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ABSTRACT 

The most commonly encountered type of damage in aircraft composite structures is caused by low-

velocity impacts due to foreign objects such as hail stones, tool drops and bird strikes. Often these 

events can cause severe internal material damage that is difficult to detect and may lead to a 

significant reduction of the structure’s strength and fatigue life. For this reason there is an urgent need 

to develop structural health monitoring systems able to localise low-velocity impacts in both metallic 

and composite components as they occur. 

This article proposes a novel monitoring system for impact localisation in aluminium and composite 

structures, which is able to determine the impact location in real-time without a-priori knowledge of 

the mechanical properties of the material. This method relies on an optimal configuration of receiving 

sensors, which allows linearization of well-known nonlinear systems of equations for the estimation 

of the impact location. The proposed algorithm is based on the time of arrival identification of the 

elastic waves generated by the impact source using the Akaike Information Criterion. The proposed 

approach was demonstrated successfully on both isotropic and orthotropic materials by using a 

network of closely spaced surface-bonded piezoelectric transducers. The results obtained show the 

validity of the proposed algorithm, since the impact sources were detected with a high level of 

accuracy. The proposed impact detection system overcomes current limitations of other methods and 

can be retrofitted easily on existing aerospace structures allowing timely detection of an impact event. 
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1 INTRODUCTION 

In the last few years, both non-destructive evaluation (NDE) and Structural Health Monitoring (SHM) 

techniques were used for the localisation of acoustic emission (AE) sources due to impact events. 

Typically, the real-time knowledge of the impact location in metallic and composite materials is 

achieved through “passive techniques”, in which ultrasonic transducers, fixed to the specimen surface 

or embedded into the structure, can be used to measure the impulsive material response [1].  

A number of studies on the detection and localisation of impact sources are well documented in 

literature, many of them based on the triangulation technique, also known as “Tobias algorithm” [2]. 

In this methodology, the impact point is identified as the intersection of three circumferences, whose 

centres are the sensor locations. A triangulation technique can be used for isotropic and homogeneous 

structures, but it requires the accurate knowledge of the wave velocity that is assumed to be constant 

in all directions of propagation. Another approach based on the knowledge of the wave speed is the 

beamforming technique, which was originally introduced by McLaskey et al. [3] and then it was used 

by He et al [4]. This method is based on the use of a small array of sensors (from four to eight sensing 

elements) and on the delay-and-sum algorithm. Ciampa and Meo [5] proposed a modification of the 

triangulation technique in isotropic materials, which did not require the knowledge of the wave speed.  

However, the strong limitation of the above mentioned method is that they are not suitable for 

anisotropic and inhomogeneous materials. Kundu et al. [6],[7] developed an impact localisation 

technique to locate the impact source in isotropic and anisotropic plates. This algorithm, based on the 

minimization of an error function, or “objective function”, was able to determine the impact 

coordinates by using four sensors, although the direction dependence of the wave velocity must be 

known in case of anisotropic media. Nakatani et al. [8] extended the beamforming technique to 

anisotropic structures with known velocity profile, whilst Seydel and Chang [9],[10] proposed a 

method based on the minimization of the difference between the actual and predicted response from 

piezoelectric sensors. Nevertheless, this technique required the knowledge of the mechanical 

properties of the medium and a theoretical model for the simulation of dynamic-acoustic behaviour 
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of the structure. Meo et al. [11], Kurokawa et al. [12], developed an algorithm for the impact point 

identification assuming an elliptical angular-group velocity pattern. This technique can be applied 

only to quasi-isotropic and unidirectional composite structures.  

Since it is generally cumbersome to determine the information on group velocity of propagating 

waves in geometrically complex components and dispersive media, Ciampa and Meo [13],[14] and 

Kundu et al. [15],[16], developed impact localisation methods able to localise the acoustic source in 

an anisotropic plate using only six receiving sensors without the knowledge of the wave velocity. In 

Ciampa and Meo [13],[14] the impact coordinates and the wave velocities were obtained by solving 

a set of nonlinear equations through a combination of both local (Newton’s) and global 

(unconstrained optimization) methods, whilst in Kundu et al. [15],[16] the acoustic source was 

localised from the intersection point of two direction lines generated by two clusters of sensors.  

Another main issue of impact localisation methods is the estimation of the time of arrival (TOA) with 

high level of accuracy. The TOA, also called “onset time” of transient signals such as AE, 

seismograms or ultrasound signals, can be described as the moment when the ballistic wave originated 

at the impact source reaches one (or more) receiving sensor. The TOA is usually picked as the point 

where the first difference between the signal and the noise takes place. Several approaches were used 

in the past for automatic TOA estimation, many of them modified from seismology, due to the 

similarity between seismology and acoustic fields. The simplest method is to use an amplitude 

threshold picker, where the onset time is determined as the time corresponding a signal value 

immediately before the signal amplitude exceeds a particular threshold value [17]. The magnitude of 

the squared modulus of the continuous Wavelet transform (CWT) was used by Ciampa and Meo 

[5],[13],[14] to identify the TOA of the signals and then to calculate the time differences of arrival 

(TDOAs). However, CWT strongly depends on the selection of the mother wavelet, which may limit 

its use for structures with complex geometries. Another techniques called “Short Term Average 

(STA) / Long Term Average (LTA)” uses a dynamic threshold to discern the ballistic signal from the 

level of noise [18]. A number of algorithms based on the STA/LTA method can be found in literature, 
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however its poor accuracy in estimating the TOA was demonstrated in concrete structures [19]. Other 

techniques for the TOA estimation include cross-correlation [20],[21], energy criterion method, 

artificial neutral network [22], fractal dimension [23], spectrograms [24] and the Hinkley criterion 

[25]. Ciampa et al. [26],[27] proposed an alternative technique to the traditional TOA estimation 

method for acoustic source localisation on composite structures based on the reciprocal time reversal 

(TR) or inverse filtering (IF) technique. This approach was split into two steps. The first step consisted 

of recording and storing a set of signals representing a library of impulse responses from a number 

excitation points along the plane of the structure using a single surface-bonded receiving transducer. 

The second step consisted of a correlation between the impulsive transfer function associated with 

each excitation point and the inversion of the structural response of a new impact of unknown 

position. The maximum of the IF correlation coefficients corresponded to the impact point. However, 

this technology required an initial library of impulsive waveforms to be determined during the first 

step.  

This paper starts from the research work of Ciampa and Meo for impact localisation on aluminium 

[5] and composite structures [13],[14] based on the TOA estimation. The proposed research work 

uses a different approach for the TOA estimation based on the Akaike Information Criterion (AIC) 

that, unlike traditional TOA estimation techniques, it allows identifying the onset time with high 

accuracy in the range of microseconds. Moreover the proposed research work provides a linearisation 

of the nonlinear system of equations to be solved. This would eliminate the dependence on the guess 

conditions for the identification of the impact coordinates. At the same time, the aim of this paper is 

to minimise the number of transducers, thus optimising the sensors configuration. The general 

assumption is that the composite material is homogeneous and anisotropic at the structural level. In 

strongly inhomogeneous media, the straight line propagation path of direct (ballistic) waves from the 

impact source to the receiver transducer could be interrupted by discontinuities (e.g. surface and 

subsurface flaws) that may alter the propagation path and generate wave scattering and reflections 

according to the Snell’s law. However, this is not the case of this paper. 
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The outline of this research work is as follows: in Section 2, the linearised algorithm for the impact 

localisation is described. In Section 3, the Akaike Information Criterion is presented, with the 

description of two AIC pickers able to identify the TOA of a signal. Section 4 shows the set-up used 

to perform experimental tests, whilst in Section 5, all the impact localisation results are illustrated. 

The conclusions of this paper are presented in Section 6. 

 

2 IMPACT LOCALISATION ALGORITHM 

Let us consider an impact source point I, or a general acoustic emission source, at unknown 

coordinates (𝑥𝐼 , 𝑦𝐼) in the plane of the plate 𝑥 − 𝑦. A number of 𝑛 receiving transducers, are located 

at distance 𝑑𝑖  (𝑖 = 1, … , 𝑛) from the source. The origin of the Cartesian reference frame was arranged 

at the left bottom corner of the plate, whose dimensions are 𝐿, length, and 𝑊, width.  

The coordinates of the impact source can be determined by solving the following general system of 

nonlinear equations [13],[14]: 

{‖𝑑𝑖‖2 = (𝑥𝑖 − 𝑥𝐼)2 + (𝑦𝑖 − 𝑦𝐼)2𝑡𝑖 = ‖𝑑𝑖‖𝑉𝑔,𝑖               𝑖 = 1, … , 𝑛 (1) 

where 𝑉𝑔,𝑖 are the velocities of propagation of the stress wave reaching the ith transducer, 𝑡𝑖 are the 

times of detection of the AE signals and (𝑥𝑖 , 𝑦𝑖) are the coordinates of the 𝑖𝑡ℎ sensor. 

Combining both terms of (1)  it is possible to obtain a number of 𝑛 equations in the form of: (𝑥𝑖 − 𝑥𝐼)2 + (𝑦𝑖 − 𝑦𝐼)2 − (𝑡𝑖𝑉𝑔,𝑖)2 = 0              𝑖 = 1, … , 𝑛 (2) 

which is the equation of a circumference with radius 𝑟𝑖2 = (𝑡𝑖𝑉𝑔,𝑖)2
. We have a system of 𝑛 nonlinear 

equations for 2(𝑛 + 1) unknowns (i.e. 𝑛 velocities, 𝑛 times of arrival and two source coordinates). 

Considering one of the sensor as “reference sensor”, it is possible to relate the travel time required to 

reach this sensor, 𝑡𝑟𝑒𝑓, and the time differences of arrival between other sensors and the reference 

one, ∆𝑡𝑟𝑒𝑓,𝑗, obtaining an expression for the time of arrival concerning the 𝑗𝑡ℎ, sensor:  𝑡𝑗 = 𝑡𝑟𝑒𝑓 ± ∆𝑡𝑟𝑒𝑓,𝑗               𝑗 = 1, … , 𝑛 − {𝑟𝑒𝑓} (3) 
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Substituting (3) into (2), it becomes: 

{(𝑥𝑗 − 𝑥𝐼)2 + (𝑦𝑗 − 𝑦𝐼)2 = [(𝑡𝑟𝑒𝑓 ± ∆𝑡𝑟𝑒𝑓,𝑗)𝑉𝑔,𝑗]2(𝑥𝑟𝑒𝑓 − 𝑥𝐼)2 + (𝑦𝑟𝑒𝑓 − 𝑦𝐼)2 = (𝑡𝑟𝑒𝑓𝑉𝑔,𝑟𝑒𝑓)2               𝑗 = 1, … , 𝑛 − {𝑟𝑒𝑓} (4) 

Considering TDOAs as determined by using an appropriate TOA estimation method, the number of 

unknowns is equal to 𝑛 + 3 (i.e. 𝑛 velocities, the time of arrival of the reference sensor and two source 

coordinates). Our aim is to reduce the number of surface-bonded transducers up four sensors. Since 

system (4) can only be solved if the number of variables is equal to the number of equations, an 

optimal sensor configuration is necessary to solve the system of equations. The main idea is to locate 

the four sensors relatively close together (see Figure 1), so that they experience the same propagation 

velocity (𝑉𝑔,𝑖 = 𝑉𝑔). With this assumption system (4) becomes: 

{(𝑥𝑗 − 𝑥𝐼)2 + (𝑦𝑗 − 𝑦𝐼)2 = [(𝑡𝑟𝑒𝑓 ± ∆𝑡𝑟𝑒𝑓,𝑗)𝑉𝑔]2(𝑥𝑟𝑒𝑓 − 𝑥𝐼)2 + (𝑦𝑟𝑒𝑓 − 𝑦𝐼)2 = (𝑡𝑟𝑒𝑓𝑉𝑔)2               𝑗 = 1, … , 4 − {𝑟𝑒𝑓} (5) 

System (5) consists of four equations for four unknowns, {𝒙} = {𝑥𝐼 , 𝑦𝐼,𝑡𝑟𝑒𝑓 , 𝑉𝑔} and its resolution, 

after a suitable linearisation, is the topic of next sub-section. 

 

 

Figure 1. Sensor arrangement for the source location. 

 



7 

 

2.1 LINEARISATION PROCESS 

Subtracting the reference sensor equation from other equations in (5), the following system of 

equations is obtained: 𝑥𝑗2 − 𝑥𝑟𝑒𝑓2 − 2𝑥𝑗𝑥𝐼 + 2𝑥𝑟𝑒𝑓𝑥𝐼 + 𝑦𝑗2 − 𝑦𝑟𝑒𝑓2 − 2𝑦𝑗𝑦𝐼 + 2𝑦𝑟𝑒𝑓𝑦𝐼= 𝑉𝑔2∆𝑡𝑟𝑒𝑓,𝑗(2𝑡𝑟𝑒𝑓 + ∆𝑡𝑟𝑒𝑓,𝑗) 

(6) 

Considering the known quantities 𝑏𝑗 = (𝑥𝑗2 + 𝑦𝑗2) − (𝑥𝑟𝑒𝑓2 + 𝑦𝑟𝑒𝑓2), equations (6) become: 𝑏𝑗 − 2[𝑥𝐼(𝑥𝑗 − 𝑥𝑟𝑒𝑓) + 𝑦𝐼(𝑦𝑗 − 𝑦𝑟𝑒𝑓)] − 𝑉𝑔2∆𝑡𝑟𝑒𝑓,𝑗(2𝑡𝑟𝑒𝑓 + ∆𝑡𝑟𝑒𝑓,𝑗) = 0 (7) 

It is possible to use the following positions for the known differences between sensors coordinates, 𝑥𝑟𝑒𝑓,𝑗 = 𝑥𝑗 − 𝑥𝑟𝑒𝑓 and 𝑦𝑟𝑒𝑓,𝑗 = 𝑦𝑗 − 𝑦𝑟𝑒𝑓, so that equations (7) can be written as: 𝑏𝑗 − 2[𝑥𝐼𝑥𝑟𝑒𝑓,𝑗 + 𝑦𝐼𝑦𝑟𝑒𝑓,𝑗] − 𝑉𝑔2∆𝑡𝑟𝑒𝑓,𝑗(2𝑡𝑟𝑒𝑓 + ∆𝑡𝑟𝑒𝑓,𝑗) = 0 (8) 

Rearranging equations (8), they become: 

𝑥𝐼𝑥𝑟𝑒𝑓,𝑗 + 𝑦𝐼𝑦𝑟𝑒𝑓,𝑗 + 𝑉𝑔2𝑡𝑟𝑒𝑓∆𝑡𝑟𝑒𝑓,𝑗 = 𝑏𝑗2 − 𝑉𝑔2 ∆𝑡𝑟𝑒𝑓,𝑗22  (9) 

which in matrix form, assuming sensor 1 as the reference sensor, can be expressed as: 

[𝑥1,2 𝑦1,2 ∆𝑡1,2𝑥1,3 𝑦1,3 ∆𝑡1,3𝑥1,4 𝑦1,4 ∆𝑡1,4] { 𝑥𝐼𝑦𝐼𝑉𝑔2𝑡1} = 12 {𝑏2𝑏3𝑏4} − 𝑉𝑔22 {∆𝑡1,22∆𝑡1,32∆𝑡1,42} (10) 

or, in general, as reported below: [𝐴]{𝒙} = {𝐵} − 𝑉𝑔2{𝐶} (11) 

The variables vector is expressed by: {𝒙} = [𝐴]−1{𝐵} − 𝑉𝑔2[𝐴]−1{𝐶} (12) 

Considering the following positions, 𝑎𝑘 = [𝐴]−1{𝐵}|𝑘 and 𝑐𝑘 = [𝐴]−1{𝐶}|𝑘, with 𝑘 = 1, 2, 3, we 

achieve: 

{ 𝑥𝐼𝑦𝐼𝑉𝑔2𝑡1} = {𝑎1𝑎2𝑎3} − 𝑉𝑔2 {𝑐1𝑐2𝑐3} (13) 

The final expressions for the four unknowns are: 
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{ 𝑥𝐼 = 𝑎1 − 𝑉𝑔2𝑐1𝑦𝐼 = 𝑎2 − 𝑉𝑔2𝑐2𝑉𝑔2𝑡1 = 𝑎3 − 𝑉𝑔2𝑐3 (14) 

Substituting expressions (14) in the reference sensor equation in (5) and after some mathematical 

manipulation, a final third order equation, with reference time of arrival, 𝑡1, as only unknown, is 

formulated as follows:  𝑡13𝑍1 + 𝑡12𝑍2 + 𝑡1𝑍3 + 𝑍4 = 0 (15) 

where 𝑍𝑖 coefficients are combinations of known quantities that for clarity reasons are reported in the 

Appendix.   

Although (15) admits three possible solutions, only one of them is physically feasible, whereas the 

other two should be discarded. After obtaining 𝑡1 from (15), the propagation velocity can easily be 

calculated using the following equation, coming from the third of (14): 

𝑉𝑔 = √ 𝑎3𝑡1+𝑐3 (16) 

Finally it is possible to obtain the values of the impact coordinates substituting (16) in the first two 

equations in (14).  

 

3 AKAIKE INFORMATION CRITERION METHOD  

Since the inputs of the proposed algorithm are the time differences of arrival, a suitable approach for 

time of arrival estimation needs to be chosen. In this research work the onset time determination is 

based the Akaike Information Criterion [27]-[30].   

The main assumption for AIC is to consider the signal, or a general time series, as divided in two 

different locally stationary segments [31], each modelled as an autoregressive (AR) process. The first 

segment is the non-informative part, and it is called “noise”, while the second one is the informative 

part, and it is called “signal”. These two datasets are separated by the onset time. The AIC, derived 

by [27], is represented by the following equation:  
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𝐴𝐼𝐶 =  −2 ln(𝐿) + 2𝑃 (17) 

where 𝑃 is the number of parameters in the statistical model, and 𝐿 is the maximized value of the 

likelihood function for the estimated model. Originally the optimal order for an AR process fitting a 

time series was determined by using function (17). 

When there are several competing models, the minimum AIC estimation (MAICE) is defined by the 

model which give the minimum of AIC function [30]. The model is established by a mathematical 

method illustrated by Kitagawa and Akaike [31].  

A time series {𝑥1, 𝑥2, … , 𝑥𝑛} can be divided into two segments (𝑗 = 1, 2), {𝑥1, 𝑥2, … , 𝑥𝑘} and {𝑥𝑘+1, 𝑥2, … , 𝑥𝑛} where 𝑘 indicates the point whose corresponding time is the unknown onset time. 

Both segments could be expressed by:  

𝑥𝑖 = ∑ 𝑎𝑚𝑗𝑀
𝑚=1 𝑥𝑖−𝑚 + 𝑒𝑖𝑗              𝑗 = 1, 2 (18) 

where 𝑀 is the order and 𝑎𝑚𝑗  are the coefficients of the AR process used to model the two datasets. 

Furthermore 𝑖 = 𝑀 + 1, … , 𝑘 for interval 𝑗 = 1, and 𝑖 = 𝑘 + 1, … , 𝑛 − 𝑀 for 𝑗 = 2. 

Both time series are divided into a deterministic and a non-deterministic part, 𝑒𝑖𝑗, the second one 

considered as a Gaussian white noise, with mean zero, variance 𝜎𝑗2 and uncorrelated with the 

deterministic part. The non-deterministic part of the time series in two intervals can be extracted by 

using the maximum likelihood estimation (MLE).  

Considering the previous hypothesis about the noise model, it is possible to express the joint density 

function of all variables 𝑒𝑖𝑗, considered as fixed parameters, through the approximate likelihood 

function 𝐿: 

𝐿(Θ𝑗 , 𝑘, 𝑀|𝑥) = ∏ ( 1𝜎𝑗22𝜋)𝑛𝑗 2⁄ exp [− 12𝜎𝑗2 ∑ (𝑥𝑖 − ∑ 𝑎𝑚𝑗𝑀
𝑚=1 𝑥𝑖−𝑚)2𝑞𝑗

𝑖=𝑝𝑗 ]2
𝑗=1  (19) 

where Θ𝑗 = Θ𝑗(𝑎1𝑗 , … , 𝑎𝑚𝑗 , 𝜎𝑗2) represents the model parameters, 𝑝1 = 𝑀 + 1, 𝑝2 = 𝑘 + 1, 𝑞1 = 𝑘, 𝑛1 = 𝑘 − 𝑀, 𝑛2 = 𝑛 − 𝑘 − 𝑀.  
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By using MLE it is possible to find the values of the model parameters that make the observed results 

the most probable, the same that maximize the equation (19). Considering the logarithm of equation 

(19) and searching for the MLE of the model parameters we obtain: 𝜕 ln 𝐿𝜕Θ𝑗 = 0 (20) 

whose solution can be expressed as: 

𝜎𝑗,max2 = 1𝑛𝑗 ∑ (𝑥𝑖 − ∑ 𝑎𝑚𝑗𝑀
𝑚=1 𝑥𝑖−𝑚)2𝑞𝑗

𝑖=𝑝𝑗  (21) 

It is simple to obtain the maximized logarithmic likelihood function inserting equation (21) into 

equation (19): 

ln 𝐿 = − 𝑘 − 𝑀2 ln 𝜎1,max2 − 𝑛 − 𝑘 − 𝑀2 ln 𝜎2,max2 + 𝐶1 (22) 

 where 𝐶1 is a constant. Equation (22) is the basis for equation (17). In the case of fixed 𝑀 order, as 

in current application, AIC function is a measure for the model fit. 𝑘 point where AIC is minimized, 

or equivalently 𝐿 is maximized, indicates the optimal separation of the two time series and the 

corresponding time value is regarded as the onset time of the signal [32],[33].  

Considering AIC as function of merging point k, we have the AR-AIC picker expressed by the 

following equation:  𝐴𝐼𝐶(𝑘) = (𝑘 − 𝑀) ln 𝜎1,max2 + (𝑛 − 𝑘 − 𝑀) ln 𝜎1,max2 + 𝐶2 (23) 

where 𝐶2 is a constant. It is possible to calculate the AIC function directly from the signal without 

using the AR coefficients, considered that for the AR-AIC picker the order 𝑀 of the AR process must 

be specified by trial and error and the AR coefficients have to be calculated for both intervals. 

Considering 𝑀 ≪ 𝑛 and constant 𝐶2 as a negligible quantity if 𝑛 is large enough, equation (23) is 

simplified in the Maeda’s relation [34]: 𝐴𝐼𝐶(𝑘) = 𝑘 ln(var(𝑥[1, 𝑘])) + (𝑛 − 𝑘 − 1) ln(var(𝑥[𝑘 + 1, 𝑛])) (24) 

where 𝑘 represents the range through all points of the signal and var(⋅) is the sample variance.  

AIC function (24) is the basis equation for the methods used in this research work.  
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After computation of AIC function, it is necessary to calculate its global minimum. The relative time 

value can be considered the time of arrival of the signal. It should be noted that for the TOA 

calculation only a part of the time series containing the onset time should be considered. The selection 

of this time window and the signal-to-noise (S/N) ratio determine the accuracy of TOA.  

 

3.1 PREVIOUS AIC PICKERS 

Several procedures were presented in literature to manage the two related problems: a proper choice 

of the time window and the appropriate signal to use in the algorithm, dependent on the S/N ratio of 

the original signal. They generally depend on the application field: e.g. seismology [32]-[36] and 

acoustic [19],[37]-[40]. There are many similarities between acoustic emissions and seismograms, 

however a number of differences are present, as the fact that in seismology the signal and the noise 

are usually located in different frequency range. In this case it is possible to obtain reliable results 

eliminating the noise through a simple Fourier transform and corresponding filter. AE signal and 

noise are often in the same frequency range (20-500 kHz) with a consequent variable signal-to-noise 

ratio. A signal would be influenced unavoidably after an inadequate filtering, with incorrect time of 

arrival results as principal consequence [41]. Therefore it is necessary to diminish the noise as much 

as possible instead of eliminating it, by using, for example a Butterworth filter, whose characteristics 

are dependent on considered signal.  

In seismology, Zhang et al. [33] applied the AIC picker to detect the P-wave arrival using the time 

window chosen by the discrete wavelet transform, acting to single-components seismograms through 

a series of sliding time windows. For AE in concrete, Kurz et al. [19] applied an adapted automatic 

AIC picker based on (24), considering two particular signal-envelopes instead of signal: the complex 

wavelet transform and Hilbert transform; the time window was chosen after the determination of a 

first onset, obtained by using a constant threshold value on the squared and normed signal-envelope. 
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In this research work two different AIC pickers are considered, here referred as “characteristic 

function AIC picker” [37],[38] and “threshold AIC picker”[39],[40]. They are described in Sections 

3.2 and 3.3 respectively.  

 

3.2 CHARACTERISTIC FUNCTION AIC PICKER 

 

3.2.1 Choice of characteristic function 

The first considered AIC picker is based on a suitable mathematical function, called “characteristic 

function” (CF), whose purpose is to improve the resolution level between noise and signal through 

the enhancement of changes in signal features [42] such as the frequency, the amplitude or both. In 

correspondence of these changes, it is possible to detect the time of arrival of the signal. For this 

reason the performance of the picker highly depends on the chosen characteristic function. Among 

all characteristic functions used in literature, it is possible to remember the functions that enhances 

the signal amplitude changes: the absolute value function 𝐹(𝑖) = |𝑥(𝑖)|, the square function 𝐶𝐹(𝑖) =𝑥(𝑖)2, the envelope of the signal calculated by Hilbert transform and the squared envelope. The 

principal limitation is that these function are not sensitive to periodic signal changes, very useful if a 

low signal-to-noise ratio signal is considered. To overcome this limitation frequency-sensitive 

functions need to be chosen, such as the Allen’s function, a squared polynomial function used for a 

seismogram threshold picker [42]: 𝐶𝐹(𝑖) = 𝑥(𝑖)2 + 𝑅1(𝑥(𝑖) − 𝑥(𝑖 − 1))2
 (25) 

where 𝑅1(𝑥(𝑖) − 𝑥(𝑖 − 1))2
 represents changes in frequency, with 𝑅1 as a weighting constant 

dependent on the signal. Despite equation (25) is suitable for changes in amplitude and frequency, it 

can be used effectively for bulk specimens and not for thin plates. Because of it is a square function, 

it can suppress the amplitude of the first and weaker mode, much lower respect to the amplitude of 

the second mode if a thin plate is considered. In this research work the following characteristic 

function, suitable for thin plate, is chosen: 
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𝐶𝐹(𝑖) = |𝑥(𝑖)| + 𝑅2|𝑥(𝑖) − 𝑥(𝑖 − 1)| (26) 

where 𝑅2 is a constant set to 𝑅2 = 4 for thin-plate specimens in accordance to [37],[38]. 

 

3.2.2 AIC picker algorithm 

The algorithm is divided into two steps (Figure 2), consisting of a first rough estimation of the onset 

time during the first step, with a more precise determination of it during the second step. The first 

step starts with the determination of a shortened time window. The starting time was set at the 

beginning of the original signal within the noise level and considered a non-informative part. The 

ending time was set after the global maximum of the characteristic function (26), 𝑡MAX, on time 𝑡MAX + ∆𝑡𝐴𝑀. The time delay ∆𝑡𝐴𝑀 is a value depending on the tested material, set to 20 μs for our 

experiment. Maeda’s relation (24), with the characteristic function (26) as input, is applied on this 

time window and the first onset time, 𝑡MIN, is determined. The aim of the second step is to increase 

the accuracy of the AIC picker by focusing on the neighbourhood of the first estimation. A new time 

window is considered, whose limits are 𝑡MIN − ∆𝑡𝐹𝐵 and 𝑡MIN + ∆𝑡𝐹𝐴, where the setting are ∆𝑡𝐹𝐵 =30 μs and ∆𝑡𝐹𝐴 = 10 μs. A new application of (24) on this new time window defines the actual time 

of arrival. 
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Figure 2. Visual description of CF-AIC picker: (a) determination of the initial time window; (b) estimation of the first 

TOA and determination of the second time window; (c) estimation of the final TOA. 

 

3.3 THRESHOLD AIC PICKER 

The second considered AIC picker is, as the first one, a two-step process (Figure 3). The structure of 

the steps is very similar to the previous AIC picker, but in this case it is not necessary a characteristic 

function.  

During the first step, Maeda’s relation (24), with the original signal as input, is applied on a shortened 

time window that is determined by using the following threshold amplitude level: 

( ∑ |𝑥(𝑖)|10
𝑖=𝑘+1 ) 10⁄ ≥ 𝑇 (∑|𝑥(𝑖)|𝑘

𝑖=1 ) 𝑘⁄  (27) 

where there is a comparison between the mean amplitude of a shifting set of 10 data [left part of (27)] 

and the mean amplitude of the interval of the time series ranging from 1 to 𝑘 multiplied by a constant 𝑇 depending on the signal [right part of (27)]. The ending of time window is set at the time 𝑡0 
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corresponding to the first value 𝑘0 that satisfies expression (27). The first estimation of the onset time 𝑡1 is determined considering the interval [0, 𝑡0].  
The second step considers a time window centred in 𝑡1 with a length of 2∆𝑘, where ∆𝑘 depends on 

the sample frequency. For our purpose, a variant of this method, that considers a length of 2(𝑡1 − 𝑡0)  

for the second time window, is used [40]. A new application of (24) on this new time window defines 

the actual time of arrival. 

 

 

Figure 3. Visual description of threshold AIC picker: (a) determination of the initial time window [left term refers to 

formula (27)]; (b) zoom on onset time zone [right term refers to formula (27)]; (c) estimation of the first TOA and 

determination of the second time window; (d) estimation of the final TOA. 

 

4 EXPERIMENTAL SET-UP 

To validate the described algorithms, experimental impact location tests were conducted on two 

different structures (see Figure 4 and Figure 5): 

 an aluminium plate with dimensions  350 × 260 × 8 mm3; 

 a carbon fibre reinforced plastic (CFRP) plate with dimensions 290 × 290 × 5 mm3. 
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The impacts were generated by using an aluminium ball dropped from a defined height so that the 

same impact energy was achieved. The impulsive waveforms were measured employing four surface-

bonded piezoelectric transducers (PIC 255) with diameter of 6.5 mm and thickness of 0.3 mm. By 

considering the small dimensions of sensors (e.g. the maximum diameter was 6.5 mm), the squared 

configuration shown in Figure 1 was assumed as the most suitable among all possible geometries, so 

that the transducers could be relatively close together. Other configurations and geometries would 

have not fulfilled the fundamental condition that all receiver transducers will experience the same 

group velocity. The signals were acquired using a four-channel oscilloscope with 16 bits of resolution, 

a sampling rate of 20 MHz and an acquisition window of 5 ms. A MATLAB software code 

implemented by the authors was written to analyse the waveforms for finding the TOA and the impact 

location by using the linearised algorithm. Sensor locations are reported in Table 1. The Cartesian 

reference frame was chosen with the origin at the bottom left corner of the specimens.  

  

Figure 4. Considered specimens: aluminium plate (left), composite plate (right). 
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Figure 5. Experimental set-up. 

 

Table 1. Sensor coordinates on the considered specimens. 

 Aluminium Composite 

 x-Coordinate (mm) y-Coordinate (mm) x-Coordinate (mm) y-Coordinate (mm) 

Sensor 1 177 126 142 135 

Sensor 2 176 134 142 142 

Sensor 3 185 134 149 142 

Sensor 4 184 126 149 135 

 

5 IMPACT LOCALISATION RESULTS 

Table 2 and Figure 6 shows an example of TOA calculation, considering Impact 1 on the aluminium 

plate and the threshold AIC picker. 

 

Table 2. TOA results – Impact 1 and threshold AIC picker (aluminium plate). 

 TOAS1 (μs) TOAS2 (μs) TOAS3 (μs) TOAS4 (μs) 

Impact 1 933.6 930.52 930.3 933.78 
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Figure 6. Acquired signals and calculated TOAs – Impact 1 and threshold AIC picker (aluminium plate). 

Since the receiving sensors are very close each other, the TOAs are of the order of microseconds. The 

absolute TOA differences obtained by using both AIC picker methods described in Section 3 are 

reported in Table 3. 

 

Table 3. Absolute TOA differences using both AIC pickers. 

 Sensor 1 (μs) Sensor 2 (μs) Sensor 3 (μs) Sensor 4 (μs) 

 Aluminium Composite Aluminium Composite Aluminium Composite Aluminium Composite 

Impact 1 4.14 5.19 4.1 5.2 4.1 5.2 4.14 5.19 

Impact 2 6.88 7.07 6.83 6.9 6.87 6.91 6.93 7.07 

Impact 3 6.12 9.21 6.12 9.09 6.12 9.22 6.12 9.26 

Impact 4 7.23 9.05 7.24 9.04 7.23 9.04 7.23 9.05 

Impact 5 5.42 8.17 5.42 8.07 5.44 7.93 5.42 8.07 

Impact 6 6.42 5.81 6.42 5.8 6.42 5.8 6.36 5.81 

Impact 7 5.09 20.74 5.09 20.75 5.01 20.77 5.04 20.76 

Impact 8 5.57 19.07 5.59 19.06 5.54 19.06 5.5 19.06 

Impact 9  9.77  9.7  9.55  9.63 
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As it can be seen in Table 3, the maximum difference in TOAs is less than 21 μs. Figure 7 and Figure 

8 show the source localisation results considering the two specimens, whilst Table 4 and Table 5 

depict the evaluated impact position and the location error as expressed by the following formula 

[43]:  Ψ = √(𝑥𝑟𝑒𝑎𝑙 − 𝑥𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)2 + (𝑦𝑟𝑒𝑎𝑙 − 𝑦𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)2 (28) 

where (𝑥𝑟𝑒𝑎𝑙, 𝑦𝑟𝑒𝑎𝑙) are the coordinates of the real impact position and (𝑥𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑, 𝑦𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑) are 

the coordinates of the impact location using the described algorithm. 

 

 

Figure 7. Source location results on the aluminium plate. The calculated impact positions are shown as 

a cross (×) for the CF-AIC picker, and as a star (∗) for the threshold AIC picker. The true impact positions 

are shown as a circle (∘). 
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Table 4. Impact positions and errors for the aluminium plate. 

 
X (mm, real 

value) 

X (mm, detected 

value – CF AIC 

picker) 

X (mm, detected 

value – threshold 

AIC picker) 

Y (mm, real 

value) 

Y (mm, detected 

value – CF AIC 

picker) 

Y (mm, detected 

value – threshold 

AIC picker) 

Location error Ψ 

(mm, CF AIC 

picker) 

Location error Ψ 

(mm, threshold 

AIC picker) 

Impact 1 180 180.1 180.13 231 225.09 233.35 5.91 2.35 

Impact 2 113 109.35 111.36 198 201.44 199.51 5.02 2.23 

Impact 3 75 70.05 73.48 126 125.28 125.4 5 1.63 

Impact 4 150 151.88 149.26 36 41.02 33.28 5.36 2.82 

Impact 5 150 147.52 149.09 96 93.06 94.72 3.85 1.57 

Impact 6 205 202.53 206.52 104 107.29 103.1 4.11 1.77 

Impact 7 255 250.35 256.93 154 152.53 154.74 4.88 2.07 

Impact 8 305 301.78 306.82 74 75.85 73.55 3.71 1.87 

 

 

Figure 8. Source location results on the composite plate. The calculated impact positions are 

shown as a cross (×) for the CF-AIC picker, and as a star (∗) for the threshold AIC picker. The 

true impact positions are shown as a circle (∘). 
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Table 5. Impact positions and errors for the composite plate. 

 
X (mm, real 

value) 

X (mm, detected 

value – CF AIC 

picker) 

X (mm, detected 

value – threshold 

AIC picker) 

Y (mm, real 

value) 

Y (mm, detected 

value – CF AIC 

picker) 

Y (mm, detected 

value – threshold 

AIC picker) 

Location error Ψ 

(mm, CF AIC 

picker) 

Location error Ψ 

(mm, threshold 

AIC picker) 

Impact 1 140 139.7 139.9 250 255.46 251.81 5.47 1.81 

Impact 2 140 140.38 140.17 210 205.29 208.24 4.73 1.77 

Impact 3 121 124.1 119.95 164 160.71 165.05 4.52 1.48 

Impact 4 79 76.18 81.31 207 209.9 204.39 4.05 3.49 

Impact 5 178 174.58 176.12 170 167.54 169.11 4.21 2.08 

Impact 6 219 214.27 215.84 138 137.63 137.59 4.74 3.19 

Impact 7 57 59.99 58.22 50 53.73 51.8 4.78 2.17 

Impact 8 219 223.26 221.46 98 95.02 96.06 5.2 3.13 

Impact 9 57 52.46 54.96 100 98.14 98.99 4.91 2.28 

 

With reference to Table 4 and Table 5, both AIC pickers are able to localise impacts with an accuracy 

described by a small location error Ψ less than 6 mm for both aluminium and composite samples.  

 

Figure 9. Localisation error using both the CF and threshold AIC methods for the impacts on the 

aluminium sample (a) and the composite plate (b). 
 



22 

 

 

 

In accordance with Tables 4 and 5, Figure 9 shows a summary of the impact localisation error  as 

function of the distance between the impact point and the centre of sensor clusters for the aluminium 

and composite samples using both the standard AIC picker and the threshold one. As it can be seen 

from this figure, the threshold AIC method provided better results with a maximum localisation error 

less than 3 mm for the aluminium sample and less than 4 mm for the composite plate. However, it is 

difficult to find a clear trend of the localisation error increasing with the distance between the impact 

point and the sensors cluster location [see for instance the location errors of Impacts 3 and 8 in Figure 

9(a) and of Impacts 4 and 9 in Figure 9(b)]. This could be due to undesired instrumentation effects 

such as the cross-talk in the receiving signals, which are independent from the localisation algorithm 

and may systematically affect the time of arrival estimation. Table 6 reports the wave velocities 

obtained from the impact localisation algorithm considering both TOAs calculation methods. Since 

the energy of each impact was the same, the order of magnitude of the wave velocity for each test 

specimen was very similar (see Table 6). This was an expected result that further confirms the validity 

of the proposed impact localisation algorithm. 

 

Table 6. Wave velocities (𝑚 𝑠⁄ ). 

 Aluminium Composite 

 CF AIC picker threshold AIC picker CF AIC picker threshold AIC picker 

Impact 1 2523.2 2555.2 1953.9 1952 

Impact 2 2521.4 2577.7 1950.1 2044.4 

Impact 3 2523.5 2522.1 1966.8 2041.7 

Impact 4 2520.3 2520.8 1950.9 1955.4 

Impact 5 2566.4 2574.8 1954.9 2049.8 

Impact 6 2540.5 2573.7 1953 1953 

Impact 7 2522.7 2576.8 1951.2 1959.4 

Impact 8 2522.5 2578.1 1950.1 1950.3 

Impact 9   2047.7 1957.4 
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6 CONCLUSIONS 

A new linearised algorithm for the impact source localisation and wave velocity determination was 

here presented. It is based on the differences of the stress waves measured by four surface-bonded 

AE piezoelectric transducers. An optimal sensor configuration was used to linearise the systems of 

equations for the identification of the impact coordinates. The acquired signals were processed in 

order to determine the TOAs as an input of the proposed algorithm. Two different methods based on 

Akaike Information Criterion were performed to provide an accurate TOA results.  

A number of experimental impact tests were performed on two different specimens, an aluminium 

and composite plate in order to validate the proposed methodology. Impact localisation results 

showed the validity of this algorithm, which was able to predict the impact point with high accuracy, 

i.e. with a maximum location error less than 4 mm by using the threshold AIC picker and with an 

impact error ranging between 4 and 6 mm by using the characteristic function AIC picker. Since the 

computational time of both AIC pickers is similar, the threshold one can be used for further TOA 

applications. This impact localisation method overcomes the limits of previous triangulation 

approaches as it does not need the knowledge of the material proprieties and the wave velocity. This 

could be embedded into an automatic impact localisation system that can be retrofitted on existing 

structures leading to more efficient inspection and enabling prediction of damage severity. By 

knowing impacts occurrence and location, would allow for a localized search, saving time and 

expense, and maintenance can be scheduled only when necessary. 
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APPENDIX 

As described in Section 2.1 the reference sensor equation is: (𝑥1 − 𝑥𝐼)2 + (𝑦1 − 𝑦𝐼)2 = (𝑡1𝑉𝑔)2
 (A1) 

and the final expressions for the four unknowns are: 

{ 𝑥𝐼 = 𝑎1 − 𝑉𝑔2𝑐1𝑦𝐼 = 𝑎2 − 𝑉𝑔2𝑐2𝑉𝑔2𝑡1 = 𝑎3 − 𝑉𝑔2𝑐3 (A2) 

The aim is to obtain a third order equation with 𝑡1 or 𝑉𝑔 as unknown. The following procedure 

considers the reference time 𝑡1 as unknown.  

Substituting (A2) in (A1) we obtain: 

[𝑥1 − (𝑎1 − 𝑎3𝑡1 + 𝑐3 𝑐1)]2 + [𝑦1 − (𝑎2 − 𝑎3𝑡1 + 𝑐3 𝑐2)]2 = 𝑡12 𝑎3𝑡1 + 𝑐3 (A3) 

that becomes, considering 𝑡1 + 𝑐3 ≠ 0: {𝑥1(𝑡1 + 𝑐3) − 𝑎1(𝑡1 + 𝑐3) + 𝑎3𝑐1}2 + {𝑦1(𝑡1 + 𝑐3) − 𝑎2(𝑡1 + 𝑐3) + 𝑎3𝑐2}2= 𝑡12(𝑡1 + 𝑐3)𝑎3 

(A4) 

After some mathematical manipulation, equation (A4) can be written as: −𝑎3𝑡13 + 𝑡12[(𝑎1 − 𝑥1)2 − 𝑎3𝑐3 + (𝑎2 − 𝑦1)2]+ 𝑡1[−2(𝑎1 − 𝑥1)(𝑎3𝑐1 − 𝑎1𝑐3 + 𝑥1𝑐3) − 2(𝑎2 − 𝑦1)(𝑎3𝑐2 − 𝑎2𝑐3 + 𝑦1𝑐3)]+ [(𝑎3𝑐1 − 𝑎1𝑐3 + 𝑥1𝑐3)2 + (𝑎3𝑐2 − 𝑎2𝑐3 + 𝑦1𝑐3)2] = 0 

(A5) 

or, in general, as reported below: 𝑡13𝑍1 + 𝑡12𝑍2 + 𝑡1𝑍3 + 𝑍4 = 0 (A6) 

where the complete expressions of 𝑍𝑖 coefficients in (A6) are: 𝑍1 = −𝑎3 (A7) 𝑍2 = (𝑎1 − 𝑥1)2 − 𝑎3𝑐3 + (𝑎2 − 𝑦1)2 (A8) 𝑍3 = −2(𝑎1 − 𝑥1)(𝑎3𝑐1 − 𝑎1𝑐3 + 𝑥1𝑐3) − 2(𝑎2 − 𝑦1)(𝑎3𝑐2 − 𝑎2𝑐3 + 𝑦1𝑐3) (A9) 𝑍4 = (𝑎3𝑐1 − 𝑎1𝑐3 + 𝑥1𝑐3)2 + (𝑎3𝑐2 − 𝑎2𝑐3 + 𝑦1𝑐3)2 (A10) 

 


