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Abstract  

This work aims to determine the response and impact energy absorbing capability of the square hollow section 

(SHS) column with U-shape grooves, subjected to dynamic mid span loading. Geometrical parametric study i.e. 

width and depth of the grooves and spacing between grooves was carried out using non-linear explicit finite 

element package ABAQUS. Comparison between plain SHS column with grooved SHS column in terms of initial 

peak force (IPF), specific energy absorption (SEA) and crush force efficiency (CFE) was carried out. It was found 

that the depth and width of the groove and spacing between grooves have significant effect on the impact response 

of SHS column. The grooved column has a higher SEA, shorter crushing distance but slightly lower CFE as 

compared to the plain column. This would make the grooved column a better option when designing for side 

intrusion protection. 

Keywords: SHS column, impact response, non-linear explicit finite element 

1. Introduction 

Global accident statistic shows that side impacts accounted for approximately 30% of all impacts and 35% of total 

fatalities as reported by German in Depth Accident Study (GIDAS) and National Automotive Sampling System 

(NASS). This shows that side impact crash is frequent and generally dangerous to car occupants. There is 

considerably less crash zone for absorbing the impact energy as compared to vehicle’s frontal and rear structure. 

As a result, occupants sitting in the crash zone will be exposed to severe injuries and even death. 

Door panel intrusion is the most significant contributor in occupant injuries where it can increase the risk of chest, 

abdominal and pelvis injuries (Cheon, Lee, & Jeong, 1997). The stiffness, geometry and intrusion of door panel in 

side impact may result in specific injuries patterns. In order to avoid the side door intrusion into the passenger car 

compartment, automotive manufactures purposely reinforce the side door with intrusion (door) beam. These 

beams provide the occupants with improved level of safety. The side impact beam is normally fitted into car door 

at the lower section of the door frame and is designed to absorb the impact energy while at the same time, minimize 

the penetration into the passenger compartment during side crash incident. 

Hollow section beam (thin-walled columns) has a high energy-absorption capability. Such beams are mostly used 

in truss and frame structures and are able to absorb substantial amount of crash energy during impact. Load path 

and maximum resisting load of the door are the major factors in material and design consideration. Mechanical 

properties, shape, size and thickness of door components will greatly influence the load carrying capacity and 

intrusion of the side door structure. Proper selection of these variables is required to provide the most efficient 

design (Farley & Jones, 1992). Aluminium alloy has gained increased popularity as a material of choice for 

modern car structure. Galib and Limam (2004) evaluated its energy absorption capabilities to ensure that the 

integrity of the passenger compartment is maintained and minimal deceleration is transferred to the occupants 
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during impact. 

The first comprehensive study of the deep bending collapse of prismatic member was made by Kecman (1983). 

The bending collapse behavior of rectangular and square sections was studied experimentally and theoretical 

model was developed based on experimental observations. Simple failure mechanisms involving stationary and 

moving plastic hinge lines were proposed in the analysis, and the moment-rotation characteristic was calculated in 

the post-failure range.  

Santosa et al. (2001) studied the effect of foam-filling on the bending crush resistance of a thin-walled beam 

through quasi-static three point bending simulations and experiments. It was found that the presence of the foam 

filler resisted the inward sectional collapse at the compressive flange and changes the crushing mode from a single 

stationary fold to a multiple propagating folds and therefore prevents the drop in the load carrying capacity due to 

local sectional collapse. Zarei and Kroger (2008) studied the dynamic bending behavior of empty and foam-filled 

aluminum beams by using the explicit finite element code LS-Dyna. Crashworthiness optimization procedure was 

applied to maximize the specific energy absorption of the aluminum beams. Good agreements between experiment 

and simulation results were observed and therefore further investigations were done numerically. 

Side impact beam can be made up from a wide range of hollow structures such as rectangular, cylindrical and 

trapezoidal as well as honeycomb. Square hollow structure is chosen in this study as it is predominantly used in 

modern automotive structures due to its ease of fabrication, versatility and superior impact energy absorption 

capability. The addition of U-shaped grooves longitudinally to two opposing sides of the square hollow section 

aims to enhance the impact performance. 

2. Impact Performance Indices 

Crashworthiness of a structure is defined as the ability to absorb the impact energy and thereby bringing the 

vehicle to rest without the occupant being subjected to high or sudden deceleration. It is expressed in term of 

specific energy absorption (SEA), Es which is the ratio of energy absorbed to the unit mass of the material. 

s

W
E

V



                                         (1) 

where W = total energy absorbed 

V = volume of material 

ρ = density of material  

Crush force efficiency (CFE), ηc is normally defined as the ratio of mean load, Fmean to initial peak force, Fpeak. It is 

useful to measure the performance of an absorber where an ideal absorber is said to exhibit a crush force efficiency 

of 100% which is difficult to achieve in actual. 

mean

C

peak

F

F
                                         (2) 

The initial peak force is also of equal importance as this force tends to be very high and may cause severe injury to 

the occupant. In some structures, trigger mechanism is added to the existing system as a mean to reduce this high 

initial peak force.  

3. Finite Element Modeling 

The plain and U-grooved square columns were modeled in ABAQUS as 3D deformable shells. The roller supports 

and impactor were modeled as discrete rigid bodies. Figure 1 shows the assembled finite element model. The 

optimum number of elements was chosen after performing mesh discretization method, which was similar to a 

mesh sizing method implemented by Md Fuad et al. (2013). About 5500 4-noded linear quadrilateral explicit shell 

element of type S4R were used for the plain column while about 6000 to 9000 elements were used for the grooved 

columns. For the rigid bodies, about 2800 4-noded rigid linear quadrilateral elements of type R3D4 were used.  
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A dynamic explicit solver ABAQUS EXPLICIT was used. Time durations ranging from 0.02 s to 0.05 s were 

specified depending on the column configuration. The contact behavior between the column, support and impactor 

during collision was set up under the interaction module. The contact property consisted of tangential behavior, 

which used a ‘penalty’ friction formulation with a coefficient of 0.2. The normal behaviour use the ‘hard contact’ 

formulation to allow separation after contact. A general dynamic (explicit) contact was utilized where all the 

contact surfaces are automatically identified by the system. 

Boundary conditions and impact speeds were specified in the load module. For the impactor, the boundary 

conditions were V1 = V3 = VR1 = VR2 = VR3 = 0, which implies that it could only move in the vertical 

y-direction. The supports were fully constrained. Movement of the column in the x- and z-directions was 

restrained by the friction between the column and the supports. Impactor velocity of 14 m/s was specified in the 

predefined field and the impactor mass of 5 kg was inputed as inertia in the engineering features. The simulation 

test parameters for calibration are given in Table 2. 

 

Table 2. Simulation Test Parameters for Calibration (Zarei & Kroger, 2008) 

Material Aluminum Alloy 6060-T5 

Density 2700 kg/m3 

Yield Stress, σ0.2 231 MPa 

Ultimate Stress, σuts 254 MPa 

Height x Width x Length 55 mm x 55 mm x 550mm 

Thickness 2 mm 

Impact Mass 45 kg 

Impact Speed 4.4 m/s 

Contact Friction Coefficient, µ 0.2 

 

4. Results and Discussion 

4.1 Simulation Validation 

Figure 3(a) shows the beam bending failure mode from experiment and Figure 3(b) is from validation simulation 

test. Figure 4 shows the experimental and simulation force-displacement curves. The simulation result compared 

favorably with the experimental result, hence validating the accuracy of the simulation technique and ABAQUS 

explicit code. The simulation was able to predict fairly accurately the peak force, the mean force and the formation 

of folds.  

   
(a)                               (b) 

Figure 3. Beam bending failure modes from (a) experiment (Zarei & Kroger 2008); (b) simulation 
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(a)                                            (b) 

Figure 4. Force-displacement curves for (a) experimental (Zarei & Kroger 2008); (b) simulation 

 

4.2 Comparison Between Plain and 1-Grooved SHS Columns 

Figure 5 shows the force-displacement curves for plain SHS column and U-grooved SHS columns with equal 

thickness of 1 mm. The grooved column has a groove width of 30 mm and groove height of 3 mm. It can be seen 

that the grooved column has the higher IPF and shorter crushing distance as compared to the plain column. The 

grooved column also has higher and more uniform mean force. The plain column shows a less uniform mean force 

which gradually decrease towards halfway of the crushing distant and rose again towards the end. In short, grooved 

column would have better energy absorption while the plain column would have better injury protection due to the 

lower forces transmitted to the occupants. 

 
Figure 5. Force-displacement curves of plain and 1-grooved SHS column with impact speed of 14 m/s and impact 

mass of 5 kg 

 

Figure 6 shows that the addition of a single groove on both opposing faces of the SHS column has managed to 

considerably increase the initial peak force. Figure 7 shows the specific energy absorption (SEA) of plain and 

U-grooved SHS column and Figure 8 shows the crush force efficiency (CFE). It can be seen that the grooved 

column has a much higher SEA as compared to the plain column. This could be due to the additional faces of the 

grooves opposing and absorbing the impact energy. The grooves cause the formation of more hinge lines hence 

further increasing the plastic dissipation energy due to plastic bending. Also, due to increased resistance of 

bending provided by the additional groove faces, the grooved column has higher IPF, which resulted in slightly 

lower CFE as compared to the plain column. In the context of side intrusion protection, the grooved column would 

be the more suitable choice as it has higher SEA and lower crushing distance despite the slightly lower CFE and 

high initial force. However, this groove configuration has yet to be optimized. It may be possible to obtain high 

SEA and CFE, and low crushing distance by further optimizing the groove configuration, which was attempted in 

the following sections. 
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Figure 9. Force-displacement curves of 1-grooved SHS column with impact speed of 14 m/s, mass of 5 kg and 

different thicknesses 

 

Figure 10 shows the deformation modes of 1-grooved SHS columns with different thicknesses. It can be seen that 

for the smaller thickness column, crushing of the grooves and folding of the side faces were prominent. For the 

thicker columns, failure was limited to flattening of the grooves. 

   

t = 1 mm              t = 1.5 mm 

     
t = 2 mm              t = 2.5 mm 

 
t = 3 mm 

Figure 10. Deformed shapes of 1-grooved SHS column with impact speed of 14 m/s, impact mass of 5 kg and 

different thicknesses 

 

Figure 11 shows that increasing the column thickness will result in an increase in the IPF. The thickness has direct 

effect on the bending stiffness of the column, hence the higher force required. Figure 12 shows that the SEA 

decreased with increasing thickness. Increasing the thickness which will affect the volume and mass of the column, 

does not proportionally increased the energy absorbed. The high IPF can cause injury to occupant but the small 

crushing distance can be advantageous in specific condition such as prevention of side intrusion. Figure 13 shows 

that the CFE also decreased with increasing thickness. The low thickness columns have lower IPFs followed by 

more uniform mean forces. Note that the three performance indicators i.e. the IPF, SEA and CFE are contradicting 

each other and therefore groove design need to be optimized for the given requirement.  
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Figure 17 shows the specific energy absorption (SEA) of U-grooved SHS column with different groove depth and 

Figure 18 shows the crush force efficiency (CFE). Increasing the groove depth tends to decrease the SEA. There is 

a sudden drop of SEA for groove depth of more than 6 mm. Groove depth of 3 mm gives the highest CFE. Further 

increasing the groove depth will gradually decrease the CFE. In short, further increasing the groove depth will 

have detrimental effect on the SEA and CFE of the columns. 

 
Figure 17. Specific energy absorption (SEA) of 1-grooved SHS column with different groove depths, impact speed 

of 14 m/s and impact mass of 5 kg 

 

 
Figure 18. Crush force efficiency (CFE) of 1-grooved SHS column with different groove depths, impact speed of 

14 m/s and impact mass of 5 kg 

 

4.5 Effect of Groove Width on 1-Grooved SHS Column With Thickness of 1 mm and Groove Depth of 6 mm 

Figure 19 shows the force-displacement curves for U-grooved SHS columns with different groove widths. It can 

be seen that the column with groove width of 30 mm exhibited the highest initial peak force and shortest crushing 

distance. Columns with groove widths of 10 mm and 20 mm showed more favorable characteristics with lower 

initial peak forces, high mean forces and short crushing distances. Columns with groove width of 40 mm and 50 

mm have high initial peak forces, low mean forces and long crushing distances which make them less efficient as 

energy absorber. These imply that further increasing the groove width will reduce the impact performance of the 

column. Figure 20 shows the deformed shapes of the U-grooved SHS columns with different groove widths. 

Similarly, column with groove width of 10 mm exhibited prominent deformation in the vicinity of the crush region 

with the upper face following the shape of the impactor. The side faces approximated the triangular faces of the 

Kecman (1983) model. Further increasing the groove width resulted in highly localized deformation in the middle 

section with the folding faces having more rounded edges.  

 
Figure 19. Force-displacement curves of 1-grooved SHS column with different groove widths, impact speed of 14 

m/s and impact mass of 5 kg 
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Figure 22. Specific energy absorption (SEA) of 1-grooved SHS column with different groove widths and at impact 

speed of 14 m/s and impact mass of 5 kg 

 

 
Figure 23. Crush force efficiency (CFE) of 1-grooved SHS column with different groove widths and at impact 

speed of 14 m/s and impact mass of 5 kg 

 

4.6 Effect of Spacing on 2-Grooved SHS Column With Thickness of 1 mm, Groove Depth of 6 mm and Groove 

Width of 10 mm  

Figure 24 shows the force-displacement curves of the 2-grooved columns with different spacing distances. It can 

be seen that columns with smaller spacings exhibited more favourable impact response with low IPF and shorter 

crushing distances. Spacings of 15 mm and greater resulted in higher peak forces and longer crushing distances. 

Columns with bigger spacings tended to exhibit gradual decrease in mean forces after crushing distance of about 

0.125 m. Figure 25 shows the deformed shapes of the 2-grooved SHS columns with different spacings. Columns 

with spacings of 5 mm and 10 mm show flatening of the grooves and moderate folding of the sides. Columns with 

bigger spacings exhibit prominent folding of the sides and top face. The flatening of the grooves for the columns 

with smaller spacings dissipates the impact energy, hence reducing the folding of the sides and bending of the 

columns. 

 
Figure 24. Force-displacement curves of 2-grooved SHS column with impact speed of 14 m/s and impact mass of 

5 kg and different spacing 
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Figure 28. Crush force efficiency (CFE) of 2-grooved SHS column with different spacing at impact speed of 14 

m/s and impact mass of 5 kg 

 

5. Conclusions 

The study has shown that width, depth and spacing of the groove have considerable effect on the impact response, 

initial peak force, SEA and CFE of the grooved SHS column. Overall, single groove column with groove width of 

25 mm, groove depth of 3 mm and thickness of 1 mm gave the best IPF, SEA and CFE. This is an important feature 

when designing for side impact protection where impact energy need to be efficiently absorbed at the shortest 

possible distance.  

This work demonstrates the possibilities of modifying the structure impact energy absorption characteristics by the 

addition of grooves of various sizes on the selected faces of the structure. It is believed that the structure impact 

performance can be improved by using this method.  
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