardless of whether the
departure is formally statistically significant.

Meta-analyses: summary effects and heterogeneity
testing

The odds ratio was used as the metric of choice. For each
meta-analysis, we calculated the summary odds ratio by
including all available studies, and then we calculated it
separately for studies with statistically significant deviation
from HWE and for HWE-conforming studies. Summary
estimates were obtained with random-effects (DerSimonian
and Laird) models (17), which allow for between-study var-
iability and incorporate it in the calculations. Fixed-effects
syntheses were not used because variability in the study
results on the same association is very common (3, 7). We
tested for between-study heterogeneity with Cochran’s
v2-based Q statistic (considered significant for p < 0.10)
(18), and we estimated its extent with the I2 statistic (19).
I2 represents the percentage of the observed between-study
variability due to heterogeneity rather than to chance. It
ranges between 0 percent and 100 percent; values above
75 percent imply very large heterogeneity (19).

Impact of HWE-violating studies on summary effects
and heterogeneity estimates

We evaluated whether the statistical significance status (at
the 0.05 significance level) of each meta-analysis changed
after HWE-violating studies were excluded. We also used
a standardized z score to assess whether findings from
HWE-violating studies differed from those of the HWE-
conforming studies beyond chance (20). The z score is calcu-
lated by dividing the difference of the natural logarithms of
the odds ratios in HWE-violating and in HWE-conforming
studies by the standard deviation of this difference.

We also examined whether HWE-violating studies were
responsible for some of the observed heterogeneity in each
meta-analysis. The extent of between-study heterogeneity,
as conveyed by the I2 and Q statistics, was compared before
and after excluding HWE-violating studies.

Impact of correction for HWE deviations on summary
effects and heterogeneity estimates

Finally, we assessed whether the magnitude, statistical
significance, and between-study heterogeneity of the genetic
association in each meta-analysis depended on the magni-
tude of deviations from the Hardy-Weinberg law, regard-
less of whether these deviations corresponded to formally
statistically significant violations. The odds ratio and the
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TABLE 1. Characteristics of the meta-analyses included in the present investigation*

ID Gene (polymorphism): contrast Disease

HWE conforming HWE violating

Reference no.No. of
studies

No. of
cases

No. of
controls

No. of
studies

No. of
cases

No. of
controls

1 DRD2 (TaqIA): allele A1 vs. A2 Alcoholism 14 1,950 1,542 1 80 254 23

2 ACE (insertion/deletion): DD vs. DI þ II Ischemic stroke 6 1,334 826 0 0 0 24

3 MTHFR (C677T): TT vs. CT þ CC Neural tube defects (patients) 12 1,048 2,046 1 203 583 25

4 MTHRF (C677T): TT vs. CT þ CC Neural tube defects (mother) 8 603 1,352 0 0 0 25

5 MTHFR (C677T): TT vs. CT þ CC Neural tube defects (father) 5 200 750 0 0 0 25

6 ITGB3 (L33P): A1A2 þ A2A2 vs. A1A1 Coronary artery disease 24y 6,371 6,119 5y 1,109 1,445 28

7 ITGB3 (L33P): A2A2 þ A1A2 vs. A1A1 Fractures 11 799 2,420 2 113 248 29

8 HTR2A (G1438A): allele A vs. G Bulimia 3 434 6,92 0 0 0 26

9 HTR2A (G1438A): allele A vs. G Anorexia 7 1,330 2,368 0 0 0 26

10 FCGR2A (R131H): RR vs. RH þ HH SLE 21 2,637 2,580 0 0 0 34

11 COMT (V158M): MM vs. MV þ VV Parkinson’s disease 3 456 508 0 0 0 27

12 ACE (insertion/deletion): DD vs. DI þ II IgA nephropathy 7 917 857 0 0 0 30

13 FCGR2A (R131H): HH vs. RR þ RH HIT 6 626 1,313 0 0 0 31

14 VDR (TaqI): tt vs. Tt þ TT Prostate cancer 15 1,763 2,627 2 107 216 47

15 VDR (BsmI): allele B vs. b Prostate cancer 3 1,350 2,066 1 322 594 47

16 VDR (Fok1): allele f vs. F Prostate cancer 3 1,028 1,090 0 0 0 47

17 UCHL1 (S18Y): YY þ YS vs. SS Parkinson’s disease 10 1,896 2,069 1 74 155 50

18 CTSD (C224T): allele T vs. C Alzheimer’s disease 14 5,176 4,946 2 1,172 1,650 48

19 FCGR2A (R131H): RR vs. RH þ HH Antiphospholipid syndrome 10 479 1,655 0 0 0 35

20 FCGR2A (F158V): allele F vs. V SLE 11 1,642 2,390 2 198 520 36

21 CYP17 (MspI): A1A2 þ A2A2 vs. A1A1 Prostate cancer 11 2,303 2,555 1 101 200 45

22 SRD5A2 (V98L): LL þ VL vs. VV Prostate cancer 11 2,396 3,065 1 162 284 46

23 SRD5A2 (A49T): TT þ AT vs. AA Prostate cancer 6 1,206 1,676 2 388 461 46

24 F5 (Leiden mutation): allele V vs. v Preeclampsia 19 5,502 5,202 1 122 122 41

25 MTHFR (C677T): TT vs. CT þ CC Preeclampsia 16z 2,689 2,303 2z 188 376 42

26 AGT (M235T): TT vs. MM Essential hypertension 40 7,146 7,002 0 0 0 49

27 AGT (M235T): TT vs. TM þ MM Ischemic heart disease 17 6,569 12,222 4 575 694 49

28 HTR2A (C102T): allele T vs. C Suicide 8 1,084 1,754 1 108 252 38

29 DRD3 (S9G): S/S þ G/G vs. S/G Schizophrenia 40 4,259 4,502 0 0 0 39

30 PON1 (Q192R): RR vs. QQ Myocardial infarction 17 2,647 3,925 2 609 728 52

31 PON1 (Q192R): RR vs. QR þ QQ Coronary stenosis 25 4,263 7,465 1 120 80 52

32 PON1 (L55M): allele M vs. L Myocardial infarction 9 6,378 7,300 0 0 0 52

33 PON1 (L55M): LL vs. LM þ MM Coronary stenosis 11 2,102 3,753 3 698 713 52

34 PON1 T(–107)C: TT vs. CT þ CC Coronary heart disease 2 784 595 2 612 737 52
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variances of the individual studies were corrected to account
for departures from HWE, as previously suggested (21, 22),
and then each meta-analysis was performed again.

For allele-based contrasts, the variance of each study’s
effect size was adjusted by a factor of 1 þ F (14, 21), where
F is the inbreeding coefficient for the combined cases and
controls. The inbreeding coefficient is calculated by
F ¼ PAA=pA þ Paa=pa � 1; where PAA and Paa are the pro-
portions of the homozygotes and pA and pa are the propor-
tions of the corresponding alleles. The coefficient takes
values from 1 to –1 depending on the extent of excess or
deficit of homozygotes compared with the proportions
expected under the Hardy-Weinberg law (15, 16).

For genotype-based contrasts, every study’s odds ratio
was corrected by using the HWE-predicted genotype counts
in the control instead of the observed counts (22). The var-
iances of the natural logarithms of the adjusted odds ratios
were corrected as previously suggested (refer to the Appen-
dix) (22). Corrected variances are usually smaller than those
based on the observed genotype frequencies (22).

Software

Analyses were conducted with Intercooled Stata 8.2 soft-
ware (Stata Corporation, College Station, Texas) by using
the genhwi and metan modules, and R 1.9.1 (R Foundation
for Statistical Computing, Vienna, Austria) by using the
gap software package. In this paper, all p values are two
tailed.

RESULTS

Database

Forty-two meta-analyses with 591 studies met the inclu-
sion criteria (table 1) (23–52), and 23 of these meta-analyses
showed statistically significant gene-disease associations.
Ten studies were excluded from the analyses (five part of a
meta-analysis of 34 studies, and five part of a meta-analysis
of 23 studies) because HWE could not be assessed (separate
genotype counts were not available). Overall, control geno-
type frequencies in 60 studies (table 1) (60/591 ¼ 10 per-
cent, or even 60/581 ¼ 10 percent, since HWE could not be
assessed for 10 studies) from 27 meta-analyses violated the
Hardy-Weinberg law. Fifteen meta-analyses did not include
any such studies.

Impact of HWE-violating studies

In 24 of 27 meta-analyses with at least one HWE-violating
study, the statistical significance of the summary odds ratio
remained the same before and after excluding the HWE-
violating studies (figure 1). Nevertheless, the associations
between the UCHL1 S18Y polymorphism and Parkinson’s
disease (11 studies, (operational) identification number
(ID) 17 in table 1), between the MTHFR C677T polymor-
phism and venous thromboembolism (30 studies, ID 37), and
between the KIR6.2BIR E23K polymorphism and type II
diabetes (five studies, ID 41) were no longer formally sig-
nificant after we excluded the HWE-violating studies. In
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these three instances, the summary p values before exclu-
sion of the HWE-violating studies ranged between 0.007
and 0.025.

In most meta-analyses, the absolute magnitude of the
summary odds ratio was not substantially affected when
HWE-violating studies were excluded from the calculations,
but some exceptions were noted. The summary odds ratio
changed by slightly over 10 percent in four meta-analyses
and by 29 percent and 37 percent in two small meta-analyses
with four and eight studies, respectively. In all other meta-
analyses, the corresponding changes were much smaller
(figure 1).

Studies showing significant departure from the Hardy-
Weinberg law for the controls suggested either stronger
(n ¼ 13) or weaker (n ¼ 14) estimates of association com-
pared with the other studies (figure 1). In five instances, these

discrepancies were beyond chance: HWE-violating studies
showed no association between the ITGB3 L33P polymor-
phism and coronary artery disease or between the same
marker and fractures (ID 6 and ID 7, respectively, in table 1),
while other studies did. Conversely, HWE-violating stud-
ies claimed that the CYP17 MspI (ID 21) marker and the
SRD5A2 A49T polymorphism (ID 23) conferred more than
a twofold increased risk of prostate cancer, while the re-
maining studies showed no association. Similarly, a HWE-
violating study showed an extreme association between the
PON1 Q192R polymorphism and coronary stenosis (ID 31),
while the effect was modest in the other studies (figure 1).

After we excluded HWE-violating studies, between-
study heterogeneity lost its statistical significance for the
association between the ITGB3 L33P polymorphism and
fractures (ID 7 in table 1) and for the association between

FIGURE 1. Meta-analyses that included or did not include studies violating Hardy-Weinberg equilibrium (HWE). Shown are 27 that included at
least one association study in which departure from the Hardy-Weinberg law was statistically significant for the controls. Each meta-analysis is
preceded by the (operational) identification number (ID) given in table 1, the first author of the study and the year of publication (e.g., ’98 ¼ 1998),
and the reference number. For each meta-analysis, summary odds ratios and their 95% confidence intervals (CIs) are depicted. , meta-analyses in
which formal statistical significance was lost after HWE-violating studies were excluded.
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the MPO G-463A polymorphism and lung cancer (ID 40).
Conversely, in the case of the MTHFR C677T polymor-
phism and neural tube defects (ID 3), the meta-analysis
became significantly heterogeneous after we excluded the
HWE-violating studies from our calculations. For the re-
maining 24 associations, there was no change in the formal
significance status of heterogeneity. I2 did not consistently
decrease or increase after exclusion of the HWE-violating
studies (15 vs. nine instances, respectively, p ¼ 0.18, ad-
justed for the three ties). Nevertheless, I2 decreased by more
than 10 percent in six meta-analyses, whereas it did not
increase by more than 10 percent in any instance (6 vs. 0,
p ¼ 0.014) (figure 2).

Impact of deviations from HWE

Adjustment for deviations from HWE changed the sum-
mary odds ratios by less than 10 percent in 33 of 42 meta-
analyses. In the remaining nine meta-analyses, the change
ranged between 10 percent and 31 percent, and the largest
change was observed in a meta-analysis with only three
studies. Overall, the summary adjusted odds ratio increased
in 18 meta-analyses and decreased in 24 (figure 3). The pat-
tern of changes was similar for allele-based meta-analyses
and genotype-based meta-analyses (figure 3). In three meta-
analyses of genotype-based contrasts, formal statistical
significance of the postulated association was lost after ad-
justment for HWE deviations. Coronary artery disease was
no longer associated with the L33P polymorphism of ITGB3
(ID 6 in table 1), schizophrenia was no longer associated
with the Ser9Gly polymorphism of DRD3 (ID 29), and the
same was true for myocardial infarction and the Q192R
polymorphism of PON1 (ID 30). In all three instances, the

p values in the original meta-analysis (without adjustment
for HWE deviations) were relatively borderline (range,
0.02–0.04). There was no postulated gene-disease associa-
tion that was nonsignificant in the unadjusted analysis but
became significant after HWE adjustment.

After adjustments for deviations from HWE, between-
study heterogeneity, as expressed by I2, increased in 28
meta-analyses and decreased in eight (p < 0.001, adjusted
for six ties) (figure 4). In 11 instances, the increase in I2 was
more than 10 percent, whereas, in two meta-analyses, I2

decreased by more than 10 percent, after the adjustments
(p ¼ 0.013). Heterogeneity became formally statistically
significant in seven instances (the MTHFR C677T polymor-
phism and neural tube defects (ID 3 in table 1); the FCGR2A
R131H polymorphism and systemic lupus erythematosus
(ID 10); the UCHL1 S18Y polymorphism and Parkinson’s
disease (ID 17); the PON1 Q192R polymorphism and myo-
cardial infarction (ID 30); the MTHFR C677T polymor-
phism and venous thromboembolism (ID 37); the TGFBR1
(del(GCC)3) polymorphism and cancer (ID 38); and the
TP53 P72R polymorphism and lung cancer (ID 39)) where
it was previously not formally significant; the opposite
change was never seen. All seven instances in which het-
erogeneity became formally statistically significant after the
correction used genotype comparisons.

DISCUSSION

In this empirical investigation, we found that exclusion of
HWE-violating studies may result in loss of the statistical
significance of some postulated gene-disease associations
and that adjustment for the magnitude of deviation from
HWE may also have the same consequence for some other
gene-disease associations. The two corrective measures
seemed to affect different associations. Although the major-
ity of the postulated gene-disease associations were not af-
fected by these corrective measures, six of 23 gene-disease
associations for which there was formally significant
evidence lost their significance after exclusion of HWE-
violating studies or adjustment for HWE deviations. In all
of these instances, the results of the original meta-analysis
were not highly statistically significant, and the original
p values ranged between 0.007 and 0.04. Therefore, statis-
tical significance was lost even though the change in the
magnitude of the odds ratio was typically small with these
corrective measures. None of the 19 nonsignificant associ-
ations became significant after we applied such HWE-
related corrective measures. Exclusion of HWE-violating
studies seemed to diminish modestly the between-study het-
erogeneity in some instances, whereas adjustment for HWE
deviations tended to have the opposite effect.

Prior investigations seem to agree that significant devia-
tions from HWE regarding genotype frequencies among
healthy controls occur in approximately 10 percent of gene-
disease association studies (14, 53–56). Only 5 percent would
be expected by chance alone at the a¼ 0.05 significance level
with adequately powered studies, and the actual expected per-
centage is probably even lower because several gene-disease
association studies use very small, underpowered sample

FIGURE 2. Extent of heterogeneity before and after exclusion of
studies that violated Hardy-Weinberg equilibrium (HWE). I 2 is shown
before and after exclusion of studies in which the Hardy-Weinberg law
was violated for the controls. The middle diagonal line is the line of
equality. For studies plotted inside the area defined by the parallel
lines above and below the line of equality, the change in I 2 was less
than 10%. The dashed reference lines correspond to I 2 ¼ 75%, the
boundary for very high heterogeneity.
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sizes (14). HWE may be violated because of genotyping error,
chance, inbreeding, nonrandom mating, differential survival
of marker carriers, genetic drifting, population stratification,
or combinations of these reasons. Some of these effects may
also occasionally act in different directions, canceling each
other. Unfortunately, most gene-disease association studies
report very limited information to provide any detailed insight
into these potential problems. Thus, also at a meta-analysis
level, typically there is no way to decipher for which of the
above reasons the violation has occurred, except perhaps for
population stratification under special conditions (57). For
this reason, sensitivity analyses including and excluding the
HWE-deviating studies have been recommended (58). How-
ever, most published meta-analyses systematically neglect
such analyses (59). Adjustments for the magnitude of devia-
tion from HWE are rarely performed in primary studies,

and, to date, these corrections have not been introduced at
all into meta-analyses, to our knowledge. Such adjustments
are as useful to perform as exclusion of HWE-violating stud-
ies. The two corrective measures may offer complementary
information.

Whenever HWE-related corrective measures resulted in
loss of the significance of an association, the change in the
estimates of the odds ratio was relatively small with these
corrections. However, most effect sizes in genetic epidemi-
ology are very modest anyway (3, 7–9). Formal statistical
significance is routinely considered important for deciding
whether or not the probed association is present. Our finding
suggests that gene-disease associations should be pro-
nounced with extra caution when p values are not much
smaller than 0.05. Relatively minor deviations in the geno-
type frequencies could change whether or not formal

FIGURE 3. Meta-analyses before and after adjustments for departures from the Hardy-Weinberg law. Each meta-analysis is preceded by the
(operational) identification number (ID) given in table 1, the first author of the study and the year of publication (e.g., ’98¼ 1998), and the reference
number. The lower set of 11 meta-analyses used allele-based contrasts. For each meta-analysis, summary odds ratios and their 95% confidence
intervals (CIs) are depicted. , meta-analyses in which formal statistical significance was lost after adjustment for deviations from Hardy-Weinberg
equilibrium (HWE).
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significance is present. Thus, we recommend that meta-
analyses and individual studies routinely examine whether
their inferences are robust to accounting and correcting for
HWE violations and deviations. When results are not robust,
more data should be considered from well-designed studies.
Moreover, the threshold for claiming statistical significance
in gene-disease associations may need to shift toward
smaller p values (60–63); however, no p-value threshold is
likely to be perfect, and many methodologists are skeptical
of p values. Alternatively, inferences should take into con-
sideration not only the p value but also the prestudy proba-
bility that a postulated association is true and the potential
for bias (64, 65).

The observed between-study heterogeneity for postulated
gene-disease associations cannot be explained solely by the
presence of HWE-violating studies. In fact, these studies
seem to account for a small proportion of the observed het-
erogeneity. This finding may suggest that there are too few
HWE-violating studies to make a difference in this regard,
that formal HWE violation is an insensitive and/or unspe-
cific marker of bias, that HWE tests are underpowered for
most of the currently published case-control studies, or that
there may be many other reasons that genetic association
studies have heterogeneous results. Indeed, between-study
heterogeneity in meta-analyses of gene-disease associations
is typically substantial (66), and other tests, rather than sim-
ple HWE testing, may be more useful to dissect this hetero-
geneity (3, 7). It is prudent to exercise even greater caution
when only a few studies are available, since early published
data may be biased for other reasons (3, 66, 67).

After we adjusted for deviations from the Hardy-Weinberg
law, studies became more heterogeneous among themselves,
and, in seven meta-analyses, heterogeneity became formally
significant. This finding is probably attributed mainly to the
fact that, for genotype-based contrasts, the variance of each
study’s adjusted odds ratio becomes smaller after correcting
for departures from HWE (22). Thus, correction for HWE

deviations may make even more prominent the diversity
in the results of studies on the same postulated association.
The between-study heterogeneity observed in genetic epi-
demiology is usually larger compared with other research
fields (7, 66). This heterogeneity is important to describe,
quantify, and try to explain. Meta-analysis should aim at
more than simply arriving to a grand mean (68), and dissec-
tion of between-study heterogeneity can provide some valu-
able information.

Some limitations of the present empirical evaluation
should be discussed. First, the type of genetic contrast chosen
may have affected some of the analyses we performed. For
this reason, we used an a priori algorithm that had been
already agreed on in previous research (3) to avoid subjec-
tivity in choosing genetic contrasts. Second, only those meta-
analyses for which genotype-level information was available
were selected. This limitation was unavoidable, however,
since one cannot rely on the assertions of the primary authors
about HWE testing, because these assertions often do not
represent the data accurately (14). Third, even though almost
600 studies were targeted, this number still represents only
a small proportion of the gene-disease association studies
conducted to date. However, there is no strong reason to
believe that these studies and their meta-analyses would suf-
fer from selection biases that would invalidate the aforemen-
tioned findings. Finally, the extent to which the HWE-related
problems were due to genotyping error could not be probed.
Doing so would require retesting samples from the analyzed
studies and would be infeasible given the wide diversity of
teams involved in these studies. The suggestion of correc-
tion for HWE violations might not seem very practical in
genotype-based studies if individual studies have verified
that the HWE violations were not due to genotyping error.
However, apart from the fact that few—if any—studies can
claim immunity to genotypic errors, departure from HWE
even due to chance may introduce a statistical bias that
would especially affect allele-based contrasts (69). Thus, cor-
rection for departures from HWE should be applicable even
when the probability for substantial genotyping error is low.
We should also acknowledge that the proposed corrections
may be more complex if other covariates, and/or matching of
cases and controls, have to be taken into account in a meta-
analysis. Such issues might be addressed by using hierarchic
meta-regression analyses in a Bayesian framework that
would also take into account departures from HWE. How-
ever, the vast majority of case-control genetic association
studies still present primarily and/or exclusively unmatched
data without covariate adjustment.

Allowing for these caveats, we conclude that HWE should
be routinely and transparently assessed in gene-disease as-
sociation studies and their meta-analyses. Simple statistical
testing for significant violations of the Hardy-Weinberg law
may not suffice, and the data should be scrutinized by also
taking into account nonsignificant deviations from HWE.
Instructions and guidance to authors of gene-disease associ-
ation studies and meta-analyses thereof may need to rein-
force attention to HWE issues. Discrepant results in these
analyses do not necessarily mean that postulated associa-
tions should be dismissed, but they should hint at the need
for more evidence and validation.

FIGURE 4. Extent of heterogeneity before and after adjustments for
departures from the Hardy-Weinberg law for the controls. The layout
is similar to that described for figure 2.
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APPENDIX

To correct for departures from HWE for the controls for
genotype-based contrasts (22), let G1 and G2 be the geno-
type groups that are contrasted in an association study of
a biallelic locus (alleles A and a) with a disease (by geno-
type groups, we refer to genotypes: AA, Aa, or aa; or com-
binations of genotypes: AA þ Aa, Aa, þ aa, etc.). The
Lathrop correction for deviations from HWE in the controls
calculates the adjusted odds ratio (ORadj) by using the
HWE-predicted genotype counts in the control group

(controlsHWE; predicted
Gi ; i being the genotype group index)

instead of the observed ones: ORadj ¼ ðcasesObserved
G1 3

controls
HWE; predicted
G2 Þ=ðcasesObserved

G2 3 controls
HWE; predicted
G1 Þ:

The variance of the natural logarithm of the adjusted
odds ratio would then become Var ¼ 1=casesObserved

G1 þ
1=casesObserved

G2 þ vG1 vs G2; where vG1 vs G2 is an estimate
of the variance of the HWE-predicted control counts de-
pending on the specific contrast G1 vs G2. More specifi-
cally, if pA, pa are the corresponding allele frequencies in the
controls, and NA and Na is the total number of alleles in the
controls, then vG1 vs G2 is given by the following formulae
for the different types of contrasts:

vAA vs Aaþaa¼ 4=ðð1�pAÞð1þpAÞ2
NAÞ

vaa vs AaþAA¼ 4=ðð1�paÞð1þpaÞ2
NaÞ

vAa vs AAþaa¼ðð1�2pAÞ=NAþð1�2paÞ=NaÞ=
ð1�2pApaÞ;

vAA vs aa¼ 4=NAþ4=Na
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