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Abstract: Over the last few decades, our digitally expanding world has experienced another signifi-
cant digitalization boost because of the COVID-19 pandemic. Digital transformations are changing
every aspect of this world. New technological innovations are springing up continuously, attracting
increasing attention and investments. Digital twin, one of the highest trending technologies of recent
years, is now joining forces with the healthcare sector, which has been under the spotlight since
the outbreak of COVID-19. This paper sets out to promote a better understanding of digital twin
technology, clarify some common misconceptions, and review the current trajectory of digital twin
applications in healthcare. Furthermore, the functionalities of the digital twin in different life stages
are summarized in the context of a digital twin model in healthcare. Following the Internet of Things
as a service concept and digital twining as a service model supporting Industry 4.0, we propose a
paradigm of digital twinning everything as a healthcare service, and different groups of physical
entities are also clarified for clear reference of digital twin architecture in healthcare. This research
discusses the value of digital twin technology in healthcare, as well as current challenges and insights
for future research.

Keywords: digital twin; healthcare; digital twin model; big data

1. Introduction

Over the last decade, we have witnessed fast-paced digitalization transformation in
almost every aspect of human life, not to mention the recent significant boost to digital
technologies owing to the COVID-19 pandemic. Businesses and service providers had
to adapt to digital changes quickly to overcome containment challenges and survive in
an ever-changing world. Meanwhile, digital infrastructure has enjoyed a vast expansion,
and shows no sign of slowing down [1]. Among the many prominent tech buzzwords,
digital twin has received significant attention, as have closely related terms such as hyper-
automation, digital shadows, digital threads, digital ghosts, and so on. Digital twin and
its “derivative terms” share the same underlying technological concept and have featured
on the Gartner top 10 strategic technology trends every year since 2017. According to
ReportLinker [2], the value of the global digital twin market was estimated to be almost USD
8 billion in 2021, with a compound annual growth rate (CARG) of 39% between 2022 and
2030. Although one can challenge the accuracy of the valuation, and different market
research sources may present different (albeit similar) valuations, they all indicate that
digital twin technology is playing an essential role in digital transformation. The potential
value it can contribute should not be overlooked [3]. The Google Trends index has been
widely used in modelling and forecasting as a reliable indicator of public interests [4–6].
Therefore, the Google Trends index since 1 January 2019 was extracted from the Google
Trends website along with another well-known emerging term - the UN SDGs (United
Nations Sustainable Development Goals) for comparison. The trend of UN SDGs is used
here, considering its global endorsement and increasing policy relevance in almost every
country and sector. Both terms have increased Google Trends indices, at a global level, since
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2019 (see Figure 1). The digital twin index is fast approaching the peak value of 100, which
indicates the highest possible search interest on Google.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 2 of 17 
 

since 2019 (see Figure 1). The digital twin index is fast approaching the peak value of 100, 
which indicates the highest possible search interest on Google. 

 
Figure 1. UN SDGs and digital twins global google trends since 2019. 

The public interest in digital twin technology is significantly inflated as the result of 
the boost from digitalization transformation in recent years, the enormous investment 
plans announced by a few tech giants, as well as the enabling environment of expanding 
digital infrastructure and advancing technology in today’s fast and ever-changing world. 
Many industries/sectors have shown their emerging interest in embracing digital twin 
technology. Among those, a rapidly developing healthcare sector on the back of the 
COVID-19 pandemic indicates crucial needs for further investigation [7]. Therefore, this 
paper aims to promote a better understanding of digital twin technology and explore the 
current trajectory of interactions between it and healthcare to bring insightful contribu-
tions to interested parties. 

The paper’s organization and its contribution by section are summarized as follows. 
Section 2 aims to promote a better understanding of this fast-emerging technology. The 
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The public interest in digital twin technology is significantly inflated as the result
of the boost from digitalization transformation in recent years, the enormous investment
plans announced by a few tech giants, as well as the enabling environment of expanding
digital infrastructure and advancing technology in today’s fast and ever-changing world.
Many industries/sectors have shown their emerging interest in embracing digital twin
technology. Among those, a rapidly developing healthcare sector on the back of the
COVID-19 pandemic indicates crucial needs for further investigation [7]. Therefore, this
paper aims to promote a better understanding of digital twin technology and explore the
current trajectory of interactions between it and healthcare to bring insightful contributions
to interested parties.

The paper’s organization and its contribution by section are summarized as follows.
Section 2 aims to promote a better understanding of this fast-emerging technology. The
history and development of digital twin is investigated, and common misconceptions of
digital twin technology are addressed for a broader range of readers to prevent misunder-
standing. Moreover, critical functionalities of digital twin in the emerging Metaverse are
summarized. A specific focus on healthcare is presented in Section 3, where we extend
the classic five-dimensional digital twin model [8] and propose a digital twin model in the
healthcare context differentiated by the different life stages, which has not been conducted
by previous literature to the best of our knowledge. It is also the first time the paradigm of
digital twinning everything as a healthcare service has been proposed, which was grouped
by different types of physical entities and remains consistent with digital twinning architec-
ture to support Industry 4.0 [9]. Furthermore, the benefits and revolutions of digital twin
technology for the healthcare sector are explored by reviewing relevant applications. The
paper concludes in Section 4 with a discussion of the strengths and challenges concerning
digital twin in healthcare. This section also proposes insights for fruitful future research.

2. Digital Twin: An Old Concept with a New Major Boost

Digital twin has emerged as a buzzword and trending topic recently. It is recognized as
a “building block” of the Metaverse, another fast-emerging case representing an immersive
digital world that allows real-life experiences and interactions. The general digitalization
process across sectors/services, rapidly increasing data processing and analysis capacity
enabled by fast-paced technological revolutions, and continuous advancements in cognition
and artificial intelligence (AI), all of which have accelerated digital twin technology, began
decades ago.

In this section, the definition of digital twin is reviewed along with common mis-
conceptions that may have caused confusion and misunderstandings. It is of paramount
importance to first understand the actual meaning and development history of digital
twin technology so that researchers and practitioners can distinguish the wheat from the
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chaff and promising use cases from the numerous advertised cases, many of which are just
hype, allowing them to glean valuable insights into likely future directions of research and
implementation of this rapidly advancing technology.

2.1. Digital Twin: Development History

Digital twin as a term has been widely used to define a variety of models, systems,
or technologies. Inflated expectations, lack of standardized definitions, and a poor under-
standing of the underlying technology, coupled with false or over-promising advertising
by several short-term profit-oriented opportunists, have resulted in a significant boost to
every aspect of digital twin. Closer scrutiny of the actual “player” behind this bustling
“show” reveals that the concept of digital twin has existed for decades.

Although the label’ digital twin’ was first introduced by Michael Grieves in a 2003 pre-
sentation [10], it is generally accepted that the concept of digital twin was first applied
by the National Aeronautics and Space Administration (NASA) in the 1960s to simulate
and program spacecraft (i.e., the Apollo missions). In 2012, according to Glaessgen and
Stargel (2012) [11], NASA formally defined digital twin technology as “an integrated multi-
physics, multi-scale, probabilistic simulation of an as-built vehicle or system that uses the
best available physical models, sensor updates, fleet history, etc., to mirror the life of its
corresponding flying twin”. Manufacturing and general industry quickly became and
remain the primary domain for the application of digital twin technology, as the links
between digital twin and cost reduction and production efficiency are straightforward.

Meanwhile, the definition of a digital twin has also been evolving as its use has spread
beyond spacecraft and vehicular applications. Grieves (2014) [10] further clarified that a
digital twin is a system of three elements: the physically existing product, its virtual repre-
sentation, and the bi-directional data connections between them. Specifically, the physical
product feeds data to the virtual “twin” while the virtual representation keeps returning
information/processes back to the physical product. According to [8,12], “DT involves cre-
ating a virtual model for a physical entity in the digital form to simulate entity behaviours,
monitor the ongoing status, recognize internal and external complexities, detect abnormal
patterns, reflect system performance, and predict future trend”. Digital twin fast became
the “must have” technology among industrial companies. Considering its significant con-
tribution towards product lifecycle management (PLM), Grieves (2017) [13] also presented
more detailed definitions of some key terms closely related to the use of digital twin in
PLM, for instance, digital twin prototype, digital twin instance, digital twin aggregate, and
digital twin environment, among others. Those definitions are not reproduced here, but a
summarized list can be found in [14]. Building on the three-dimensional digital twin model
firstly introduced by Grieves [10], Tao et al. (2019) [15] proposed a five-dimension digital
twin model, extending the initial three-dimension architecture by including digital twin
data and services; this extended model addressed data fusion (“information capture”) from
both the physically existing product and its digital counterpart, as well as the functionalities
of digital twin arising from embedding a service component. Liu et al. (2021) [16] argue
that recent studies highlight the digital twin’s dynamic, real-time, and bi-directional data
connection features. That paper also provides a list of digital twin definitions that can be
found in research articles.

The digital twin model advanced and became more sophisticated thanks to the con-
tinuous dedication of researchers and practitioners. The digital revolution and fast-paced
advancements of IoT (Internet of Things), Big Data, and cloud computing also contributed
as the general digital infrastructure experienced an exponential upgrade. Together, these
factors combined to create a digitally enabling environment for implementing digital twin
technologies, with fewer restrictions than had existed when the concept was first outlined.
Today, in both the industrial and academic sectors, digital twin is considered a vital pillar
of the Industrial Revolution 4.0 [8,17–20].
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2.2. Digital Twin: Common Misconceptions

Almost half of the world’s population has no access to the internet, and only a few
countries are exploiting the frontier edge of technological advancement [1]. According
to [21–23], a digital divide has been witnessed between developed and developing coun-
tries/regions, different income levels, genders, ages, digital divides, and exclusions fur-
ther exacerbate already existing inequalities, especially for those digitally disadvantaged
groups [1,24]. Despite the continuous efforts to bridge the digital divide [23], rapid techno-
logical advances, like the digital twin, may have further accelerated human vulnerability in
technology evolution [1]. A lack of understanding, knowledge, and access to the frontier
edge of developments increases the chances of possible misconceptions, false or inflated
expectations of the public, adverse reputational outcomes, and misunderstandings, as well
as more significant risks of the most digitally vulnerable groups being exploited. Therefore,
this section aims to clarify the common misconceptions about the digital twin and discuss
the reasons for those misconceptions to contribute to promoting a better understanding of
this fast-growing technology.

There are some common misconceptions regarding digital twins (as can be seen in
Table 1), and this paper aims to discuss the reasons for those misconceptions. It also seeks
to clarify issues so that researchers and practitioners can refer to the correct technology
and then reflect on the opportunities for their areas of expertise and work to bring more
significant insights and drive future development. In brief, common digital twin miscon-
ceptions arise from the closely related technologies of digital twins, 2D/3D modelling,
system simulation, validation computation, digital prototyping, and so on [25]. Without a
comprehensive understanding of the digital twin and its related technologies, confusion
with one of its rooting technologies is common, often confusing elements or steps of digital
twin with the digital twin itself. Digital twin’s dynamic, real-time, and bi-directional
data connection features [16] are keys to distinguishing the digital twin, but also the most
common source of misconception.

Table 1. Common misconceptions of the digital twin.

Term Reasons and Differences

Digital shadow

A digital shadow contains a physically existing product and its virtual
twin, but it has only a unidirectional data connection from the physical
entity to its virtual representative, meaning the virtual twin only
digitally reflects the physical product [26–28].

Digital modelling

Modelling is the essential aspect of a digital twin but is not an
alternative term to represent digital twin as a whole. There are
bi-directional data connections between the physical product and its
virtual twin; however, the data is exchanged manually [27,28], meaning
the virtual twin represents a certain status of the physical product with
the manually controlled process of synthesis.

Digital thread

The digital thread represents the continuous lifetime digital/traceable
record of a physical product, starting from its innovation and designing
stage to the end of its lifespan, and it plays an important role in the
digitalisation process and functions as the enablers of interdisciplinary
information exchange [29–31].

Simulation

Simulation refers to the important imitating functionality of digital
twin technology from the virtual twin’s perspective, and simulation
indicates a broader range of models; it is an essential aspect of the
digital twin rather than an alternative term representing digital twin, as
it does not consider the real-time data exchange in between the
physically existing object [16,25].
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Table 1. Cont.

Term Reasons and Differences

Fidelity model/
Simulation

Fidelity refers to the level of imitation state of a simulation model
compared with the physical product it is reproducing. It is common to
find terms like high/low/core/multi fidelity model/simulation, which
describe different fidelity levels or considerations while building up the
simulation model [16,32]. It is also frequently found that researchers
use high fidelity or even ultrahigh fidelity to describe the common
feature of the digital twin considering its real-time dynamic data
exchange between the physical object and virtual twin [14,33,34].

Cyber twin

Some researchers referred to cyber twin and digital twin
interchangeably as a result of understanding “cyber” as another
alternative term for “digital”. It is also common to see terms like cyber
digital twin, cyber twin simulation, cyber-physical system, and so on.
The key aspect the cyber twin or cyber-physical system would like to
address is a network (internet architecture), closely related to the
advancements and implementations of IoE (Internet of Everything)
[35–38]. It is also common to mix the cyber twin or cyber-physical
system network architecture with a digital thread.

Device shadow

It is common to find research on device shadow in areas of cloud
computing platforms and the Internet of Things (IoT). Device shadow
highlights the virtual representation of the physically existing object; in
brief, it refers to the service of maintaining a copy of information
extracted from the physical object, which is connected to IoT [39–42].

2.3. Digital Twin Functionalities in the Emerging Metaverse

In this section, the key functionalities of digital twins are summarized to assist readers
in understanding how it works “behind the scenes” to identify insightful implementation
possibilities in their areas of expertise. As highlighted in the previous section, digital twin
technologies include the features of being dynamic and real-time, and bi-directionally
exchanging data between a physical object and its virtual representative or avatar. These
key characteristics, along with the support of advancing digital infrastructures, make the
digital twin an enabler for some complex functionalities [27], which can be grouped into a
few categories: simulation, validation, monitoring, and analytics (including but not limited
to visualization, documentation, prediction, valuation, and optimization).

As already noted, digital twin technologies have been adopted mainly by manufac-
turing and industry in general, where their functionalities have been closely embedded in
PLM. It is used to digitally simulate the whole product lifecycle (including every physically
existing product/process), monitor physical objects and feed real-time data to the digital
representative, digitally record and visualize the whole lifecycle and associated data, simu-
late, validate operations/processes digitally, and optimize them for the physical entity by
providing both real-time and forward-looking analytics (i.e., performance validation and
forecasting, status tracking, and adjusting, among others. Extending these PLM-related
functionalities of a digital twin to a more general context, Rasheed et al. (2020) [43] sum-
marized eight possible additional implementations of the digital twin: “real-time remote
monitoring and control, greater efficiency and safety, predictive maintenance and schedul-
ing, scenario and risk assessment, better intra- and inter-team synergy and collaborations,
more efficient and informed decision support system, personalization of products and
services, better documentation and communication”. These functionalities of digital twins
are applicable regardless of the use case.

In this fast-changing world, the concept of the Metaverse has become another emerging
topic as people are seeking an ultra-immersive digital world experience, which allows real-
life experiences and interactions. The Metaverse is considered “the post-reality universe,
a perpetual and persistent multiuser environment merging physical reality with digital
virtuality” [44]. While digitalization is rapidly forming a bridge between the real world
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and the Metaverse, digital twin technology is considered as the building block of the
Metaverse, as the Metaverse can be considered as digital twinning everything around
everyone on the scale, thus understanding the value proposition of digital twin will be
an important first step for anyone interested in exploiting the next phase of this digital
evolution. Although the functionalities of digital twin technologies are being exploited
by manufacturing and industry, the applications in the Metaverse, especially considering
the challenges of scalability, regulation, data/system/platform uniformity, composability,
and so on, are still in relatively early stages. Applications in routine daily life where
people can experience the benefits include, for instance, virtual shopping, immersive
virtual events/meetings, immersive learning, virtual travelling, and so on; however, the
digital twin is frequently teamed up with virtual reality, artificial reality, or immersive
reality. It is important to note that not every case being publicly promoted as a digital twin
is technically a digital twin. It may simply be an uncompleted product or a progressing
project using part of a digital twin technology and enriched by virtual reality. To distinguish
the difference, the best strategy is to identify the most important or defining features of
digital twins, which are the dynamic, real-time, and bi-directionally exchange of data
between a physical object and its virtual representative. Using these criteria, it is clear
that despite the increasing attention being given to the Metaverse, there is still a long way
to go before a truly dynamic, real-time, immersive, bidirectionally influential experience
has been achieved. However, even if the adoption is not yet “completed”, the values and
possibilities are already so impactful they have empowered advances in many industries,
companies, areas of scientific research, and various aspects of human life.

From a more technical perspective, Liu et al. (2021) [16] conducted a literature review
to identify critical technologies and software for digital twins. They grouped those key
technologies into three categories: data-related technologies, high fidelity modelling tech-
nologies, and model-based simulation technologies. Using this classification, the authors
also proposed a technology architecture for digital twins, decomposing the digital twin into
different stages and mapping critical technologies to each of the elements. Similarly, Qi et al.
(2021) [12] listed a comprehensive framework of relevant technologies and technical tools
required for enabling the digital twin, which can be referred to as the one-stop directory
for identifying the specific technologies/software/technological tools needed to apply a
digital twin.

3. Healthcare Upgrading via a Digital Twin
3.1. Five Dimensions of the Digital Twin Model in Healthcare

Manufacturing industries have achieved significant developments by embedding
digital twin technology into every stage of PLM, and it has been recognized as one of the
most important pillars of Industry 4.0 [8,17]. Interest in digital twins across many different
industries/sectors is evident, particularly in a rapidly developing healthcare sector on the
back of the COVID-19 pandemic [45–47]. Referring to the five-dimensional model of the
digital twin outlined in Section 2.1 [15] (and see Table 2), the details of the five-dimension
model are summarized for a healthcare context. Although it is theoretically straightforward
to embed the general five-dimensional model into a healthcare context, in practice, it is
far more complex and challenging as healthcare caters for humans rather than dealing
with “products”, and contains a high level of variety and complexity, which requires
sophisticated domain-specific knowledge at every stage of the process. Furthermore, there
are often complex ethical concerns, regulation, privacy, and security challenges to be taken
into consideration [48].
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Table 2. Five dimensions of the digital twin model in healthcare.

Digital Twin Model Element Description in the Healthcare Context

Physical entity Human/patient in the healthcare context

Virtual twin Digital representative of human/patient

Digital twin data

Fusion of information including data collected from the
patient (both historical and real-time), analytical data from a
digital model, simulation, validation and prediction
supported by research, computational modelling, Big Data
mining, and machine learning.

Services

Collective functionalities and services provided via applying
the digital twin, i.e., monitoring, modelling, simulation,
validation, optimisation, and analytics, in the healthcare
context; for instance, monitoring patient health status, timely
diagnosis, effective and personalised treatment, operational
efficiency improvement of healthcare institutions, and so on.

Data connection
The data exchanging channels between humans and the
digi-representative; the fusion of digital twin data
and services.

3.2. Digital Twin: Supporting Healthcare in Different Life Stages

In Figure 2, a digital twin model for the healthcare context is proposed. With hu-
mans/patients as the physically existing entity and inspired by the product lifecycle
management infrastructure, several healthcare stages are suggested: preconception care,
lifetime healthcare, and afterlife stage. Each stage is associated with its relevant digital twin
data and the corresponding functionalities of the digital twin. The digital representative
or avatar is the virtual twin of the human/patient and supports the fusion of information
and model digital twin data. The bidirectional connections between the key elements of
the model are consistent with the well-established five-dimensional digital twin model set
out in [15]. Using this extended model incorporating different life cycle healthcare stages,
the objective is to demonstrate an easy-to-understand model of a digital twin for general
readers who are interested in this developing area, outline the different types of information
contained in digital twin data as a whole, and showcase some of the functionalities digital
twins can have in supporting healthcare. The remainder of this subsection elaborates on
the model in detail, sequentially following the different life cycle stages.
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3.2.1. Preconception Care

Many maternal health and child mortality risk factors are preventable [49]. Proper
and timely preconception care could significantly reduce adverse maternal and infant
outcomes at a population level, promote healthier pregnancies for women, and improve
the general health of everyone of reproductive age. Although the preconception stage is
specifically discussed here, many aspects are closely connected with lifetime healthcare, for
instance, healthier lifestyle, nutrition, fitness, mental health, and so on. Here, the focus is on
applications relevant only to the preconception care stage, but overlapping implementation
will be evident in the lifetime healthcare section.

A paper by Gardiner et al. (2013) [50] systematically highlighted the importance of
adopting fast-growing health information technology (i.e., virtual patient advocate) to
support implementing preconception care measures via clinical services. They proposed
using the widely adopted Gabby preconception care system [50,51]. Later, a personal
mHealth smart pregnancy programme was developed by [52], which shared similar aims
of promoting individual preconception care information and coaching in order to prevent
unhealthy behaviours. Davidson and Boland (2020, 2021) [53,54] reviewed relevant studies
and addressed the current trajectory of empowering pregnant women’s decision-making
and improving reproductive health using advanced information technology like artificial
intelligence and machine learning. A comprehensive intelligent system was recently
proposed by Oprescu et al. (2022) [55], which is being tested now as part of a pregnancy
health study.

Apart from the intelligent digital systems noted above, advanced ultrasound empow-
ered by virtual reality technology could provide a more accurate visualization of embryonic
and placental structures to support early diagnosis and identification of complications
during pregnancy [56,57]. The results presented in [58] suggest that an immersive virtual
reality experience could reduce the negative emotional impacts on women undergoing
in vitro fertilization (IVF) before embryo transfer.

Although only in their infancy, there are also genomes projects exploring the secrets of
our genes [59–61], collecting detailed molecular data from individual patients [59,60], as
well as newborns [61], which can be used not only to construct digital genetic models in
order to assist genetic studies, testing, and early interventions, but will also contribute to
the development of a wide breadth of other healthcare products and services in the future;
for instance, this can be the beginning of enabling the lifetime genomic record, promoting a
better understanding of diseases, discovering new methods of diagnostics and treatments,
among others [59–62].

3.2.2. Lifetime Healthcare

There are innumerable ways that advanced information technologies can contribute
to healthcare, ranging from the most straightforward multimedia channels to facilitate
health information sharing [63], processing social media information for healthcare mod-
elling [64,65], and customized features that help draw attention to individual health-
care [66], optimization and personalized precision medicine, treatment, and equipment,
in order to improve the construction and operational efficiency of healthcare profession-
als/institutions/systems/facilities and so on. The value of digitalization and advanced
technologies like the digital twin in healthcare is immeasurable [67]. Applications that
incorporate part or whole digital twin technology in the general lifetime healthcare stage
are identified. It is worth noting that applications empowered by hybrid or selective com-
binations of technologies are increasingly common, and this is typical both in healthcare
settings as well as in almost every other aspect of human life.

Promoting healthcare education, knowledge sharing, and personalized healthcare in-
formation tailored to individual needs has an important role, where technology can assist as
it integrates with the healthcare sector [44]. Digital innovations assisting healthcare educa-
tion and training are systematically summarized in [68], including but not limited to simula-
tions [69], virtual patients [70], and virtual reality learning platforms/environments [71–73],
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as well as other multimedia channels, chat-bots, big data analytics, and so on. While wit-
nessing the values of general digital twin technologies in educating healthcare students,
professionals, and patients, raising awareness of healthcare and healthier lifestyles is also
emerging as an increasingly significant field of incorporating technologies. Digital twins
have been widely applied in coaching physical activities [74], giving personalized and
precise nutrition advice [75], assisting with fitness management [76], and improving self-
management of ergonomic risks [77], all thanks to advances in sensors, smart devices, and
expanding IoT infrastructures.

Similarly, enabling technological infrastructures to benefit patients too, especially those
with chronic diseases, by providing them with real-time health monitoring to detect early
warning signs and prevent adverse outcomes [78]. Shamanna et al. (2020, 2021) [79,80]
discussed precision nutrition and treatment for diabetes patients supported by digital twin
technologies. Apart from providing continuous and real-time life monitoring for patients
with chronic diseases, it could also be applied to training athletes [74], critical patient
care in intensive care units [81], elderly healthcare [82], and everyday care for patients
with multiple sclerosis [83], and the detection of abdominal aortic aneurysms [84], among
others. These types of functionalities, which efficiently detect risk factors or early warning
signals of changes in key health indicators [85,86], could prevent severe outcomes and
help healthcare professionals with their decision-making and diagnostics. For example,
a digital twin patient model was applied in [87] to predict treatment response and assist
decision-making in clinical settings. Mourtzis et al. (2021) [88] have embraced digital
twin technology for oncology patient diagnosis, data analysis, and prediction. Other
research by Corral et al. (2020) [89] focused on precision cardiology and highlighted the
value of digital twin technology in assisting diagnosis, evaluating prognosis, optimizing
treatments, and accelerating regulatory decision-making. The lung cancer diagnosis was
specifically discussed by Zhang et al. (2020) [90], along with techniques to improve the cyber
vulnerability and resilience of digital twin models [91]. These digital-twin-related advances
continue to strengthen the links between healthcare and the digital world, which in time
should encourage more progress towards improved personalized medicine and treatment.

The applications of digital twin could also help in providing more accurate immersive
surgery simulation [92], building up comprehensive digital databases for certain types of
surgery [93], enabling remote surgery [94], and improving less invasive surgery [95]. This
would allow better access to efficient surgery training, more accurate surgery planning
and evaluation, more accessible medical resources, and reduced constraints arising from
geographic location. By learning from digital twin applications in the industrial sector,
hospitals and other healthcare institutions have also embraced this technology to optimize
their own operational and management efficiency. The HospiT’Win framework supported
by digital twin technology was proposed in [96] to optimize patient pathways and hospital
operation, and to predict the operational impact of unexpected events. A recent paper by
Lu et al. (2021) [97] proposed a hospital digital twin prototype aimed at assuring efficient
hospital operations while responding to the COVID-19 pandemic. Peng et al. (2020) [98]
presented an implementation use case for a hospital building digital twin in China, which
can mirror real-time visual management and provide operational improvement suggestions.
A digital twin can also play an important role in building smart cities [99,100] and smart
construction projects [101–103]. The construction and planning of hospitals could also
benefit from incorporating digital twin technology in its design, planning, construction,
maintenance, and facility management [104–106].

3.2.3. Afterlife Stage

There are limited studies and public interest in this stage; however, we believe it is still
an important aspect to consider. The potential of digital twin technology has already been
outlined above, and it could also be used to simulate organ transplantation and associated
cost-benefit or decision matrices [45,107]. Better prediction of survival for individual
liver transplantation grafts is explored in [108], and a recent study in [109] discussed
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the optimization of donor-recipient pairing in liver transplantation. If the digital twin
database of an organ donor collected during the lifetime healthcare stage were available, it
would significantly improve the testing and matching process with more personalized and
accurate simulations. As digital twins have also been applied to the development of smart
transportation infrastructure [99,110,111], the technology is also transferable to assist in the
logistics of organ transportation.

Living in this digitalized era, it is impossible to avoid leaving a lifetime trail of digital
footprints and legacies [112]. Research has focused on digital identity, ethics, grief, and
remembrance [113,114]. However, as digital twin databases expand, the immortality of
digitalized information will attract greater attention. However, no relevant research is
identified discussing the solution or values appropriate to those digital legacies left behind
in healthcare.

3.3. Digital Twinning Everything as a Healthcare Service

The expanding digital twin architecture in the healthcare sector highlights a paradigm
with complex integration levels. In accordance with the digital twin as a service in Industry
4.0 [9], digital twinning everything as a healthcare service paradigm is proposed in Figure 3.
Here, the complex integration levels are clarified by summarizing the different types of
physical entities for digital twinning, as well as by listing key healthcare services that could
benefit most from the emerging digitalization transformation of the healthcare sector.
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Based on the digital twin applications reviewed for this paper, healthcare-related
physical entities for digital twinning are grouped into three categories: device, patient, and
facility. The first group, devices, includes wearable fitness or health monitoring devices,
any medical device, and other relevant smart devices used for healthcare-related purposes.
The data collected and stored by these devices, along with the potential analytics, make
these devices important parts of the physical entities we observed. They are continuously
making a significant contribution to healthcare delivery [115].

Following the expanding IoT and its increasingly strong integration in healthcare [116],
this first group of physical entities have the most straightforward access to the digital
twinning process. In the second group, patients, where more ethical considerations exist
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and owing to the highly complex nature of human physiology, it is a more challenging
path towards complete digital twinning. Nevertheless, several projects are underway
to digitalize cell and DNA level data. Other applications have also been identified for
specific organs [117], i.e., the heart [118,119] and liver [120], among others, as well as organ
systems like the cardiovascular system [121]. Although there is still a long way to go
before the human body can be fully digitalized, there is increasing public interest and
research [1,122,123] in this field. All healthcare-related facilities are then grouped into
the last category, namely, facilities, which includes hospitals [96–98,124], other healthcare
institutions, surgery [92,94], healthcare services/operations within these facilities [104–106],
and professionals who carry out those operations [50–52], as well as labs, trials, and other
research relevant facilities.

Digital twinning of those physical entities creates a monumental IoE-like architecture
for providing improved healthcare service. The valuable information and models contained
by the digital twin and its mixed functionalities all contribute to the advancing healthcare
service in this ever-changing and digitally expanding world. As can be seen in Figure 3,
the critical beneficial aspects for healthcare from digital twin technologies according to the
applications reviewed are summarized for convenience as improvements in the following:
information sharing, education, monitoring, diagnosis, precision medicine/treatment,
medical resource management, facility operation management, and research advancement.

4. Discussion
4.1. Strengths and Challenges

This section discusses the current trajectory of digital twin implementation supporting
healthcare by looking into current achievements, existing challenges, and possible concerns.

4.1.1. Digital Twin Helps to Combat Healthcare Inequality

The expanding IoT and digitalization process is enabling more and more people
to have equal access to valuable information that exists digitally [125–127]. Similarly,
digital twinning processes in healthcare can promote better access to healthcare education,
self-healthcare management information, and other remote healthcare services without
restrictions associated with the graphical location. More people now have convenient access
to fitness devices, medical devices for real-time health monitoring, early adverse signal
identification, and early diagnosis without imposing a considerable burden on already
limited healthcare resources.

4.1.2. Digital Twin Assists with Achieving Sustainable and Efficient Healthcare
Facility Management

The operational efficiency of healthcare facilities could benefit substantially from
digital twin technology and achieve more sufficient operations and improved healthcare
services with the same level of resources. For instance, hospitals could optimize their
resource allocations and patient pathway arrangements to provide patients with better
healthcare experiences. Furthermore, energy planning and usage, logistics of resources,
administration process, facility maintenance, and so on could all be empowered with digital
twin technology to support a more sustainable future [128].

4.1.3. Digital Twin Accelerates Advances in Healthcare Research

The digitalization of genomic, organ, and organ system level data, as well as surgery,
provides holistic access to researchers and healthcare professionals to a digital world for
modelling, simulating, validating, and predicting, with greatly reduced costs and improved
accuracy and performance.

4.2. Conclusions and Future Research Directions

The enhanced value and benefits that digital twin technologies bring to healthcare are
accompanied by some challenges. There has been a comprehensive discussion on digital
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poverty, the digital divide, and how digital twinning may exacerbate the situation for
digitally disadvantaged groups [1]. The faster digitalization advances, the bigger the digital
divide may become. It is essential to ask whether more people are being left behind or are
being brought along by today’s fast-paced digital transformations.

In addition to concerns associated with the digital divide, considering the fast devel-
opment of AI technology across sectors, there are also concerns regarding the equality of
access, privacy, ethics, security, and suitability for diverse needs. Often, these concerns
are overlooked, especially at the early stages of new technological development when
public interest and expectations may be inflated. Research has also highlighted the impor-
tance of compatibility for future integration between virtual entities, platforms, systems,
IT infrastructure, and so on [14], as the development of the digital twin begins to scale.
Mixed ownership, varying standards, and possibly contradictory interests may dilute the
initial impact and functionalities of the digital twin. Forward-thinking, unified, compatible,
and future-proofed standard/legislation is the most important pillar for the sustainable
development of the digital twin in healthcare. Without it, the risk is that applications may
prioritize short-term profits over long-term benefits, resulting in misunderstandings and
reputational damage as public expectations are not realized. This in turn may negatively
impact the availability of crucial resources for any future long-term development.

This research aimed to build a bridge between two different interest groups—digital
twin and healthcare—and present the current trajectory of digital twin applications in
the healthcare sector, and bring insights to enable future development in research and
application. Compared with the existing literature about digital twins in healthcare, to
the best of our knowledge, this is the first paper presenting the digital twin model in the
healthcare context across the different life stages; it is also the first time the paradigm
of digital twinning everything as a healthcare service has been proposed, which would
extend the digital twinning architecture in Industry 4.0 to healthcare. This model and
proposed architecture can assist researchers and practitioners in better understanding the
framework of the digital twin in healthcare, identify research gaps, and discover valuable
applications in specific life stages or healthcare services to contribute to further perfecting
the digital twin in the healthcare model/architecture in practice. Future research will
focus on healthcare aspects currently being overlooked, but where the potential exists for
integrating advanced technologies like a digital twin. Inevitably, digital twin technologies
are also joining forces with other trending technological advancements, i.e., AI, which has
already shown its significant value in numerous areas [64,65,129,130]. Future research will
investigate the interactions of digital twins and AI in general and their joint impact in
specific sectors like healthcare.
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