
1 

 

Impact of VR-based Training on Human-Robot Interaction for Remote 1 

Operating Construction Robots 2 

 3 

Pooya Adami1, Patrick B. Rodrigues2, Peter J. Woods3, Burcin Becerik-Gerber*4, Lucio Soibelman5, 4 

Yasemin Copur-Gencturk6, Gale Lucas7 5 

 6 

Abstract: Despite the increased interest in automation and the expanded deployment of robots in the 7 

construction industry, using robots in a dynamic and unstructured working environment has caused safety 8 

concerns in operating construction robots. Improving Human-Robot Interaction (HRI) can increase the 9 

adoption of robots on construction sites; for example, increasing trust in robots could help construction 10 

workers to accept new technologies. Confidence in operation (or self-efficacy), mental workload, and 11 

situational awareness are among other key factors that help such workers to remote operate robots safely. 12 

However, construction workers have very few opportunities to practice with robots to build trust, self-13 

efficacy, and situational awareness, as well as resistance against increasing mental workload, before 14 

interacting with them on job sites. Virtual Reality (VR) could afford a safer place to practice with the robot, 15 

thus we tested if VR-based training could increase these four outcomes during the remote operation of 16 
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construction robots. We measured trust in the robot, self-efficacy, mental workload, and situational 17 

awareness in an experimental study where construction workers remote-operated demolition robots. Fifty 18 

workers were randomly assigned to either VR-based training or traditional in-person training led by an 19 

expert trainer. Results show that VR-based training significantly increased trust in the robot, self-efficacy, 20 

and situational awareness, compared to traditional in-person training. Our findings suggest that VR-based 21 

training can allow for significant increases in beneficial cognitive factors over more traditional methods, 22 

and has substantial implications for improving HRI using VR, especially in the construction industry.  23 

 24 

Keywords: VR-based Training; Human-Robot Interaction; Situational awareness; Mental Workload; 25 
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 27 

Introduction 28 

 Over the past two decades, both the construction industry and the scientific community have 29 

developed an increased interest in construction robotics. This interest has resulted in an increased 30 

production of scientific research and expanded the deployment of robots on construction sites (Carra et al. 31 

2018). Automation and robotics have the potential to revolutionize and address the shortcomings of the 32 

construction industry, such as improved productivity and safety. On-site robotic systems can enhance 33 

productivity by performing highly repetitive and tedious tasks (e.g., masonry, finishing, rebar-tying); thus, 34 

construction workers can focus on more complex tasks that humans can do better than robots (Davila 35 

Delgado et al. 2019). Automation and robotics can also lower project costs by allowing construction in 36 

adverse weather conditions (e.g., various temperatures and humidity levels) (Kumar et al. 2008). Robots 37 

can also mitigate labor shortages and allow for a broader workforce access by enabling underrepresented 38 

groups of workers to join the workforce, for example, enable women (who comprise only 10.3 percent of 39 

the construction workers population (U.S. Bureau of Labor Statistics 2019) or disabled workers who cannot 40 

work on heavy tasks to engage in construction tasks. Besides, construction robots can execute hazardous 41 
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and labor-intensive tasks (e.g., demolition) as well as prevent injuries and fatalities in an industry notorious 42 

for having a dangerous work climate (Castro-Lacouture 2009).  43 

 Human-robot interaction (HRI) is one of the key areas that must be explored for successful 44 

construction robotics adoption. Construction workers might not accept new automation since they might 45 

view these technologies as a way to replace them (Yahya et al. 2019). Additionally, workers might prefer 46 

traditional methods over technological solutions due to the unpredictable and dynamic nature of 47 

construction sites (Yahya et al. 2019). They often feel unsafe working around robots (Bartneck et al. 2009). 48 

Construction workers need to gain trust in the new robotic systems because building this trust among human 49 

operators or collaborators produces an increased sense of safety, a willingness to accept robot-provided 50 

information or decisions, and an inclination to work with robots in the future (Freedy et al. 2007; You et al. 51 

2018). However, there are very few opportunities for construction workers to build trust before remote 52 

operating construction robots on job sites.  53 

 Even though automation and robotic systems have the potential to improve workers’ safety, they 54 

can also bring about new safety concerns to construction sites. While workers and robots are separated in 55 

other industries such as automotive and manufacturing industries, robots work alongside construction 56 

workers in a constantly changing and unpredictable working environment. Hence, the safety of humans 57 

working alongside robots is a goal to achieve successful construction robotics adoption. In this regard, 58 

workers’ Mental Workload (MWL) and Situational Awareness (SA) are two critical factors impacting the 59 

safe remote operation of construction robots. MWL and SA are objects of interest in cognitive engineering. 60 

They refer to the cognitive loads imposed on operators during task execution when robots and other 61 

intelligent systems are involved.  MWL relates to the portion of an operator’s cognitive capacity necessary 62 

to complete a given task (O’Donnell and Eggemeier 1986). SA indicates how the operator perceives the 63 

environments in which the tasks take place, comprehends its meaning, and predicts future states of the 64 

environment and the task (Endsley 1988). Despite being crucial factors of learning for construction workers 65 

to remote operate the robots safely, workers have very few opportunities to optimize their MWL and build 66 

SA before remote operating construction robots on-site.  67 
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 Current training opportunities for construction workers primarily rely on passive pedagogical 68 

models (including lectures, pamphlets, and videos), with only a few examples of active training techniques 69 

being used (learner-centered instruction, apprenticeship models, and hands-on demonstrations) (Burke et 70 

al. 2006; Moon et al. 2019; Wang and Dunston 2007). Given that in-person training may not be feasible in 71 

many situations due to the safety risks it may impose on the trainees, cost and equipment requirements, and 72 

disturbance of the work on-site, Virtual Reality (VR)-based training is proposed as a method to provide 73 

construction workers with in-person training experiences in hazardous situations without imposing actual 74 

safety risks. In recent years, the use of VR-based training has drawn attention from construction researchers, 75 

especially in aspects related to safety and hazard identification (Albert et al. 2014; Jeelani et al. 2020; Le et 76 

al. 2015; Moore et al. 2019; Nykänen et al. 2020; Sacks et al. 2013; Xu and Zheng 2021), construction 77 

equipment operation (Bhalerao et al. 2017; So et al. 2013, 2016; Song et al. 2021; Su et al. 2013; 78 

Vahdatikhaki et al. 2019), ergonomic behavior (Akanmu et al. 2020; Diego-Mas et al. 2020), and 79 

construction task execution (Barkokebas et al. 2019; Cheng and Teizer 2013; Hafsia et al. 2018; Osti et al. 80 

2020).  81 

 VR-based training and other extended reality (XR)-based training (i.e., Augmented Reality (AR) 82 

and Mixed Reality (MR)) have gained increasing attention in the past decade as a result of technology 83 

development and reduced implementation costs. Examples of VR-based training can be found in a variety 84 

of domains, including manufacturing (Kalkan et al. 2021), aerospace and aviation (Chandra Sekaran et al. 85 

2018; Luong et al. 2020), healthcare (Mao et al. 2021; Mehrfard et al. 2020), military (Gluck et al. 2020), 86 

retail (Boletsis and Karahasanovic 2020), sports (Lee and Kim 2018), construction (Jeelani et al. 2020; 87 

Nykänen et al. 2020; Pooladvand et al. 2021; Song et al. 2021), among others. Existing research has 88 

identified a series of requirements that can improve the effectiveness of VR-based training. For example, 89 

one of the most important requirements refers to the levels of virtual presence that is associated with any 90 

proposed training, as existing research has shown that more feeling of presence increases the effectiveness 91 

of the training and the overall performance of the operators (Heyao and Tetsuro 2021; Song et al. 2021). 92 

Also, the realism of the virtual training environment plays an important role in the effectiveness of VR-93 
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based training and the overall user experience (Chalmers and Debattista 2009; Grant et al. 2020). Another 94 

key factor in VR-based training refers to the consideration of experiential learning (i.e., “learning through 95 

reflection on doing” (Pappa et al. 2011 p. 1003)) during the development of the training (Goulding et al. 96 

2012). This is because including considerations about learning objectives, metrics, and outcomes during 97 

the development of the VR-based training can provide a more effective training experience. 98 

 Moreover, VR-based training has the potential to provide an opportunity for workers to build trust 99 

in automation and construction robots more specifically and trust in their ability so that workers are ready 100 

to remote operate the robot safely and efficiently on an actual construction site. VR-based training can also 101 

promote a safer interaction between humans and robots by decreasing the overall mental workload 102 

experienced by the worker while also increasing his/her situational awareness. However, the impact of VR-103 

based training on construction workers’ trust in the robot, robot-used self-efficacy, situational awareness, 104 

and mental workload is underexplored in the construction robotics context. Thus, the present study explores 105 

the effectiveness of VR-based training on construction workers' mental workload and situational awareness, 106 

as well as their development of trust in robots and ability to use the robot (robot use self-efficacy), compared 107 

to a more traditional, comparable in-person pedagogical model. We begin this paper with a literature review 108 

of existing studies of VR-based training from a range of trust in automation, mental workload, and 109 

situational awareness literature. Next, we present the study's methodology, which includes the VR-based 110 

training environment and the experimental design, and the study’s findings. A discussion is followed by 111 

the conclusions and future directions.  112 

 113 

Literature Review 114 

Trust in the Robot & Robot Operation Self-efficacy 115 

 Advancements in automation have allowed workers to collaborate with robots on various job sites; 116 

however, the dynamic, unstructured nature of construction sites has caused challenges in implementing 117 

robots on job sites (Yahya et al. 2019). Not only are construction sites inherently unpredictable, but 118 
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construction workers and robots also work alongside each other rather than separately as they do in other 119 

industries (i.e., manufacturing). Added to that, since robots are often designed to execute more dangerous 120 

tasks than humans in collaborative teams of humans and robots, trust in the robot plays a more pivotal role 121 

in high-risk environments, such as construction sites, than it does in more structured and relatively less 122 

risky environments (Frank et al. 2019). Therefore, construction workers must trust in the automation or 123 

robotic system they are working with and in their skills in remote operating the robots. 124 

Lee and See (2004 p. 51) define trust as "the attitude that an agent [e.g., automation, a robot, or a 125 

human] will help achieve an individual's goals in a situation characterized by uncertainty and 126 

vulnerability." The level of humans' trust depends on the characteristics of the trustee (e.g., culture, age, 127 

gender, personality), the trustor (e.g., features of the automation, capabilities of the automation), and the 128 

context of the interaction between them (e.g., team collaboration, tasks) (Chen et al. 2011; Lee and See 129 

2004; Parasuraman et al. 2008; Sheridan 2002). Trust in human interaction with automation can be 130 

challenged by disuse and misuse. Disuse relates to the situation when humans do not accept technology and 131 

reject using it, while misuse refers to over-trusting automation excessively and inappropriately (Lee and 132 

See 2004). While trust in automation and trust in robots have similar fundamental characteristics, the 133 

human-robot trust may differ from the human-automation trust since robots have different characteristics 134 

than other forms of automation (Hancock et al. 2011). In this regard, researchers have been investigating 135 

factors that influence the trust in a robot (Parker and Grote 2020).  136 

 Existing studies indicate that trust in a robot can be influenced by the characteristics of humans, 137 

robots, and the surrounding environment (Park et al. 2008), being the characteristics of the robot regarded 138 

as more significant than the characteristics of humans and the environment on the development of trust 139 

(Hancock et al. 2011). On many occasions, however, there are mismatches between the perceptions of 140 

humans on the robot’s characteristics and capabilities and the robot’s actual characteristics and capabilities, 141 

which can lead to trust failures. For that, training the humans involved in interactions with robots has been 142 

presented as a key strategy to promote trust by reducing the differences between the expectations of humans 143 

towards the robot’s capabilities and the actual robot’s capabilities (Hancock et al. 2011), and to recover 144 
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trust after trust failures resulting from incorrect user expectations towards the robot or user unintentional 145 

failures during the interaction (Tolmeijer et al. 2020).  146 

 Most commonly, trust is assessed subjectively with the help of questionnaires based on Likert-147 

scales in which the subjects indicate their levels of trust in their ability to properly interact with the robot 148 

(self-efficacy) and/or the ability of the robot to achieve the task goals. Examples include proposed trust 149 

scales that account for various factors that influence HRI such as team configuration, team process, context, 150 

task, and system (Yagoda and Gillan 2012) and trust scales that assess the overall perception of the subjects 151 

on robot’s capabilities using repeated measures analysis (Schaefer 2016). In one of the few attempts to 152 

measure trust in a robot objectively, Freedy et al. (2007) proposed a model that determines an overall trust 153 

score based on the human task allocation decision behavior, risk, and robot behavior and found that as robot 154 

competency decreases, the mission time and the user interventions increase. Based on the proposed 155 

formulation, the authors also proposed an analytical methodology that allows the comparison of the trust 156 

behavior of the operators to the expected behaviors of an expert, which provides direct feedback on the 157 

operator’s training needs relative to trust behavior. 158 

The model proposed in Freedy et al. (2007) is based on the correlation between trust in automation 159 

and self-confidence, or self-efficacy. Robot-use self-efficacy is a human-related characteristic correlated 160 

with trust in a robot (Evers et al. 2008; Lee and Moray 1994). Self-efficacy refers to an individual's belief 161 

about his/her performance skills in a given situation (Bandura 2006). Specifically, robot use self-efficacy 162 

refers to the workers' beliefs about their ability to use robots (Turja et al. 2019). However, self-efficacy 163 

does not equal efficacy; a person may possess the ability to perform a task successfully, but he/she may not 164 

believe that they have the power to produce the desired effect (Rosenthal-Von Der Pütten and Bock 2018). 165 

           VR has been used to study and enhance trust in automation in different fields, including drivers' and 166 

pedestrians' trust in autonomous vehicles (Jayaraman et al. 2019; Miller et al. 2016; Morra et al. 2019; 167 

Sportillo et al. 2019). In construction applications, the study of trust in HRI is rare and has been limited to 168 

the study of perceived safety in HRI teams because of physical separation between workers and robots and 169 

its impacts on promoting team identification and trust (You et al. 2018). As of this date, to the best of our 170 
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knowledge, there is no study in the construction industry that has focused on understanding the impact of 171 

immersive VR-based training on construction workers' trust in the robot and robot operation self-efficacy. 172 

Since the development of trust in the robot and robot operation self-efficacy is crucial for the adoption of 173 

construction robotics, this study investigates VR-based training's impact in enhancing the aforementioned 174 

factors in construction workers compared to traditional in-person training. 175 

 176 

 Mental Workload 177 

 Since more than 70% of all accidents in the construction industry are related to workers' activities, 178 

it is crucial to mitigate human-related factors affecting the safety conditions in this industry (Chen et al. 179 

2016). Construction workers' ability to perceive hazards can help them to avoid dangerous conditions. 180 

Among the human factors that relate to hazard perception is Mental Workload (MWL) (Gao and Wang 181 

2020; Di Stasi et al. 2009; Tevell and Burns 2000). One of the most accepted definitions of the MWL 182 

associated with a task is “the level of attentional resources required to meet both objective and subjective 183 

performance criteria, which may be mediated by task demands, external support and past experience” 184 

(Young and Stanton 2001 p. 507). 185 

           The study of MWL has become a topic of interest due to the increasing cognitive demand 186 

requirements resulting from the deployment of more complex human-machine and human-robot systems 187 

in diverse fields, including aviation, surgery, manufacturing, and construction. In many studies, MWL has 188 

been recognized as a key factor that affects operator’s performance during human-machine and human-189 

robot interactions (Dybvik et al. 2021; Memar and Esfahani 2018; Moore et al. 2015; O’Donnell and 190 

Eggemeier 1986; Tao et al. 2019). Most commonly, these studies have shown that decreasing the cognitive 191 

loads imposed on the operator during task execution usually results in improved performance. Although 192 

most of the studies focus on mental overload, when task requirements overcome operator capabilities, 193 

mental underload is another situation that leads to reduced performance. As presented by Young and 194 

Stanton (2001), instead of trying to remove the operator from as many tasks as possible when deploying 195 

automated systems, the designer should try to optimize the design of the tasks to take advantage of both the 196 
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technology and the operator's skills, which can be accomplished through the use of adaptive interfaces and 197 

dynamic task allocation. In such cases, human factors such as operator’s workload and levels of fatigue, 198 

and physiological data such as heart rate variability, can be used to dynamically allocate tasks to the humans 199 

and robots involved in the interaction to alleviate the negative effects of workload, fatigue, and stress (Landi 200 

et al. 2018; Pini et al. 2016).  201 

           Various techniques can be used to assess mental workload during task execution, including 202 

subjective measures (e.g., NASA-task load index (TLX) and the subjective workload assessment technique 203 

(SWAT)), physiological measures (e.g., heart rate, eye-gazing, electrodermal response), and objective 204 

measures based on task performance (primary and/or secondary tasks) (Young and Stanton 2004). 205 

Developed by the Ames Research Center (Biferno 1985), the NASA-TLX is a standard, questionnaire-206 

based, subjective measure of the overall workload experienced by a human working in a human-machine 207 

or human-robot system. It is one of the most used measures of task load and considers six subscales: mental 208 

demand, physical demand, temporal demand, level of performance, effort, and frustration. Even though a 209 

variety of physiological measures has been used to predict MWL in many domains (Grimmer et al. 2021; 210 

Sakib et al. 2021; Singh et al. 2021; Yauri et al. 2021), the use of subjective assessments alone has been 211 

preferred in many studies (Sugiono et al. 2017; Yurko et al. 2010), especially due to their simplicity of 212 

application and non-intrusive nature. Also, for MWL specifically, existing studies show that while most of 213 

the physiological measures used in MWL research can detect changes in MWL levels, the validity of these 214 

measures is dependent on the application at hand, which requires a proper selection of the physiological 215 

measures for each task scenario (Charles and Nixon 2019; Tao et al. 2019). 216 

 In construction applications, some of these techniques have been used, sometimes combined, to 217 

assess the levels of mental workload that workers experience when working alongside machines and robots 218 

(Akyeampong et al. 2014), assess the reliability of using physiological data to predict MWL (Sakib et al. 219 

2021), or to adjust robot behavior during the interaction (Liu et al. 2021). Current efforts to understand the 220 

implications of VR-based training on MWL have shown that there are significant differences between the 221 

levels of MWL experienced by the subjects when operating simulated drones and real drones, being the 222 
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MWL higher in the simulated condition (Sakib et al. 2021). Yet, it is still not clear whether the same results 223 

can be obtained when using VR-based training to train construction workers on the operation of more 224 

complex construction machines and robots given the requirements of longer training sessions, more 225 

unstructured environments, and the relatively more complex control interfaces and mechanisms found in 226 

these machines/robots. 227 

 Despite the increasing body of research on the cognitive impacts of the deployment of intelligent 228 

systems and robotics on-site and in the use of immersive environments for construction workers' training, 229 

the impacts of VR-based training on the cognitive loads experienced by construction workers during the 230 

actual remote operation of a construction robot has not yet been fully explored. In this paper, the cognitive 231 

loads experienced by two groups of construction workers with VR-based versus in-person training are 232 

measured using NASA-TLX and compared to assess the effectiveness of VR-based training to reduce MWL 233 

during the remote operation of a construction robot. 234 

 235 

Situational Awareness 236 

 Another crucial human factor in applications involving human-robot systems is Situational 237 

Awareness (SA), which, according to Endsley (1995a), forms the basis for decision-making and 238 

performance in the operation of complex systems. As is the case with the mental workload, current studies 239 

have increasingly focused on SA to investigate new systems design and training programs in various fields 240 

(Endsley 2019). The most accepted definition of situational awareness centers on the operator's "perception 241 

of the elements of the environment within a volume of time and space, the comprehension of their meaning 242 

and the projection of their status in the near future" (Endsley 1988 p. 792). This definition clearly presents 243 

three phases in the process of an operator acquiring SA: perception, comprehension, and projection. These 244 

three phases are defined in the hierarchical model of SA in decision making proposed by Endsley (1995b), 245 

which defines the Level 1 SA (lowest level) as the perception of the environment and its elements, Level 2 246 

SA as the holistic comprehension of these elements and their implications for the task goals, and Level 3 247 

SA (highest level) as the projection of the future states of these elements in the environment. 248 
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Various tools and metrics have been proposed to assess workers' SA, which include process 249 

measures, performance measures, and direct SA measures, which are further differentiated among SART 250 

(Situation Awareness Rating Technique), SAGAT (Situation Awareness Global Assessment Technique), 251 

and SPAM (Situation Present Assessment Technique) (Endsley 2019). Among these, SAGAT is one of the 252 

most used techniques for measuring SA and involves randomly freezing the task simulation and asking the 253 

subject questions about the current situation as a means to determine his/her knowledge about the situation 254 

considering the three levels of SA (perception, comprehension, and prediction) (Endsley 1988, 2019). After 255 

multiple queries taking place at various moments during the simulation, a composite SAGAT score is 256 

calculated, and it represents an objective measure of SA because the perceptions of the operator (as 257 

represented by his/her answers to the queries) are compared to the actual conditions of the simulation 258 

(Endsley 1988). 259 

 In construction applications, SA has commonly been studied from the perspectives of hazard 260 

identification and/or operating performance of complex machines and equipment, especially cranes and 261 

excavators (Cheng and Teizer 2014; Fang et al. 2018; Hong et al. 2020; Wallmyr et al. 2019). Existing 262 

results show that increasing an operator’s SA with the help of an assistance system based on visual cues, 263 

for example, can improve the overall operator’s safety performance and task performance (Fang et al. 2018; 264 

Fang and Cho 2017). Relative to the use of VR-based training to increase construction workers' SA, 265 

Vahdatikhaki et al. (2019) claimed that current VR-based simulators for construction operation training put 266 

too much emphasis on the development of photo- and physics-realistic scenarios and less emphasis on the 267 

development of context-realistic scenarios, which limits the ability of the trainees to increase their SA and 268 

skills. As is the case with the operation of actual construction equipment, increasing the worker’s SA during 269 

training in a simulated environment can also improve the worker’s safety behavior and help workers to 270 

visualize potential risks associated with their actions after the training sections (Cheng and Teizer 2013). 271 

 Many studies show that physical and mental loads and environmental and task requirements also 272 

affect the worker's SA and, consequently, the ability of these workers to identify safety hazards during task 273 

execution. Task complexity, for example, has been associated with reduced performance and SA and 274 
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increased mental workload (Fang et al. 2018), which may require specific training scenarios to mitigate the 275 

reduction of the operator's SA levels during more complex tasks (Choi et al. 2020). Finally, for similar 276 

levels of task complexity, construction workers’ SA is significantly affected by different levels of MWL, 277 

with SA decreasing for higher levels of MWL (Kim et al. 2021). 278 

 Although construction sites represent one of the most hazardous working environments (U.S. 279 

Bureau of Labor Statistics 2020) and that there has been an increased number of robots deployed on 280 

construction sites (International Data Corporation (IDC) 2020), there is still a lack of research into the 281 

potential of VR-based training on enhancing the workers' self-efficacy, situational awareness, and mental 282 

workload during the remote operation of real construction robots. Thus, this study investigates the impact 283 

of VR-based training on construction workers’ self-efficacy, mental workload, and situational awareness 284 

as compared to traditional in-person training. 285 

 286 

Methods 287 

Construction Robot Test-Case 288 

 A remote-operated demolition robot is selected based on the industry acceptance trends, level of 289 

technology development, frequency of use in construction projects, and potential impact on enhancing 290 

construction productivity and safety. Remote-operated demolition robots constitute about 90% of the total 291 

market for all construction robots (Association for Advancing Automation 2020). One reason for the fast 292 

adoption of remote-operated robots by the construction industry is the unhealthy and dangerous nature of 293 

demolition tasks(Corucci and Ruffaldi 2016). The use of handheld demolition tools is associated with an 294 

average of 32 missed days for workers due to fractures, injuries, and the effects of excessive vibration and 295 

strain (Brokk Inc. 2020). Moreover, using remote-operated demolition allows operators to conduct 296 

demolition from a safer distance, resulting in increased safety for the operators (Corucci and Ruffaldi 2016). 297 

 While there are different models and shapes of demolition robots, in this study, Brokk110 with a 298 

19.5 kW smart power electrical system and a 360-degree working radius is used (Fig. 1a & b) (Brokk Inc. 299 
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2020). Since a human worker controls the robot directly, the human role in this interaction is to be the 300 

operator. Since one operator interacts with one demolition robot, the team composition is one human to one 301 

robot. The communication between the human and the robot is based on digital codes through the robot's 302 

controller (buttons and joysticks). Hence, the interaction type is physical and synchronous since the operator 303 

and the robot work simultaneously. 304 

 305 

VR-based Training (experimental condition) & In-person Training (control condition) 306 

VR System Setup 307 

 The VR-based training used in this study is developed on the Unity3D game engine platform. VR-308 

based training occurs in a four-floor building and a simulated construction site (Fig. 2a), which are modeled 309 

in Revit 2019. The construction site model and the digital 3D model of the robot are exported in FBX format 310 

and imported to the Unity3D game engine using the PiXYZ plugin. We have simulated the robot’s model 311 

through physics simulation in the Unity3D game engine. Brokk110’s technical specifications, such as mass, 312 

drag, angular drag, and mesh colliders of various components, are used to model the rigid body properties 313 

of the robot in the VR environment. Additionally, multiple joints of the 5-Degrees-of-Freedom (DOF) robot 314 

(e.g., fixed, hinge, and configurable joints) have been modeled to provide an accurate movement similar to 315 

the actual robot. Connected bodies, anchors, break force, and break torque are assigned based on 316 

specifications acquired from the robot’s manufacturing company. Additionally, we have written scripts in 317 

the C# programming language to simulate various robot components' movement and rotation (considering 318 

relative axis and speed). The virtual model of the robot has been tested and verified by an expert from the 319 

robot’s manufacturing company. In addition, a set of construction equipment is added to the Virtual 320 

Environment (VE) from the Unity3D asset store. The system (Fig. 2b) consists of VR-based training on a 321 

PC with an NVIDIA GeForce GTX 1080 graphics card. The trainee needs to wear a Head Mounted Display 322 

(HMD) as the immersive VE visualization tool. The trainee uses a VR controller to experience the VR-323 

based training (e.g., going to the next/previous step in the learning scenario, replaying the narrative voice, 324 
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and interacting with objects in the virtual environment). While the HMD gives the trainee a first-person 325 

view, the headphone connected to the HMD provides sound effects. Two base stations track the HMD and 326 

VR controller. In addition to the VR equipment, the trainee uses the demolition robot's actual controller 327 

unit to remote operate the simulated robot in the VR-based training environment. The robot’s controller is 328 

connected to the computer using Arduino Pro micro serial connection. Since the trainee needs to use the 329 

robot’s controller during the training, it is essential to use a controller-free navigation method in the virtual 330 

environment so that the trainee does not need a controller to walk within the virtual environment. Therefore, 331 

the locomotion technique used in this VR-based training is a walk-in-place treadmill. Virtuix Omni is used 332 

as the VR treadmill, designed to allow participants to walk within the VR-based training environment 333 

without boundary since they are walking on a treadmill, as opposed to a room-scale VR environment that 334 

would limit the participants to the boundary of the room that the experiment takes place. The treadmill has 335 

a bowl-shaped surface that requires the user to wear low friction shoes for movement. The simulator can 336 

track the trainee's position, speed, and length of stride using inertial sensors. 337 

 338 

Learning Modules 339 

 The VR-based training designed for this study, which consists of seven learning modules (in both 340 

English and Spanish languages), aims to enhance construction workers' trust in the robot (remote operated 341 

demolition robot) and robot operation self-efficacy and to decrease their mental workload with a higher 342 

level of situational awareness in remote operating the robot. The content of the VR-based training and its 343 

delivery (i.e., activities and engagement features with the content) was developed based on adult learning 344 

theory (andragogy) and content experts' feedback through several iterations. The content of VR-based 345 

training followed the typical in-person training. Before conducting the experiment, we ran a pilot study to 346 

identify and fix technical problems. A detailed description of the development process of learning modules 347 

can be found in Adami et al.(2020).  348 

 The final version of the VR-based training consisted of seven modules, each of which ended with 349 

a diagnostic assessment to ensure that workers learned the content covered in each module before moving 350 
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on to the next one. The training aimed to help workers learn the robot's purpose and applications (module 351 

1) (Fig. 3a), safety features by interacting with the robot in the VR environment (module 2), how to use the 352 

controller to remote operate the robot (module 3), how to start the robot (Module 4) (Fig. 3b), and how to 353 

position the robot to remote operate safely (Module 5) (Fig. 3c), how to move the robot, and use the 354 

outriggers and arms (Module 6) (Fig. 3d), and how to demolish (Module 7). Trainees acquired the necessary 355 

learning material to remotely operate the robot by completing the guided activities. Module 1 aimed to 356 

begin building trust in the robot in workers by introducing the robot, its purpose, and its components using 357 

visualization and active learning techniques since workers’ unfamiliarity with robots is one of the obstacles 358 

in the adoption of construction robotics (Yahya et al., 2019). Highlighting and animating different 359 

components of the robot presented the movement range of each component to the trainee, helping them to 360 

trust in the robot in construction sites that can be dynamic and unpredictable. Module 2 aimed to help 361 

workers increase their situational awareness in the remote operation of the robot by providing safety 362 

instructions (cable safety management (e.g., the cable should not be on a wet surface), definition and 363 

boundary conditions of the risk zone, and workplace inspection (e.g., keep robot out of dust and flying 364 

rocks, turn off the robot in the event people enter the operating zone)) through an interactive learning 365 

method. By programming various objects in the virtual construction sites, trainees were able to interact with 366 

them to deliver the assigned tasks in the learning module (e.g., change the place of power-cable, pick up 367 

the loose objects lying on the robot, emergency stop of the robot to prevent collision with other construction 368 

workers violating the danger zone). Therefore, trainees were prepared for the potential hazards that they 369 

might face during the remote operation of the robot. Moreover, module 3 provided opportunities to test 370 

different functions of the robot’s controller to help workers improve their confidence and self-efficacy in 371 

remote operating the robot. Different functions of the actual controller (buttons and joysticks) were 372 

programmed in the VR-based training, and the movement of the robot with 5 Degrees-Of-Freedom (DOF) 373 

was simulated to provide the trainee a realistic experience of robot remote operation. Module 3 was the 374 

only non-immersive learning module since the learner would need to see the controller and movement of 375 

the robot. After a chance to build self-efficacy, learners wear HMD for the remaining learning modules to 376 
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remote operate the robot in an immersive virtual environment using the actual controller in real life (not 377 

visible in VR). The VR modules provided the opportunity to implement different strategies for moving the 378 

robot and for demolition to experience the consequences of dangerous or wrong strategies. Additionally, 379 

the last three modules (modules 5, 6, and 7) give the trainee opportunities to increase his/her situational 380 

awareness (e.g., managing the power cable while moving the robot), trust in the robot, robot operation self-381 

efficacy (e.g., practicing moving the robot and demolishing a concrete block), and manage mental workload 382 

by getting additional practice with the robot in the VR environment. By modeling the destruction of 383 

different structural elements in the virtual environment, trainees were able to remotely operate the robot 384 

using various strategies to demolish different objects in the VR-based training. On average, the workers in 385 

the VR-based training spent 120 minutes completing all the modules.  386 

 387 

In-person Training 388 

 The in-person training provided to the workers in the control group was designed based on an 389 

existing workshop provided by an expert trainer who trains workers on how to remote operate the 390 

demolition robot. The contents of in-person training and VR-based training were the same and done in a 391 

parallel manner. Unlike the VR-based training, there was no assessment during the in-person training 392 

sessions. Each phase of the in-person training ended with learners asking questions from the trainer. 393 

Moreover, each trainee had the opportunity to practice the instructions of remote operating the robot under 394 

the trainer’s supervision at the end of the training after the trainer finished presenting the instructions.  The 395 

in-person training began with the trainer giving an overview of the demolition robot and its intended usage 396 

(same content as VR-based training, Module 1), the basic make-up of the demolition robot (e.g., essential 397 

parts and what they do) (VR-based training, module 1), followed by the trainer presenting safety 398 

management (e.g., electrical hazards, workplace inspection, operator positioning, and risk zone) (VR-based 399 

training, Module 2), and a pre-start checklist (e.g., inspecting the power cable and hydraulic oil level, and 400 

looking for oil leaks). In the second phase of the in-person training, the trainer showed how to start the 401 

robot (VR-based training, Module 4) and used the demolition robot to demonstrate the pre-start checklist 402 
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and how to use the robot’s controller (VR-based training, Module 3), correct the operator’s positioning, 403 

show how to position the robot to remote operate safely (VR-based training, Module 5), what to do in an 404 

emergency, how to use the robot’s different components (e.g., arms, hammer, outriggers) (VR-based 405 

training, Module 6) and how to use the robot to demolish a concrete block (VR-based training, Module 7).  406 

Participants in this condition attended one of four in-person training sessions. Accordingly, each 407 

session was attended by about six workers, and the same professional trainer conducted all in-person 408 

training sessions (Fig. 4). Specifically, the training was delivered by an experienced trainer who had been 409 

delivering this training for many years and spoke English and Spanish. Workers spent 120 minutes in the 410 

in-person training. As in the actual training provided to construction workers by the robotics company, each 411 

participant had some time during the training to remote operate the robot under the supervision of the 412 

professional trainer.  413 

 414 

Procedures and Measures  415 

 Participants were randomly assigned to one of the two conditions: 25 participants were asked to 416 

complete the VR-based training, while the other 25 were asked to complete the in-person training. First, 417 

participants’ backgrounds and demographics were measured by a set of survey items. Specifically, 418 

participants were asked to report their gender, age group, race, and the language they were comfortable 419 

speaking. Moreover, the survey measured participants’ education level, employment status, and experience 420 

in the construction industry. Participants also reported if they have any experience in using VR or 421 

demolition robots. 422 

           Before starting either type of training, participants were required to complete two surveys that 423 

measure trust in the robot and robot operation self-efficacy. The measure of trust in the robot was modified 424 

from the automated trust scale (Jian et al. 2000) to measure participants’ attitudes toward interaction with 425 

the robot, specifically. The modified survey used in this study has used items and words proposed in the 426 

automated system scale. Modifications were made to adapt the survey to the demolition robot. The modified 427 
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survey consists of 21 sentences about participants’ trust in the reliability, integrity, safety of the robot, and 428 

participants’ beliefs about the robot’s influence on their careers. Participants rated the sentences on a 5-429 

point Likert scale that ranges from completely disagree to completely agree. For example, participants were 430 

asked to rate the sentences such as “I can trust the robot,” “The robot is reliable,” and “The robot provides 431 

safety/security” with a number from 1 to 5 indicating their disagreement (1) or agreement (5) with each 432 

sentence. The robot operation self-efficacy survey was modified from the validated robot use self-efficacy 433 

scale (Turja et al. 2019). It consisted of two sentences (“I am confident in the robot,” and “I feel confident 434 

around the robot”) measuring participants’ self-efficacy and confidence in their ability to remotely operate 435 

the robot. As with the trust in the robot survey, participants rated the sentences on a 5-point Likert scale 436 

ranging from completely disagree to completely agree. 437 

 Once the surveys were completed, participants began their assigned training. After both groups 438 

completed their training, they were asked to retake the trust in the robot and robot operation self-efficacy 439 

surveys. Then, participants were asked to complete a performance assessment, remote operating the actual 440 

robot, in which each worker’s situational awareness and mental workload were assessed (Fig. 5). First, they 441 

had to start the robot, running the sequence of pre-start-up safety checks (e.g., hydraulic oil level, oil 442 

leakage, cable position). After starting the controller and the robot, participants moved the robot in the 443 

direction indicated on the ground. They had to use the controller’s function and follow the safety guidelines 444 

to move the robot efficiently and safely. Participants then demonstrated the demolition position of the 445 

robot’s arm system on a simulated concrete block. After showing the demolition process, participants were 446 

asked to move the robot in reverse to the starting position and go through the complete shutdown procedure.  447 

           To measure situational awareness, we employed a modified version of the Situation Awareness 448 

Global Assessment Technique (SAGAT). During moving the actual robot to the simulated concrete block 449 

in the performance assessment session, participants were asked to pause the remote operation and answer 450 

the SA survey. This survey consisted of 8 questions evaluating the trainee’s perception, comprehension, 451 

and projection. In the perception section, participants answered questions related to the perception of the 452 

cable’s location relative to the robot, the outriggers, and sharp edges (e.g., “Is the cable behind the robot?”, 453 
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“Is the cable close to the outriggers?”, and “Is the cable close to sharp objects?”). In the comprehension 454 

section, the trainer asked participants if the robot had sufficient distance from various objects and if the 455 

angles between the arms were in the correct range (e.g., “Is the distance between the robot and the element 456 

to be demolished sufficient for a proper operation?”, “Are the angles between the arms of the machine in 457 

the correct position?”). Finally, in the projection section, participants discussed whether the robot proceeded 458 

to the correct position and the trainer observed whether the arm trajectory hit the operator or any objects 459 

(e.g., “Is the robot proceeding to the right position?”, “Will the arm trajectory hit the operator?”, “Will the 460 

arm trajectory hit any objects?”). Participants’ answers were rated by the expert trainer. Finally, to measure 461 

participants’ MWL, we employed the NASA-Task Load Index (NASA-TLX). After the remote operation 462 

of the actual robot, participants were asked to complete the MWL survey. In this survey, participants 463 

reported their mental demand, physical demand, temporal demand, performance, effort, and frustration 464 

level while remote operating the robot based on a Likert scale that ranges from very low to very high (e.g., 465 

“How much mental activity was required to perform your job (thinking, deciding, calculating, 466 

remembering, looking, searching, etc.)?”). The NASA-TLX asks the subject to use a rating between 0 and 467 

100 for a group of questions in each of these subscales, and these ratings are used to determine the weights 468 

during the comparisons of the level of importance the subject assigned to each subscale (Vidulich and Tsang 469 

2012). 470 

 471 

Participants 472 

 Fifty participants were recruited to complete the experiment at the University of Southern 473 

California. All participants were construction workers aged 18 or older working on a construction job at 474 

the university campus. 25 construction workers were randomly assigned to VR-based training, while the 475 

other 25 workers completed the traditional in-person training. One of the VR-based training workers 476 

resigned in the middle of the training since he was not comfortable using VR equipment (controllers and 477 

VR treadmill); hence we used the data of 24 VR-based training participants in our analysis. Table 1 presents 478 

the demographics of participants in these two conditions. 479 
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 No statistically significant relationships were found between worker’s gender and race and the 480 

training to which they were assigned, 2(1, N= 49) = 0.31, p = .576 for gender, and 2(1, N= 49) = 1.06, p 481 

= .302 for race. Participants in these two conditions were also not statistically different in terms of their age 482 

group 2(1, N= 49) = 0.98, p = .808, experience in the construction 2(1, N= 48) = 0.47, p = .792, and 483 

experience with using a demolition robot 2(1, N= 49) = 0.98, p = .322. In addition, workers in each training 484 

condition had similar levels of prior experience with VR 2(1, N= 49) = 1.18, p = .277. Both groups also 485 

had similar levels of initial trust in the robot (Mdiff = −.22, SD = .17, p = .20), and self-efficacy (Mdiff = 486 

−0.14, SD = .29, p = .628). Hence, we can confidently state that, taken altogether, randomization was 487 

successful and workers in both training programs were similar in terms of their demographics, as well as 488 

baseline trust and beliefs. 489 

 490 

Analysis 491 

 The data collected, both pre-and post-training, were used to understand the impact of VR-based 492 

training compared to in-person training on four dependent variables: trust in the robot, robot operation self-493 

efficacy, situational awareness, and mental workload. For each of the first two outcomes, we conducted 2 494 

x 2 mixed factorial ANOVAs with time (pre- vs. post-training) as the within-subject factor and training 495 

type (VR-based training vs. in-person training) as the between-subject factor. Additionally, we conducted 496 

independent sample t-tests with training type (VR-based training vs. in-person) as the independent variables 497 

for each of the latter two outcomes. We then ran additional tests to check for moderation by demographic 498 

factors: in separate mixed ANOVAs, we tested for moderation by 1) language (Spanish vs. English), 2) 499 

age, 3) level of education, and 4) experience in the construction industry. 500 

 501 

Results 502 

Analyses for the trust ratings (range: 0-5) are presented in Table 2. Using the Kolmogorov-Smirnov 503 

method, we verified that there were no significant violations of normality (p = .200). The time (pre- vs. 504 
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post-training) by training type interaction is statistically significant for trust in the robot (F(1,47) = 25.94, 505 

p < 0.001, Cohen’s d > 1.0), with the VR-based training increasing trust more (1.38) than the in-person 506 

training (0.52). The reliability of this scale (Cronbach’s alpha) was .91. None of the demographic variables 507 

significantly moderated this effect (all Fs < 1.15, ps> .29). 508 

The analyses for the robot operation self-efficacy ratings (range: 0-5) are presented in Table 3. 509 

Using the Kolmogorov-Smirnov method, we verified that there were no significant violations of normality 510 

(p = .183). The time (pre- vs. post-training)  by training type interaction is statistically significant for self-511 

efficacy (F(1,47) = 10.43, p < 0.002, Cohen’s d > 1.0), with VR-based training increasing self-efficacy 512 

more (1.62) than the in-person training (0.74). The reliability of this scale (Cronbach’s alpha) was .69. 513 

Again, none of the demographic variables significantly moderated this effect (all Fs < 3.22, ps> .14). 514 

 Analyses for situational awareness measurement (range: 0-1) are presented in Table 4. Using the 515 

Kolmogorov-Smirnov method, we verified that there were no significant violations of normality (p = .291). 516 

The results reveal that VR-based training participants (mean SA rating = 0.98) have significantly greater 517 

situational awareness compared to participants who completed in-person training (mean SA rating = 0.86) 518 

(t(47) = 3.449, p < 0.001, Cohen’s d > 1.0). None of the demographic variables significantly moderated this 519 

effect (all Fs < 1.15, ps> .29). 520 

 Finally, the analyses for the MWL during the remote operation of the robot are presented in Table 521 

5. Using the Kolmogorov-Smirnov method, we verified that there were no significant violations of 522 

normality (p = .053). Although VR-based training participants (mean MWL rating (range: 0-100) = 45.20) 523 

have shown lower mental workload than in-person training participants (mean MWL rating = 53.73), we 524 

could not find a significant difference between VR-based and in-person training (t(1,47) = 1.77, p = 0.915, 525 

Cohen’s d > 1.0). Cronbach’s alpha for this scale was .77, indicating good reliability. Again, none of the 526 

demographic variables significantly moderated this effect (all Fs < 3.22, ps> .14). 527 

 528 

Discussion 529 
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This study aimed to understand the impact of VR-based training on construction workers’ trust in 530 

the robot, robot operation self-efficacy, situational awareness, and mental workload as compared to a 531 

traditional in-person training approach. Based on our analyses, VR-based training had significantly 532 

impacted the first three measures when compared with traditional in-person training. This section provides 533 

a discussion on the significance of these findings. 534 

 535 

Trust in the Robot and Robot Operation Self-efficacy 536 

 This study demonstrates that VR-based training is capable of increasing construction workers' trust 537 

in the robot and robot operation self-efficacy while remote operating a demolition robot significantly more 538 

than in-person training. One of the key factors contributing to this success is the nature of the VR 539 

environment. The VR environment provides an immersive experience for the trainees to work with the 540 

robot and familiarize themselves with the robot's functions. Our results confirm that a virtual environment 541 

can help trainees to focus their attention on the information relevant to the training to gain confidence in 542 

using new technology (Sportillo et al. 2019). Besides, our VR-based training allowed the trainee to work 543 

with the robot in different scenarios to get a clearer understanding of the robot's behavior in different tasks. 544 

This helped humans to gain trust in the robot by managing humans’ expectations of the robot's actions. 545 

Moreover, the reliable representation of each strategy's consequences boosted workers' self-efficacy in 546 

working with the robot, as seen in Koppula et al.(2016). A vital drawback of VR-based training is that 547 

developing a VR-based training, including accurate robot and various scenarios simulation, may need 548 

significant effort, time, computing power, and cost. However, with the increase of VR-based applications 549 

and technology improvement, the aforementioned negative factors can be mitigated considerably. 550 

Moreover, developing VR-based training is a one-time effort compared to the traditional in-person training 551 

that requires an actual robot and a professional trainer for each training session. 552 

Autor (2015) claimed that, while many middle-skill jobs are susceptible to being fully automated, 553 

others will demand workers acquire a mixture of tasks to adapt to new technologies. Our results indicate 554 

that VR-based training could help workers overcome the fear of robotics use in the construction industry. 555 
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Construction workers worry that new robotic systems will take their jobs; thus, they remain reluctant to 556 

accept new technologies. This is especially true about demolition robots which will directly replace humans 557 

who manually demolish the site. VR-based training demonstrated the potential to increase workers' trust in 558 

the robot and robot operation self-efficacy, leading to the acceptance of the new robots (e.g., demolition 559 

robots) in the construction industry. This produces significant implications for improving HRI using VR. 560 

VR-based training can be used as a platform to motivate and attract construction workers to increase their 561 

vocational skills and adaptability for the future of work in the construction industry. Different scenarios in 562 

our VR environment present the abilities a demolition robot provides to a construction worker. The efficacy 563 

of implementing robots in dangerous tasks while covering the same learning contents as in-person training 564 

impacts workers' attitudes toward trust in the robot. This is one of the limitations of in-person training in 565 

which workers are limited in practicing dangerous tasks with the robot during the training due to ethical, 566 

financial, and safety concerns. Also, since construction robots are not common yet, training to use these 567 

new robots safely and effectively is a niche and varies widely between different instructors (G. Lucas, 568 

unpublished data, 2019). However, VR-based training provides consistency, efficiency, and scalability in 569 

training in the construction industry. 570 

As suggested by Lee and See(2004), our results confirm that when training provides crucial 571 

information concerning the purpose and methods of implementing new technology in interactive contexts, 572 

the trust in the new technology increases. In contrast to the in-person training in which trainees are limited 573 

in interacting with the real robot, VR-based training enables learning the robot's implementation in an 574 

interactive context. Workers can observe the robot's behavior and accumulate knowledge of underlying 575 

processes during interaction with the robot. This feature increases the human mental model of the robot and 576 

establishes more trust in automation (Holmes 1991). Hence, the worker's trust in the robot and robot 577 

operation self-efficacy increases significantly more in VR-based training than in in-person training. 578 

 579 

Situational Awareness & Mental Workload 580 
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 The SAGAT scores between VR-based training conditions and in-person training conditions show 581 

that VR-based training participants had significantly more situational awareness than in-person training 582 

participants while remote operating the demolition robot. Similar to our findings related to trust in the robot 583 

and robot operation self-efficacy, we suspect that the higher SAGAT score for the VR-based training 584 

condition relates to the opportunities that the VR environment provides to trainees. While in-person training 585 

participants did not have significant freedom in remote operating the robot mainly due to safety concerns, 586 

VR-based training participants could remote operate the robot in different scenarios and implement 587 

different strategies. This advantage provided an opportunity of experiencing different situations and 588 

consequences of wrong decisions while remote operating the robot. For example, participants experienced 589 

the consequences of ignoring power cable management during robot operation and losing the cable by 590 

putting it under outriggers or on sharp objects. In addition, they experienced the consequence of not paying 591 

attention to the correct position of the demolition robot's arm system while moving the robot and tilting the 592 

robot resulting in its failure. Thus, VR-based training participants had a higher perception of power-cable 593 

position, comprehension of the robot's distance from surrounding objects and workers, and projection of 594 

the demolition robot's trajectory during remote operation. Our findings confirm the statement that applying 595 

immersive visualization techniques in a training environment can increase workers’ situational awareness 596 

in complex and dynamic environments (Cheng and Teizer 2014). Although VR-based training can increase 597 

workers’ situational awareness, it can have physical side effects such as dizziness, eyestrain, or nausea on 598 

its users. However, by giving break times to trainees to take off HMD, the probability of experiencing 599 

adverse side effects can be decreased. 600 

         Although the NASA-TLX mental workload survey scores indicate that VR-based training 601 

participants experienced a lower average mental workload than in-person training participants, it failed to 602 

show a significant difference between these two conditions. Therefore, in this study, we cannot claim that 603 

VR-based training reduces construction workers’ mental workload significantly compared to the traditional 604 

in-person training method. One of the factors impacting the lower average level of mental workload in VR-605 

based training participants is that trainees had the opportunity to remotely operate the robot in different 606 
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scenarios in the VR environment, while in-person training participants were limited in remote operating the 607 

robot. So, part of how VR can help reduce the mental workload is by allowing more time to practice with 608 

the robot. However, again the collected data from the NASA-TLX measurement method did not show a 609 

significant difference between the two groups. Since VR-based training participants were on VR treadmill 610 

(walk-in-place treadmill), they had not experienced the actual physical demand and effort in remote 611 

operating the demolition robot; therefore, they experienced the physical demand and effort for the first time 612 

during the assessment, which may have impacted their mental workload. One of the reasons we did not 613 

produce a significant difference may have stemmed from the sample size. We suggest that future studies 614 

investigate the impact of VR-based training on construction workers' mental workload on larger sample 615 

sizes.  616 

 617 

Limitations 618 

 While this study presents VR-based training implications for human-related factors (i.e., trust in 619 

the robot, robot operation self-efficacy, situational awareness, and mental workload) in robotic remote 620 

operation in the construction industry, some limitations exist. There are differences in VR-based and in-621 

person training mechanisms, while some represent an important limitation of in-person training. In 622 

traditional training, each worker only gets a limited amount of time to work with the robot since the overall 623 

time is limited due to the cost of traditional training, and there are multiple workers in a session to be 624 

efficient with time and money. On the other hand, VR-based training is not subject to these kinds of practical 625 

constraints. By providing VR equipment and computing devices, trainees have the opportunity to 626 

experience the training individually and work with the robot for a more extended period than the traditional 627 

training. Additionally, during in-person training, workers cannot explore different strategies in remote 628 

operating the robot on their own because it represents a risk to safety and the equipment. In contrast, VR-629 

based training not only provides more opportunities for workers to practice with the robot, but they can also 630 

safely explore different aspects of operation without risk to safety or equipment. These are natural 631 
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differences between the two kinds of training and indeed represent several of the reasons why VR-based 632 

training was suggested as a new training method to study in the first place.  633 

           The goal of the current study was not to tease apart the different mechanisms by which VR-based 634 

training has its effect but rather investigate the impact of VR-based training -as a whole- compared to the 635 

traditional in-person training. Therefore, the limitation is that the study does not have experimental control 636 

to test “why” (i.e., the mechanism(s) by which) VR training has better outcomes than in-person training. 637 

Indeed, VR-based training presents possibilities for overcoming these kinds of limitations of standard in-638 

person training sessions, and we wanted to harness the power of all these natural differences between the 639 

two conditions. Hence, instead of having various VR conditions that each differ from in-person training on 640 

only one variable (thus would have better experimental control), we opted for only two conditions that 641 

differed in all of the ways VR training and in-person training would naturally differ. Future research should 642 

investigate the mechanisms by which VR-based training improves outcomes over in-person training, and 643 

therefore would need to isolate those mechanisms experimentally. In these kinds of follow-up studies, the 644 

experimental conditions would be better controlled (i.e., various VR conditions that each differ from in-645 

person training on only one variable). 646 

 647 

Conclusion 648 

 The research reported in this paper investigated the impact of VR-based training on four human-649 

related factors (i.e., trust in the robot, robot operation self-efficacy, situational awareness, and mental 650 

workload) in the remote operation of a robot compared to traditional in-person training. While the 651 

advancement of construction robotics can enhance productivity and safety in the construction industry, it 652 

also has brought about new challenges. The unstructured and unpredictable nature of construction sites has 653 

hindered the adoption of construction robotics. Moreover, sharing workspace between workers and robots 654 

in dynamic and hazardous construction sites has introduced new safety concerns. Therefore, it is crucial to 655 

enhance human-related factors such as trust in the robot, robot operation self-efficacy, situational 656 
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awareness, and mental workload while remote operating robots on construction sites to address new safety 657 

concerns and facilitate the implementation of robotics in the construction industry. Despite the vast body 658 

of research on the effectiveness of VR-based training in the construction industry, the impact of VR-based 659 

training in building trust, self-efficacy, situational awareness, and optimizing mental workload in the remote 660 

operation of construction robotics is not well studied. Thus, to study the impact of VR-based training on 661 

these factors, immersive VR-based training was developed. Fifty construction workers were assigned 662 

randomly to complete either the VR-based training or in-person training. Construction workers were asked 663 

to complete trust in the robot and robot operation self-efficacy surveys before and after completing their 664 

assigned training. In addition, their situational awareness was evaluated during the remote operation of the 665 

actual robot by a professional trainer. Finally, they completed a mental workload survey using the NASA-666 

TLX measurement method immediately after the remote operation of the actual robot. 667 

 The quantitative results show that VR-based training can significantly increase workers' trust in the 668 

robot and robot operation self-efficacy compared to a traditional training method such as in-person training. 669 

Moreover, VR-based training participants have significantly more situational awareness while remote 670 

operating the construction robot. Although VR-based training participants had lower mean ratings of mental 671 

workload than in-person training participants, we did not find any significant difference in participants' 672 

mental workload between the two conditions in this study. One of the key factors contributing to this success 673 

is the nature of the VR environment. The accurate simulation and visualization of the robot and the 674 

construction site allowed the trainee to work with the robot in various scenarios to get a clear understanding 675 

of the robot's behavior in different tasks. VR-based training participants could find the opportunity to 676 

remotely operate the robot in different scenarios, implementing different strategies to experience the 677 

consequences without exposure to danger. These findings produce multiple implications for improving HRI 678 

using VR, especially in the construction field. Admittedly, there are also limitations in this study that need 679 

to be addressed in future studies. For example, as we had a limited sample size to test for moderation by 680 

demographics, we were underpowered to find any differences among different demographic groups such 681 
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as different age groups, experience levels, education levels, etc. These factors could be more thoroughly 682 

tested in future studies with larger samples. 683 
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 989 

Tables 990 

Table 1. Demographics of Workers in the Two Conditions 991 

Indicator 

In-person Training 

(N = 25) 

Virtual Reality-based 

Training 

(N = 24) 

Worker characteristic   

Male  23 23 

Hispanic/Latinx 24 23 

Speaks English comfortably  12 12 

Highest level of education   

Less than a high school diploma 10 8 

High school 12 12 

College degree 3 4 

Age    

18–29 7 8 

30–39  7 7 

40–49 4 2 

50 or older 7 7 

Experience in the construction industry8   

Less than 5 years 10 12 

5–10 years  8 5 

11–20 years 3 5 

More than 20 years 3 2 

 
8One of the trainees did not answer this item in the demographic survey  
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No experience with a demolition robot  24 24 

No experience with the Brokk machines  25 24 

No experience with virtual reality  24 21 

No experience with virtual reality training 25 23 

 992 

Table 2. Means and standard deviations (SD) of trust in the robot based on individual differences 993 

Measures VR-based Training 

Mean (SD) 

In-person Training 

Mean (SD) 

Before After Before After 

Overall 2.81 (0.36) 4.19 (0.50) 2.88 (0.33) 3.40 (0.37) 

Language 

 

    

English 2.79 (0.37) 4.33 (0.39) 2.95 (0.27) 3.45 (0.34) 

Spanish 

 

2.83 (0.31) 4.06 (0.49) 2.80 (0.39) 3.35 (0.39) 

Age groups     

 

18-29 

 

2.78 (0.32) 

 

4.27 (0.40) 

 

3.04 (0.32) 

 

3.39 (0.24) 

30-39 2.83 (0.35) 4.23 (0.44) 2.77 (0.24) 3.50 (0.25) 

40-49 2.83 (0.25) 4.20 (0.83) 2.75 (0.58) 3.58 (0.61) 

50-69 

 

2.83 (0.45) 4.04 (0.63) 2.88 (0.26) 3.20 (0.36) 

Education levels     

 

Less than a high school diploma 

degree 

 

2.82 (0.37) 

 

4.05 (0.50) 

 

2.75 (0.44) 

 

3.47 (0.43) 

High school diploma degree 2.91 (0.28) 4.25 (0.54) 2.99 (0.23) 3.32 (0.32) 
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College degree 

 

2.49 (0.32) 4.32 (0.48) 2.86 (0.25) 3.49 (0.29) 

Experience groups 

 

    

Less than 5 years 2.76 (0.38) 4.11 (0.46) 2.96 (0.40) 3.49 (0.49) 

5-10 years 2.95 (0.25) 4.31 (0.76) 2.86 (0.28) 3.40 (0.26) 

More than 10 years 2.78 (0.35) 4.25 (0.34) 2.84 (0.31) 3.44 (0.28) 

 994 

Table 3. Means and standard deviations of robot operation self-efficacy based on individual differences 995 

Measures VR-based Training 

Mean (SD) 

In-person Training 

Mean (SD) 

Before After Before After 

Overall 2.79 (0.69) 4.42 (0.65) 2.82 (0.74) 3.56 (0.60) 

Language 

 

    

English 2.96 (0.66) 4.50 (0.56) 3.08 (0.42) 3.50 (0.60) 

Spanish 

 

2.63 (0.71) 4.33 (0.75) 2.58 (0.91) 3.61 (0.62) 

Age groups     

 

18-29 

 

3.05 (0.63) 

 

4.55 (0.40) 

 

2.86 (0.85) 

 

3.42 (0.45) 

30-39 2.71 (0.56) 4.59 (0.44) 2.64 (0.85) 3.79 (0.39) 

40-49 3.00 (0.10) 4.50 (0.83) 2.63 (0.83) 3.88 (0.85) 

50-69 

 

2.42 (0.92) 4.33 (0.63) 3.07 (0.19) 3.79 (0.69) 

Education levels     
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Less than a high school diploma 

degree 

2.56 (0.50) 4.31 (0.50) 2.45 (0.44) 3.65 (0.67) 

High school diploma degree 2.88 (0.77) 4.41 (0.82) 3.08 (0.23) 3.50 (0.60) 

College degree 

 

3.00 (0.82) 4.62 (0.48) 3.00 (0.25) 3.50 (0.50) 

Experience groups 

 

    

Less than 5 years 2.79 (0.58) 4.45 (0.49) 2.90 (0.70) 3.45 (0.68) 

5-10 years 3.08 (0.66) 4.25 (0.98) 2.93 (0.42) 3.43 (0.41) 

More than 10 years 2.50 (0.89) 4.50 (0.63) 2.83 (0.93) 4.00 (0.54) 

 996 

Table 4. Means and standard deviations (SD) of SA assessment based on individual differences 997 

Measures 

 

VR-based Training 

Mean (SD) 

In-person Training 

Mean (SD) 

Overall 0.98 (0.04) 0.86 (0.16) 

Language 

 

  

English 0.99 (0.04) 0.85 (0.22) 

Spanish 

 

0.97 (0.06) 0.87 (0.09) 

Age groups   

 

18-29 

 

0.98 (0.04) 

 

0.89 (0.09) 

30-39 0.98 (0.05) 0.91 (0.06) 

40-49 1.00 (0.00) 0.91 (0.06) 

50-69 

 

0.96 (0.06) 0.75 (0.27) 
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Education levels   

 

Less than a high school diploma 

degree 

 

0.95 (0.06) 

 

0.86 (0.09) 

High school diploma degree 0.99 (0.03) 0.85 (0.22) 

College degree 

 

1.00 (0.00) 0.88 (0.13) 

Experience groups 

 

  

Less than 5 years 0.97 (0.05) 0.80 (0.22) 

5-10 years 0.97 (0.05) 0.92 (0.06) 

More than 10 years 0.97 (0.05) 0.88 (0.13) 

 998 

Table 5. Means and standard deviations (SD) of MWL assessment based on individual differences 999 

Measures 

 

VR-based Training 

Mean (SD) 

In-person Training 

Mean (SD) 

Overall 45.20 (16.48) 53.74 (17.18) 

Language 

 

  

English 41.04 (21.49) 46.39 (10.76) 

Spanish 

 

49.38 (8.28) 60.51 (19.51) 

Age groups   

 

18-29 

 

47.13 (10.76) 

 

41.07 (10.39) 

30-39 40.83 (27.83) 54.99 (5.79) 

40-49 39.17 (2.36) 55.83 (18.27) 
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50-69 

 

49.45 (8.00) 63.93 (23.65) 

Education levels   

 

Less than a high school diploma 

degree 

 

48.33 (13.51) 

 

58.25 (22.46) 

High school diploma degree 44.44 (19.01) 51.94 (12.70) 

College degree 

 

41.25 (16.42) 45.83 (13.09) 

Experience groups 

 

  

Less than 5 years 47.78 (8.36) 51.25 (10.30) 

5-10 years 38.33 (21.63) 55.83 (19.31) 

More than 10 years 46.96 (23.50) 58.89 (23.40) 

 1000 

Figure Captions 1001 

Fig. 1a. Brokk110   Fig. 1b. Brokk110 in VR environment 1002 

Fig. 2a. Construction site in VR environment 1003 

Fig. 2b. VR-based training system setup 1004 

Fig. 3: (a) Highlights and animations illustrating the range of each component’s movement (Module 1), (b) 1005 

Illustration of pre-startup check-ups (Module 4), (c) Trainee learns correct positioning of the robot (Module 5), (d) 1006 

Trainee practices using the control unit by kicking a soccer ball (Module 6) 1007 

Fig. 4. In-person training session 1008 

Fig. 5. Performance assessment 1009 

 1010 


