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Abstract
During the Corona Virus Disease 2019 (COVID-19) pandemic, protective equipment, such as masks, gloves and shields, 
has become mandatory to prevent person-to-person transmission of coronavirus. However, the excessive use and abandoned 
protective equipment is aggravating the world's growing plastic problem. Moreover, above protective equipment can eventu-
ally break down into microplastics and enter the environment. Here we review the threat of protective equipment associated 
plastic and microplastic wastes to environments, animals and human health, and reveal the protective equipment associated 
microplastic cycle. The major points are the following:1) COVID-19 protective equipment is the emerging source of plastic 
and microplastic wastes in the environment. 2) protective equipment associated plastic and microplastic wastes are pollut-
ing aquatic, terrestrial, and atmospheric environments. 3) Discarded protective equipment can harm animals by entrapment, 
entanglement and ingestion, and derived microplastics can also cause adverse implications on animals and human health. 
4) We also provide several recommendations and future research priority for the sustainable environment. Therefore, much 
importance should be attached to potential protective equipment associated plastic and microplastic pollution to protect the 
environment, animals and humans.
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Introduction

Since the last century, plastics have revolutionized the world 
and continue to change and shape the future. As an unlimited 
innovative potential, plastics have a pivotal status in our lives 
and define our lifestyle. Because of the flexibility, durabil-
ity, lightness, versatility and availability, plastics are widely 
used in industrial sectors and hygienic healthcare (Geyer 
et al. 2017; Grosso 2022). In 2018, global plastic production 
reached 368 million metric tons, while due to the Corona 
virus Diseases 2019 (COVID-19) pandemic, the estimated 
growth rate sharply dropped in 2020 and will recover in 
2021 (Europe 2020). COVID-19 is a highly contagious air-
borne disease and has caused a serious global public health 
emergency (Liu et al. 2020a; Valsamatzi-Panagiotou and 
Penchovsky 2022), which is affecting over 200 countries 
and territories. As up to 12 April 2022, 500,058,567 con-
firmed cases and 6,206,108 deaths have been reported. To 
minimize the chances of COVID-19 spreading, governments 
worldwide have taken several effective preventive measures, 
including lockdown of cities, the mandatory wearing masks, 
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and the COVID-19 vaccine available (Tobias 2020; CDC 
2021b).

Besides, the COVID-19 spread can change the environ-
ment and be influenced by their interactions (Huo et al. 
2021). Undeniably, the lockdown measures during the 
COVID-19 pandemic make a temporarily lighter human 
footprint in nature to help the environment, which can 
improve air and water quality, drop carbon emissions, reduce 
land surface temperature, decrease noise levels, and increase 
wildlife sightings (WEF 2020b; Cecchi 2021; Manchanda 
et al. 2021; Praveena and Aris 2021; Tian et al. 2021). How-
ever, the small environmental benefits of the COVID-19 
pandemic coming from the human postponed activities can-
not hide the tragic costs of coronavirus to humans. Moreo-
ver, the COVID-19 pandemic aggravates plastic pollution, 
another challenging public health problem (Adyel 2020; 
Khoo et al. 2021).

Before the COVID-19 pandemic, over 380 million tons of 
plastics are estimated to be produced annually, of which 10 
million tons are dumped into the oceans (Singh and Sharma 
2016; plasticoceans 2021). Besides, most plastic wastes are 
not gotten recycled (Europe 2020; Law et al. 2020), which 
will lead to roughly 12,000 million metric tons entering 
landfills or the natural environment by 2050(Geyer et al. 
2017). In view of this, many governments and organizations 
have actively called for attention to plastic pollution (UNEP 
2017; EcoWatch 2018). However, after the outbreak of 
COVID-19 pandemic, the increased use of plastics is mak-
ing plastic waste accumulation. Especially, protective equip-
ment has become part of our daily life to prevent person-to-
person transmission (Chu et al. 2020), which is adding to the 

global plastic problem (Gorrasi et al. 2021). Furthermore, 
plastic in nature can break down into microplastics (particle 
size < 5 mm) to be ubiquitous in the water (Bohdan 2022), 
soil (Kumar et al. 2020b), air (Amato-Lourenco et al. 2020), 
and even in our bodies (Leslie et al. 2022). Therefore, during 
the COVID-19 pandemic, protective equipment is an impor-
tant source for microplastic pollution (Akber Abbasi et al. 
2020; Aragaw 2020; Fadare and Okoffo 2020; Akhbarizadeh 
et al. 2021; De-la-Torre and Aragaw 2021).

To our best knowledge, this is the first review on COVID-
19 protective equipment associated plastic and microplastic 
waste cycle. We summarize the amount of increase produc-
tion, consumption, and release of protective equipment, and 
the magnitude of protective equipment associated microplas-
tics during the pandemic. Then we firstly reveal the “protec-
tive equipment associated microplastic cycle” to compre-
hensively discuss the threatens of protective equipment to 
oceans, freshwater, soils and atmosphere. Importantly, we 
detailly answer the effects of protective equipment associ-
ated plastics and microplastics on animals and human health. 
Finally, the corresponding recommendations are provided 
and future research priorities are suggested to solve potential 
protective equipment pollution to protect the environment 
and ourselves.

Table 1  Type, usage and composition of protective equipment

Type Usage Raw materials Reference

Medical masks Medical masks can reduce the 
transfer of saliva and respiratory 
droplets to others

Cotton, polypropylene, polyure-
thane, polyvinyl alcohol, poly-
acrylonitrile, polystyrene

(Aragaw 2020; Rodriguez et al. 2021)

Cloth masks Cloth masks can block the exhala-
tion of droplets and particles with 
carrying microorganisms

natural and synthetic fabrics and 
fibers

(Bahl et al. 2020; Fischer et al. 2020; 
Leung et al. 2020)

Gowns Gowns are indicated for use for 
direct care of patients

Polyester, polyester-cotton fabrics, 
polypropylene

(Jain et al. 2020; CDC 2021d)

Medical gloves Medical gloves protect the hands 
from contact with potentially 
hazardous substances

polyvinyl chloride, nitrile rubber, 
chloroprene rubber and latex 
rubber

(CDC 2020)

Face shields and Goggles Face shields provide barrier protec-
tion to the facial area and related 
mucous membranes from expo-
sure to splashes, sprays, splatter, 
and respiratory secretions

Polycarbonate, Potassium acetate, 
Polyvinyl chloride, Polyethylene 
terephthalate, polypropylene

(Jain et al. 2020; CDC 2021c)

Filtering facepiece respirator Respirators, such as N95 respira-
tors, provide protection against 
inhalation of very small infectious 
airborne particulates

Synthetic rubber, Polypropylene, 
Polyurethane foam

(Rodriguez et al. 2021)
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Importance of protective equipment 
during the COVID‑19 pandemic

Because the COVID-19 virus is transmitted between people 
through close contact and droplets, staying at least one miter 
physical distancing, washing hands often, and cleaning and 
disinfecting high touch surfaces frequently are necessary to 
protect ourselves and others (CDC 2021b). In addition, as 
an effective measure of administrative controls and envi-
ronmental and engineering controls, protective equipment 
is also critical to fight and control the COVID-19 pandemic 
(CDC 2021a; Akter et al. 2022). The available evidence has 
been confirmed that rational and appropriate use of protec-
tive equipment, including masks, respirators, face shields 
and goggles, can prevent person-to-person transmission of 
the coronavirus disease to reduce the risk of infection largely 
(Jefferson et al. 2011; Chu et al. 2020; Lindsley et al. 2021) 
(Table 1). Among them, masks can control the release of 
virus-carrying droplets and reduce the inhalation of these 
droplets by wearers. In particular, protective equipment pro-
vide great benefits in reducing the potential transmission of 
asymptomatic people, which helps to contain the spread of 
this virus through droplets (WEF 2020g; Johansson et al. 
2021).

Sources, occurrence and fate of protective 
equipment in the environment

To help control the pandemic, the production and con-
sumption of protective equipment are increasing. Health-
care workers are the frontline soldiers. The availability of 
protective equipment is the key to protecting them from 
COVID-19. Every month, frontline health responders 
around the world need over 89 million masks, 30 million 
gowns, 1.59 million goggles, 76 million gloves and other 
protective equipment (WEF 2020f). A United Nations 
task force delivers about 500 million medical masks and 
gloves, as well as other protective equipment for clinical 
care.

Based on experimental and epidemiological data, com-
munity masking can reduce the spread of COVID-19 (Lef-
fler et al. 2020; Mitze et al. 2020, Guy et al. 2021). In 
addition, On March 2020, The World Health Organization 
(WHO) called on the industry to increase the manufactur-
ing of protective equipment by 40% to meet rising global 
demand (WHO 2020b). From June to July 2020, WHO 
increased deliveries of protective equipment from 5.5 mil-
lion to 50.4 million pieces, and over 200 million pieces of 
protective equipment were in store for emergency delivery 
(Haque et al. 2021). Until October 20, 2020, China has 
provided 17.9 billion masks, and 1.73 billion protective 

Table 2  Production, usage and waste of protective equipment during the pandemic

Region Production and usage Waste Reference

Each continent Over 3.81 billion, 891 million, 962 
million, 490 million, 594 million, 
and 46 million masks are estimated 
to be used daily in Asia, Europe, 
Africa, North America, South 
America and Oceania, respectively

Over 11,000 tons, 2,600 tons, 2,800 
tons, 1,400 tons, 1,700 tons, 141 
tons of masks will be discarded 
daily in each continent, respectively. 
In Africa alone, over 100 million 
metric tons of other protective equip-
ment wastes are produced per year

(Nzediegwu and Chang 2020; Benson 
et al. 2021; Hantoko et al. 2021)

Moroccan About 12 million mask units are pro-
duced per day

Around 41 million masks are dis-
carded weekly, generating over 345 
tons of waste

(Mejjad et al. 2021)

Bangladesh About 3.4 billion pieces of protective 
equipment are estimated to produced 
monthly

About 472.30 tons of plastic wastes 
are estimated to generated every day

(Haque et al. 2021)

Isfahan, Iran Over 1.49 million masks and 2.98 mil-
lion gloves are disposed daily

(Zand and Heir 2021)

Turkey Approximately 50 million masks are 
used each day

About 200 tons of contaminated waste 
is created per day

(Akarsu et al. 2021)

England About 2.3 billion items of protective 
equipment were distributed to health 
and social care services between 
February and July 2020

About 66,000 tons of contaminated 
plastic wastes are created yearly

(WEF 2020c; Zhang et al. 2021a)

Brazil, Peru, Chile etc The principal companies produced 
over 38 million masks monthly in 
South American countries

More than 85 million masks might be 
daily disposed in Brazil

(Ardusso et al. 2021; Urban and 
Nakada 2021)
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clothing to 150 countries and 7 international organiza-
tions to meet the huge demand for protective equipment 
(people.cn 2020). Besides, many studies have estimated 
the number of facemasks and gloves for their countries 
and the global demand (Prata et al. 2020; Benson et al. 
2021; Chowdhury et al. 2021)(Table 2). According to the 
population information and pandemic spread (worldometer 
2021), over 6 billion masks are estimated to be used daily 
worldwide (Table 2), which exceeds the value reported 
in previous studies. Unfortunately, hundreds of tons of 
protective equipment are released and generate massive 
plastic wastes every day in a city during the pandemic, 
which is the main source of protective equipment pollution 
in the environment (Table 2).

Recent surveys demonstrate that COVID-19 protective 
equipment is invading various environments to be preva-
lent in the ocean, freshwater, and soil, which can pose great 
threats to ecosystems, and even human health (details are 
discussed in the next sections). Protective equipment is com-
monly manufactured from polymers and polymer fibers, 
including polypropylene, polyacrylonitrile, polystyrene, pol-
yethylene terephthalate, polycarbonate, and others (Table 1), 
which is confirmed as a significant source of microplastic 
pollution in the environment (Schnurr et al. 2018; Fadare 
and Okoffo 2020; Prata et al. 2020; Zhang et al. 2021a). 
Therefore, protective equipment without effective disposal 
is a critical source of microplastics. Protective equipment 
getting into the environment can be decomposed into smaller 
pieces of particles by the ultraviolet radiation, weathering, 
abrasion and biological degradation, which results in micro-
plastic pollution (Aragaw 2020, Ob et al. 2020, Chen et al. 
2021, Morgana et al. 2021).

As the most commonly used protective equipment, masks 
can rapidly increase the accumulation of related microparti-
cles in the environment in a short time (Fadare and Okoffo 
2020). With the gradual aging and decomposition, the masks 
can continuously release particles, and finally completely 
become billions of microplastics into the environment (Ma 
et al. 2021; Shen et al. 2021). The adsorption of airborne 
microplastics in masks also can elevate the overall hazard 
of the mask as a source of microplastics (Chen et al. 2021). 
According to the rough calculation, over one hundred billion 
masks produced in 2020 in China could release more than 
1.2 ×  1014 microplastics into the environment (Chen et al. 
2021). In South Korea, more than 1381 million microplastic 
fibers are released from the used masks every day (Dissan-
ayake et al. 2021). During the COVID-19 pandemic Saudi 
Arabia alone may contribute to 32–235 thousand tons of 
microplastic, accounting for almost half of the total amount 
of the whole peninsula (Akber Abbasi et al. 2020).

Overall, protective equipment is essential to fight 
and control the virus spread. Disposed protective equip-
ment becomes the main source of plastic pollution in the 

environment during the COVID-19 pandemic. Besides, the 
fate of the mismanaged protective equipment wastes will 
end in countless microplastics, which causes the protective 
equipment associated microplastic waste cycle.

Impacts of protective equipment pollution 
on aquatic systems

At present, about 150 million metric tons of plastics cir-
culate in the marine environment, and 13 million tons of 
plastics still flow into the ocean every year (UNEP 2018). 
Without any action, by 2040, the amount of plastic entering 
the marine environment will double, and 710 million metric 
tons of plastic wastes will leak into land and water systems 
(Lau et al. 2020). Unfortunately, the COVID-19 pandemic 
makes protective equipment a new scourge to pollute the 
world's waters. Increasing studies have evidenced the occur-
rence of different types of protective equipment along the 
coasts and beaches of coastal cities (De-la-Torre et al. 2021; 
Okuku et al. 2021), underwater in remote and uninhabited 
islands (oceansasia 2020), and beneath the waves of the 
Mediterranean (EcoWatch 2020a), which are polluting the 
ocean (WEF 2020c) (Fig. 1A and B). As shown in Table 1, 
protective equipment is constituted by various plastic mate-
rials, and characteristics of these materials determine the 
fates and sinks of protective equipment after reaching the 
marine environment. Polymers with high density, including 
polyethylene terephthalate, polyvinyl alcohol and polyvi-
nyl chloride, tend to sink to the seafloor, while low-density 
polymers, including polypropylene and polystyrene, can 
float in seawater for a long time (De-la-Torre and Aragaw 
2021). The COVID-19 protective equipment can break up 
into huge amount of microplastics by sun ultraviolet radia-
tion and breaking waves, which cause ubiquitous and almost 
permanent pollution to the marine environment (Henderson 
and Green 2020).

To be sure, as an important part of the global plastic 
cycle, the ocean is a sink for microplastics (Rochman and 
Hoellein 2020). Trillions of barely visible microplastics exist 
in the world’s oceans, from the Arctic Ocean to Antarctic 
Sea ice (Peeken et al. 2018; Fragao et al. 2021), from sur-
face waters to the deep seas (EcoWatch 2020d; WEF 2021a) 
(Fig. 1). Many studies have reported the microplastics con-
centrations in the oceans. However, recent researches sug-
gest that microplastics in the ocean far exceed the initial 
estimation, and over 125 trillion microplastic particles are 
teeming the oceans (Brandon et al. 2020b; Lindeque et al. 
2020). Moreover, researchers estimated that the ocean floor 
contains at least 14 million tons of microplastics (Barrett 
et al. 2020). Submarine canyons and deep-ocean trenches, 
known as microplastic hotspots, are rich in the concentra-
tion of microplastics, about 1.9 million pieces in one square 
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meter (Kane et al. 2020). Therefore, protective equipment 
associated microplastic pollution in seafloors should be 
attracted much attention, because less than 1% of plastic 
stays on the ocean surface and most of protective equipment, 
such as goggles, gloves, masks, will also sink to the seafloor.

Plastic pollution in the oceans can be mainly attributed 
to a large amount of mismanaged solid waste from the ter-
restrial environment, which can be transported through 
freshwater systems (Jambeck et al. 2015). Freshwater catch-
ment is a crucial pathway for ocean microplastic pollution 
(Wagner et al. 2014), and more rivers contribute to ocean 
plastic pollution than previously thought (Meijer et al. 2021). 

According to the lasted model of riverine plastic outflows 
(Mai et al. 2020), about 57,000–265,000 million metric 
tons plastic debris delivered by rivers leak into the oceans 
annually.

Nowadays, microplastics can be detected in different 
freshwater systems worldwide, such as the Yangtze River 
in China (Xiong et al. 2019), the groundwater in India (Sel-
vam et al. 2021), and the Lake Winnipeg in Canada (Ander-
son et al. 2017). Just like the oceans, freshwater systems 
also have the microplastic hotspots, such as the estuaries 
of densely populated, and heavily industrialized catch-
ments (Wright et al. 2013; Lam et al. 2020), because the 

Fig. 1  Pollution by COVID-19 protective equipment in aquatic sys-
tems. Protective equipment associated plastic and microplastic wastes 
can pollute rivers, lakers, groundwater and oceans. A: Many masks 
were found on the beach (adapted and modified from (oceansasia 

2020)). B: Increasing amounts of COVID-19 protective equipment 
were found in the ocean (adapted and modified from (WEF 2020c)). 
COVID-19, the Corona Virus Disease 2019
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abundance of microplastics is closely associated with human 
activities (Wang et al. 2021c). However, little emphasis is 
given to understand the protective equipment pollution in 
the freshwater systems during the COVID-19 pandemics. 
Undoubtedly, after the excessive use of protective equip-
ment for protection, the COVID-19 protective equipment 
in freshwater systems can add the plastic and microplastic 
load of the environment (Fig. 1). Muhammad et al. (Cordova 
et al. 2021) monitored the riverine debris in Jakarta Bay 
from March to April 2020, and observed an unprecedented 
presence of protective equipment, including medical masks, 
gloves, and face shields, nearly accounting for one-sixth of 
the collected riverine debris.

Like other single-use plastic wastes, COVID-19 pro-
tective equipment will provide a growing, extensive and 
innovative habitat for harmful microbes and microorgan-
isms, and then create conditions causing ocean acidifica-
tion (Harvey et al. 2020). As a result, the combination of 
plastic pollution and ocean acidification poses great threats 
to biodiversity. In addition, protective equipment associ-
ated microplastics can also serve as vectors for other toxic 
pollutants, such as heavy metal and various chemicals, 
to enhance the bioavailability (Li et al. 2020; Eder et al. 
2021; Lee et al. 2021). In freshwater ecosystems, micro-
plastics provide novel substrates to form as microplastic 
biofilm, which can participate in the nutrient cycles and 
serve as vectors for antibiotic resistance genes and patho-
gens (Wu et al. 2019; Chen et al. 2020b).

Overall, protective equipment associated plastic and 
microplastic wastes are polluting ocean and freshwater sys-
tems. Research is need to analyze the sources and fate of the 
COVID-19 protective equipment in freshwater systems and 
understand the dynamics the aquatic environment.

Effects on the atmosphere

The lockdown measures during the COVID-19 pandemic 
seem to reduce greenhouse gas emissions and improve out-
door air quality at first glance. However, the large production 
and use of protective equipment bring about a hidden crisis 
of global greenhouse gas emissions in a long-term scenario. 
The production and incineration of plastic products more 
than 850 million metric tons of greenhouse gases yearly, 
while the cumulative greenhouse gas emissions from plastics 
will exceed 56 billion tons in 2050, accounting for 10–13% 
of the total remaining carbon budget (CIEL 2019), which 
are not conducive to maintain the global temperature rise 
below 1.5 °C. Protective equipment made of plastic begin as 
fossil fuels and greenhouse gases are emitted at each stage 
of the lifecycle, including extraction and transportation of 
fossil fuel, production and use of protective equipment, and 
management and disposal of protective equipment wastes 

(Kumar et al. 2020a; Rodriguez et al. 2021). The greenhouse 
gas footprint of N95, surgical and cloth masks is, respec-
tively, 0.05 kg  CO2eq/single-use (exclude transportation), 
0.059 kg  CO2eq/single-use (include transportation) and 
0.036 kg  CO2eq/usage (including washing), suggesting that 
disposable mask usage could exacerbate climate change by 
10 times than reusable masks (Klemes et al. 2020; Patricio 
Silva et al. 2021). Many countries have estimated the foot-
print of protective equipment during the pandemic and con-
firmed that protective equipment contributed large amounts 
of greenhouse gases (Usubharatana and Phungrassami 
2018; Mejjad et al. 2021; Patricio Silva et al. 2021; Rizan 
et al. 2021). Besides, landfills and incineration of protective 
equipment waste can release harmful compounds, such as 
dioxins and furans, to pollute the air (Vanapalli et al. 2021).

Recently, the studies of microplastics mainly focus on 
the impact on rivers and oceans, but COVID-19 protective 
equipment also can fragment and persist as microplastics in 
the air (Zhang et al. 2021a). Airborne microplastics identi-
fied so far across the world include polypropylene, poly-
styrene, polyethylene terephthalate, polyvinyl chloride and 
others (Enyoh et al. 2019), which are the main materials 
of protective equipment. Airborne microplastics travel in 
the atmosphere, deposit all over the world, and accumulate 
in the air, ocean and land (Peeken et al. 2018; Chen et al. 
2020a). However, the ocean is not the final fate of micro-
plastics and gives microplastics back to humans as the form 
of the sea breeze (Allen et al. 2020). Researchers estimate 
that 136,000 tons of microplastics can be released from the 
ocean into the atmosphere every year. In addition, waste-
water sludge, compost spreading, surface sediment of soil, 
and ash from solid waste incinerators are also identified as 
potential sources for airborne microplastics (Sridharan et al. 
2021; Yang et al. 2021c). Therefore, the atmosphere is an 
important part of the protective equipment associated micro-
plastic cycle, and participates in the progress of microplas-
tics permeating into different environments (Fig. 5).

Interestingly, microplastics from the sea can seed clouds 
to form white clouds, reflect the heat of the sun and influence 
the climate (Huang et al. 2010). Apart from serving as sinks 
of harmful chemicals, microplastics can also serve as vec-
tors for the transport of bacteria and virus in the aquatic and 
soil environment. So far, no studies have demonstrated that 
airborne microplastics could be the carrier of the viruses. 
However, scholars believe that that contaminated airborne 
microplastic surfaces might be the potential transmission 
route for COVID-19, especially airborne microplastics 
emitting from improper disposal of protective equipment 
could become a potential vector for COVID-19 transmis-
sion (Ebere et al. 2020; Liu and Schauer 2021). Therefore, 
protective equipment associated microplastics are harmful to 
human health, which will be further discussed below.
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In brief, the large production and use of protective equip-
ment significantly increase the energy consumption, envi-
ronmental footprint and air pollution. Besides, the atmos-
phere participates in microplastic cycle to make protective 
equipment associated plastic and microplastic wastes dete-
riorate air quality, influence the climate and absorb harmful 
chemicals.

Effects on soils

Recent studies on plastic pollution, including protective 
equipment pollution, have heavily focused on the marine 
environment, while few of them have paid attention to the 
soil. As we known, approximately 32% of the plastic wastes 
are present in the soil environment (de Souza Machado et al. 
2018). Importantly, the soil is also the first environment for 
plastic transportation. Therefore, extensive used COVID-
19 protective equipment may increase the possible plastic 
threats to the soil, which should be received enormous 

Fig. 2  Adverse effects of protective equipment pollution on soil 
environment. A: Different colors and types of masks were found in 
the streets (modified from Akarsu et  al. (2021). B: Many protective 
equipment, such as masks and gloves, were found in trails (modified 

from Ammendolia et  al. '2021). C: Microplastics derived from pro-
tective equipment can influence soil properties and enter into aquatic 
systems
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attention. Though protective equipment is required to be 
treated as medical wastes, many masks, gloves and other 
protective equipment are mixed with household solid wastes 
and thrown out in streets, parks and roads (Akarsu et al. 
2021). According to an exploratory survey in the Moroc-
can community, 70% of the respondents admitted that they 
discarded masks and gloves in household dustbins or in open 
dumps after their first use (Mejjad et al. 2021). Another 
study on the spatial distribution of protective equipment 
debris in Toronto, Canada estimated that 14,298 protective 
equipment debris items would be leaked in the surveyed 
areas yearly, showing that large grocery store parking lots 
had the highest average density of protective equipment, fol-
lowed by entrances and green spaces proximity to medical 
facilities, long and short residential areas, and recreational 
trails (Ammendolia et al. 2021) (Fig. 2A-B).

Microplastics are ubiquitous in the soil of various 
terrestrial ecosystems, including agricultural systems 
(Kumar et  al. 2020b), industrialized areas (Fuller and 
Gautam 2016), floodplain (Scheurer and Bigalke 2018), 
sands (Ding et al. 2021) and forests (Ng et al. 2021), which 
may come from various sources, such as landfills, sewage 
sludge, composts and wastewater-irrigation (Wang et al. 
2020; Ya et al. 2021). The COVID-19 protective equip-
ment wastes mixed in domestic wastes make landfills and 
water bring abundant microplastics to the soil. On the 
other hand, soil erosion is also an important pathway of 
microplastics entering aquatic systems (Rehm et al. 2021). 
Therefore, the soil also participates in the protective equip-
ment associated microplastic cycle. Accurate treatment of 
COVID-19 protective equipment wastes is an important 
measure to protect the soil and the aquatic environment.

Microplastics can interact with a variety of soil proper-
ties, which may be a key factor in understanding the risks 
posed by microplastics to terrestrial ecosystems (Fig. 2C) 
(Rillig 2012; Liu et al. 2017). The microplastics exposure in 
soils may reduce the soil bulk density, alter the permeability 
and water holding capacity (de Souza Machado et al. 2018) 
and destruct soil structural integrity (Wan et al. 2019). There 
also are many chemical properties, such as the hydrogen ion 
concentration values and enzyme activities, that microplas-
tics influence over and above the altered physical properties 
(Boots et al. 2019; Fei et al. 2020). Besides, polypropyl-
ene, polystyrene microplastics and other main materials for 
COVID-19 protective equipment participate in soil carbon, 
nitrogen and phosphorus cycle, playing an important role in 
soil fertility and nutrient (Liu et al. 2017; Huang et al. 2019). 
As sinks of harmful chemicals (antibiotics, pesticides, heavy 
metals), microplastics can change the sorption capacity of 
soils to affect the mobility of chemical contaminants, bio-
availability and biodiversity (Huffer et al. 2019; Xu et al. 
2021).

Similar to microplastic biofilm in the aquatic environ-
ment, microplastics in soils also can provide adsorption 
sites for soil microorganisms and form unique microbial 
communities (Zhang et al. 2019), inducing alteration in 
soil microorganism function. However, several pathogenic 
microorganisms are also included, which may increase the 
potential risks to animals and humans (Imran et al. 2019). 
However, the current studies on protective equipment asso-
ciated microplastics in the soil environment are deficient, 
especially the coexistence of microplastics and the COVID-
19 virus.

Overall, the main reason of soil pollution is that contami-
nated protective equipment are thrown as daily rubbish on 
the road, in household dustbins and garbage dumps, help-
ing plastic and microplastic pollution enter the water and 
atmosphere. Protective equipment wastes add the microplas-
tic load to the soil, which can alter soil physicochemical 
properties, decrease soil fertility and nutrient, and soil fertil-
ity and nutrient soil microorganism function. The interac-
tion between protective equipment associated microplastics 
and COVID-19 virus in soils, and the potential impacts and 
ecological risks on the terrestrial ecosystems remain to be 
further explored.

Effects on animals

As shown in one of the best pictures on the environment in 
2020 shown, a seagull carrying a protective face mask at 
the port of Dover, Britain, has aroused the profound reflec-
tion on the risks of COVID-19 protective equipment pol-
lution to wildlife (WEF 2020a) (Fig. 3A). Lack of human 
activity during the COVID-19 lockdown led to wildlife 
sightings increasing, which seemed to herald the spring of 
flourishing wildlife. However, incorrect disposal of protec-
tive equipment is intensifying plastic pollution and posing 
a blooming threat to the animals by entrapment, entangle-
ment and ingestion.

The entrapment of organisms in the plastic wastes 
is often reported, such as hermit crabs are entrapped in 
plastic containers (Lavers et al. 2020). The first victim of 
COVID-19 wastes is a fish entrapped in a latex glove in 
the Netherlands (Hiemstra et al. 2021) (Fig. 3B). There-
fore, COVID-19 protective equipment, including gloves 
and gowns, thrown around in the environment could make 
such entrapments more frequent in future.

The entanglement, another negative interaction between 
protective equipment pollution and animals, can result in 
immediate death by suffocation. However, interactions 
with protective equipment litters are not always directly 
negative. Protective equipment also causes chronic effects, 
which can weaken animals’ mobility and feeding ability, 
exhaust the animals, and cause strangulations, infections 
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and severe wounds. As the data available on https:// www. 
covid litter. com (Auke-Florian Hiemstra 2021), differ-
ent wildlife species are facing the risk of entanglement 
in COVID-19 protective equipment, including American 
robins, swans, mallards, gulls, bats, hedgehogs, puffer-
fishes, shore crabs, octopuses. Besides, using plastic to 
construct nests is more common (Jagiello et al. 2019). 
Now, COVID-19 protective equipment also becomes nest-
ing materials by common coots and sparrows (Fig. 3C) 
(Hiemstra et al. 2021). However, plastics incorporated 
into nests can alter the thermal and drainage properties 
and increase the risk of entanglement or ingestion, which 

may compromise nutritional requirements and reproduc-
tive success (Tavares et al. 2016; Thompson et al. 2020).

Researchers found that marine plastics smell like food 
to sea turtles, and in one study, all turtles surveyed had 
plastics in their stomachs (EcoWatch 2020c). Maybe, 
COVID-19 protective equipment also smells and looks 
like food to other animals. A penguin was found dead 
on Juquehy Beach. The case is the first recorded report 
of marine animal death caused by COVID-19 protective 
equipment ingestion (Gallo Neto et al. 2021) (Fig. 3D). 
Disturbing observations show that long-tailed macaques 
chew on a face mask, gulls scramble for face masks and 

Fig. 3  Harm of protective equipment pollution to animals. A: A 
seagull carrying a protective face mask at the port of Dover, Britain. 
B-D: Protective equipment wastes can kill animals by entrapment, 
entanglement and ingestion. B. A fish entrapped in a latex glove 
(adapted and modified from (Hiemstra et  al. 2021)). C. Nests made 

by protective equipment wastes (adapted and modified from (Tavares 
et al. 2016)). D. A penguin was found dead because of mask ingestion 
(adapted and modified from (Gallo Neto et al. 2021)). E: Microplas-
tics are proved to be ingested in various aquatic and terrestrial organ-
isms

https://www.covidlitter.com
https://www.covidlitter.com
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domestic animals devour COVID-19 litter (Hiemstra et al. 
2021). Similar, several animals that feed on landfills will 
ingest food along with protective equipment wastes, caus-
ing acute and chronic effects (Seif et al. 2018). Exposed 
to protective equipment wastes by ingestion, animals may 
experience negative consequences on fitness, such as 
the restriction of feeding activity and alteration of blood 
chemistry parameters (Lavers et al. 2019), resulting in bio-
diversity declining.

Apart from the potential risk of entrapment, entanglement 
and ingestion of protective equipment wastes, the interac-
tions of animals with microplastics from protective equip-
ment wastes also need much attention. Microplastics are 
proved to be ingested in various aquatic and terrestrial organ-
isms (Fig. 3E), including the invertebrate, the protochordate 
and the vertebrate (Al-Sid-Cheikh et al. 2018; Vered et al. 
2019; Parton et al. 2020), and are recorded in every corner 
of the world, from small organisms in Antarctica and bird 
eggs in the Arctic to deep-sea species (Choy et al. 2019; Ber-
gami et al. 2020). The interaction between microplastics and 
microbe can alter intestinal flora to reduce mucus secretion 
and induce gut dysbiosis (Wang et al. 2021a). Because, the 
most important route for microplastics into animals is their 
food source, microplastics can accumulate in organisms and 
transfer to higher consumers through food chain amplifica-
tion, finally threatening human health (Wang et al. 2021a).

In addition to accumulating in the gastrointestinal tract, 
microplastics can also be distributed to other organs, causing 
many other physiological hazards and even sublethal effects 
(Gandara et al. 2016; Xu et al. 2020). In one study, 67% of 
sharks sampled contained at least one microplastic (Parton 
et al. 2020). Though only the stomachs and digestive tracts 
in sharks were examined, microplastics might also present 
in other organs and tissues, which were proved in various 
species. After crabs ingest microplastics, the hepatopan-
creas has the highest accumulation, followed by guts, gills 
and muscles (Wang et al. 2021b). Billions of microplastics 
can be rapidly taken up by scallops, then spread through 
the intestines and distributed across kidneys, gills and mus-
cles (Al-Sid-Cheikh et al. 2018). Exposure to microplastics 
derived from COVID-19 face masks, the reproduction and 
growth of juveniles are inhibited, the intracellular esterase 
activity and spermatogenesis in earthworms are suppressed, 
suggesting that microplastic can harm animals at the tissue 
and cellular levels (Kwak and An 2021). Besides, microplas-
tics contain chemical pollutants attached to them can lead 
to more serious consequences by additive and synergistic 
effects, impacting various systems (Roda et al. 2020; Yan 
et al. 2020).

Overall, the COVID-19 protective equipment is harming 
animals around us by entrapment, entanglement and inges-
tion. Besides, associated microplastics can accumulate in 
organisms by food chain and cause adverse effects. Future 

researches should address the ecotoxicological effects of 
protective equipment wastes to protect ecosystems and 
biodiversity.

Effects on humans

Limited studies in adsorption characteristics and toxicologi-
cal assessment of contaminated protective equipment pre-
sents great challenges of understanding the human health 
risk of COVID-19 protective equipment associated plastics 
and microplastics. Evidence confirms that respiratory drop-
lets or airborne virus from patients can be deposited directly 
onto the protective equipment and remain active for over 
72 h (Liu et al. 2020b; Ryan et al. 2020; van Doremalen 
et al. 2020). However, the knowledge gap in the interac-
tion between microplastics and virus adsorption should be 
further bridged.

Certainly, the impacts of protective equipment associated 
microplastics on human health is of great concern. Micro-
plastics are increasing in human lives, making the human 
body plasticized. In 2018, through analyzing 47 human tis-
sue samples from lung, liver, spleen and kidney samples, 
researchers detected microplastics in human organs for the 
first time (EcoWatch 2020b). Subsequently, microplastics 
were found in the human placenta (Ragusa et al. 2021) and 
colon (Ibrahim et al. 2021). An important route of micro-
plastic exposure is ingestion (Fig. 4), by which, the global 
average of 0.1–5 g microplastics may enter human bodies 
weekly (Senathirajah et al. 2021). Various microplastics 
have been detected in adult stools, where polypropylene and 
polyethylene terephthalate are the most abundant (Schwabl 
et al. 2019). A lasted study reveals that there is little differ-
ence in microplastic composition between adult and infant 
stool samples, but surprisingly, the microplastics on infants 
are much higher than adults, up to 20 times, indicating that 
microplastics are spreading to infants (Zhang et al. 2021b).

Besides, microparticles can pollute the food chain and 
transfer from producers to consumers. Microplastics are 
widely present in commercial marine species (Vital et al. 
2021), freshwater fish (Martinez-Tavera et al. 2021), edible 
vegetables and fruits (Oliveri Conti et al. 2020). Because 
of the high demand for food energy and the possibility of 
microplastic transfer, consumers, especially human beings 
as the top consumer, are more vulnerable to risks than the 
lower trophic levels (Carbery et  al. 2018). Ingestion of 
microplastics can interact with the gut microbiota to change 
the intestinal microenvironment, cause oxidative stress and 
inflammation to destruct the intestinal barrier (Huang et al. 
2021). Therefore, as a potential source of microplastics in 
the environment, protective equipment wastes can increase 
the potential threat of microplastics to human health.



2961Environmental Chemistry Letters (2022) 20:2951–2970 

1 3

Airborne microplastics are widely distributed in the 
atmosphere, resulting in the potential risk of inhalation 
exposure (Fig. 4). Nowadays, protective equipment wastes 
become an emerging source for airborne microplastics (Chen 
et al. 2021). Increasing evidence is provided the pulmonary 
toxicity of airborne microplastics by in vivo and in vitro 
models, suggesting that microplastics can trigger oxidative 
stress and inflammation, followed by cell death and epithe-
lial barrier destruction (Dong et al. 2020; Lim et al. 2021; 
Yang et al. 2021b), to potentially induce respiratory and car-
diovascular system diseases, and even cancers (Prata 2018). 
Protective equipment can protect us from airborne particles 
and the COVID-19 virus, but microplastics generated from 
the masks can be inhaled by mask wearers during usage 
(Ma et al. 2021), especially poor-quality masks and reusing 
masks with disinfection can increase the risk of microplas-
tic inhalation (Li et al. 2021). Besides, all masks can be 
detected organophosphate ester. Although the calculation 
indicates the safety of masks with organophosphate ester 

contamination (Fernandez-Arribas et al. 2021), the inter-
action between organophosphate ester and microplastics is 
not considered. Therefore, selecting the correct masks to 
wear can avoid microplastic inhalation during the COVID-
19 pandemic.

To conclude, ingestion and inhalation are important 
routes for human microplastic exposure, which helps 
to understand the potential risk of protective equip-
ment wastes to human health. Humans are affected by 
toxic effects of microplastics via mechanisms including 
interaction with the gut microbiota, oxidative stress and 
intestinal barrier destruction. Incorrect use of mask can 
increase the risk of microplastic generation and inhala-
tion. Further studies are needed to confirm the ability of 
protective equipment associated microplastics to adsorb 
viruses.

Fig. 4  Potential risks of protective equipment pollution to human health. Human can be exposure to the protective equipment associated micro-
plastics by ingestion and inhalation, resulting in diseases through many mechanisms
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Recommendations

Certainly, the ocean is the sink for plastics and micro-
plastics (Rochman and Hoellein 2020). However, the 
ocean is not the ultimate fate. Instead, microplastics can 
also cycle through freshwater, terrestrial systems and the 
atmosphere. In addition, disposed protective equipment 
is massively accumulating microplastics in different envi-
ronments, resulting in protective equipment associated 
microplastic cycle (Fig. 5). Raising public awareness, 
improving plastics production, identifying and removing 
protective equipment associated plastic and microplastic 
pollution are critical recommendations to provide for a 
sustainable environment and future research priority.

Raising public awareness

Raising the public awareness is necessary to decrease pro-
tective equipment pollution. Relevant publicity should be 
strengthened, especially on the rational use of protective 
equipment, and the potential environmental and health dan-
gers. The public can follow the guidelines for selecting and 
wearing appropriate protective equipment from the centers 

for disease control and prevention (WHO 2020a; CDC 
2021a). After use, protective equipment should be consid-
ered infectious and collected separately in special medical 
waste bags or bins for further centralized disposal.

Improving plastic production

We do need to raise awareness of protective equipment pol-
lution dangers on the environment and health. Importantly, 
the only way that really makes a difference is to stop pro-
tective equipment related plastic pollution from the source, 
suggesting that the production should be decoupled from 
fossil fuel-based resources. Biobased plastics as potential 
alternative sustainable materials are emerging, which can 
shift the dependency from fossil fuels to bioproducts (Nanda 
et al. 2022). Biobased plastics are made from polymers 
derived from biological sources, including higher plants, 
microalgae, and cyanobacteria (Karan et al. 2019). The 
diversity of bio-based raw materials provides opportunities 
for the production of renewable plastics with an expanding 
range. Now, biobased plastics are being made into COVID-
19 protective equipment, such as the facemasks made by 
banana trees (WEF 2020e) and biodegradable gloves made 

Fig. 5  The protective equipment-associated plastic and microplastic cycle. Disposed protective equipment is massively accumulating plastics 
and microplastics in different environments, making microplastic cycle and polluting the aquatic, terrestrial, and atmospheric environments



2963Environmental Chemistry Letters (2022) 20:2951–2970 

1 3

of natural rubber (WEF 2020d). Therefore, the government 
should fast-track and optimize the plastic industry transi-
tion to develop and produce biobased plastics with easier 
biodegradation, better renewability and lower global warm-
ing impact, which can promote bioplastic-based protective 
equipment innovation and circular economic development.

Identifying plastic pollution

More research should be performed to assess the life cycle 
of COVID-19 protective equipment, especially microplastics 
derived from protective equipment. As mentioned above, 
protective equipment associated microplastics are widely 
distributed in aquatic, terrestrial, and atmospheric environ-
ments, which cycle around the world. More comprehensively 
and deeply researches should be performed to observe and 
understand the sinks, sources and spatial and temporal distri-
bution of COVID-19 protective equipment wastes and their 
interaction with the environment and ecosystems. Therefore, 
we can build a global protective equipment wastes cycle 
model to evaluate and deal with plastic and microplastic 
pollution.

Because of the diversity and complexity of microplastics 
(materials, size, shapes and modification), there are difficul-
ties in obtaining reproducible and uniform results, includ-
ing the recent studies on the microplastics from masks (Li 
et al. 2021; Ma et al. 2021). Besides, limited observation 
methods underestimate the number of protective equipment 
associated microplastics in the environment and the potential 
influence on humans (Chen et al. 2020a). Therefore, preci-
sion analytical tools and standardized methods are urgent 
for separating, sampling, classification, quantification, qual-
ity control and characterization of microplastics, especially 
smaller-sized microplastics.

Remediation

Incineration as a safe, simple and effective method is widely 
employed for plastic management. Recent incineration 
methods have a few limits, such as particle and hazard-
ous gas emission (Parashar and Hait 2021), which should 
be improved. Therefore, future novel technology should 
have the enough incineration capacity and high purifica-
tion capacity to completely kill the COVID-19 virus and 
other microorganisms, and reduce dust and toxic pollutant 
production. Decontamination of protective equipment can 
enhance the recyclability to meet the scarcity challenges 
and promote the circular economy. Neil (Rowan and Laffey 
2021) has reviewed different technologies and approaches of 
protective equipment disinfection and decontamination for 
safe reuse. Besides, decontaminated protective equipment 
can be mixed in concrete to improve the mechanical prop-
erties (Kilmartin-Lynch et al. 2021; Saberian et al. 2021), 

braided into lightweight, cheap and hygienic mattresses 
(WEF 2021b), and turned into new materials by chemical 
recycling (Ragaert et al. 2017). New findings suggest that 
mealworms can eat plastic without any adverse side-effects 
and bioaccumulation (Brandon et al. 2020a), which provides 
solutions to protective equipment pollution.

Microplastic separating procedure is also the important 
stage for next microplastic removal (Razeghi et al. 2022). 
Nowadays, scientists have confirmed sorption and filtration 
methodologies can treat microplastic-containing wastewater 
with good efficiencies. In addition, biological degradation 
and chemical treatments are also potential removal strate-
gies (Padervand et al. 2020). However, the majority of these 
methods focused on water. Therefore, continuous research 
is needed to develop specific methods and strategies for 
separating and removing protective equipment associated 
microplastics from different environmental samples.

Limitations and perspectives

Although there are some studies on protective equipment asso-
ciated plastics and microplastics, these are far from enough. 
More perfect ecotoxicological studies should be built to access 
the potential hazards of microplastics on the various ecosys-
tems. Several species can serve as biological indicators to 
conduct biological monitoring by evaluating the toxicity in 
organisms, such as sea squirts that are evolutionarily related 
to humans (Vered et al. 2019). Nevertheless, the measurement 
of internal exposure of microplastics in the human body is still 
in the infancy (Vethaak and Legler 2021), suggesting that the 
ability of microplastics to cross the blood-air, intestinal and 
skin barriers is needed deep insights. Importantly, the research 
conditions that reflect real environments should be considered 
to assess the exact hazards on humans. Moreover, the possibil-
ity of microplastics as a vector of COVID-19 viruses needs 
clearer understandings. Fortunately, emerging in vitro models, 
including organ-on-a-chip and organoids, provide opportuni-
ties to accurately simulate and reproduce the exposure and fate 
of microplastics in the human body with feasibility, adjust-
ability and reliability (Yang et al. 2021a).

Conclusion

During the COVID-19 pandemic, protective equipment 
can reduce the risk of virus infection, but extensive use and 
improper disposal are exacerbating the plastic problems. 
We must recognize that COVID-19 protective equipment 
associated plastic and microplastic wastes, as the byprod-
ucts of pandemic control, have been a global environmental 
challenge of our time. The review is the first to reveal the 
protective equipment associated plastic and microplastic 
cycle, as the review provides a thorough assessment of the 
impacts in aquatic, terrestrial and atmospheric environments. 
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Besides, we cannot ignore the irreparable harm to animals 
and should spark scientific interest in protecting biodiversity. 
Importantly, the risks of protective equipment associated 
microplastics to human health are inadequately understood, 
which should be fueled people’s concern. Moving forward, 
raising public awareness, improving plastics production, 
identifying and removing protective equipment associated 
plastic and microplastic pollution are important strategies to 
solve related pollution in the environment. On the research 
priority side, we should focus on the biological monitoring 
and in vitro models for the toxicology assessment of protec-
tive equipment associated plastics and microplastics, and 
the possibility of serving as the COVID-19 virus vectors.
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