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Abstract 

Background: Anterior talofibular ligament (ATFL) is considered as the weakest ankle 
ligament that is most prone to injuries. Ultrasound imaging with its portable, non-inva-
sive and non-ionizing radiation nature is increasingly being used for ATFL diagnosis. 
However, diagnosis of ATFL injuries requires its segmentation from ultrasound images 
that is a challenging task due to the existence of homogeneous intensity regions, 
homogeneous textures and low contrast regions in ultrasound images. To address 
these issues, this research has developed an efficient ATFL segmentation framework 
that would contribute to accurate and efficient diagnosis of ATFL injuries for clinical 
evaluation.

Methods: The developed framework comprises of five computational steps to seg-
ment the ATFL ligament region. Initially, region of interest is selected from the original 
image, which is followed by the adaptive histogram equalization to enhance the 
contrast level of the ultrasound image. The enhanced contrast image is further opti-
mized by the particle swarm optimization algorithm. Thereafter, the optimized image is 
processed by the Chan–Vese method to extract the ATFL region through curve evolu-
tion; then the resultant image smoothed by morphological operation. The algorithm is 
tested on 25 subjects’ datasets and the corresponding performance metrics are evalu-
ated to demonstrate its clinical applicability.

Results: The performance of the developed framework is evaluated based on various 
measurement metrics. It was found that estimated computational performance of the 
developed framework is 12 times faster than existing Chan–Vese method. Further-
more, the developed framework yielded the average sensitivity of 98.3 %, specificity of 
96.6 % and accuracy of 96.8 % as compared to the manual segmentation. In addition, 
the obtained distance using Hausdorff is 14.2 pixels and similarity index by Jaccard is 
91 %, which are indicating the enhanced performance whilst segmented area of ATFL 
region obtained from five normal (average Pixels—16,345.09), five tear (average Pix-
els—14,940.96) and five thickened (average Pixels—12,179.20) subjects’ datasets show 
good performance of developed framework to be used in clinical practices.

Conclusions: On the basis of obtained results, the developed framework is compu-
tationally more efficient and more accurate with lowest rate of coefficient of variation 
(less than 5 %) that indicates the highest clinical significance of this research in the 
assessment of ATFL injuries.
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Background

Ankle ligaments are the most common human joints affected by sports injuries, acci-

dents, high ankle sprains and inflammation [1]. Generally, ligaments are robust and 

strong fibrous tissues that connect two bones in the ankle that are presented in the 

form of anterior talofibular, posterior talofibular and calcaneofibular and deltoid liga-

ments. Statistics shows that around 20 % of the professional sports persons are prone to 

injuries every year and around 14 % of the all sports injuries are related to ankle, out of 

which, 80 % injuries belong to ligaments [2, 3]. In addition, it was estimated that around 

23,000 individuals in United States and 5000 individuals in Great Britain undergo daily 

treatment due to ankle injuries [4–6]. Because of the active life style and involvement in 

sports activities by individuals, the incidence of ankle injuries are growing rapidly and 

may reach up to 40 % [7–9].

Research [10–12] has reported that anterior talofibular ligament (ATFL) is considered 

as the weakest ligament exists in ankle, and therefore most commonly affected by the 

injuries. ATFL starts at the front part of lateral malleolus (LM) and reaches till taller 

neck in the ankle. Any injury in ATFL ligament requires an individual patient to visit 

clinic and perform an imaging examination to ensure the damages associated to it. 

Currently, Magnetic Resonance Imaging (MRI) has the ability to visualise damages to 

injured ATFL, but limited availability, high cost, patient discomfort, long examination 

time and in particular, patient with injury need to be inside MRI scanner are consid-

ered as the major limitations [13–15]. Alternatively, ultrasound imaging with its port-

able, non-invasive and non-ionizing radiation nature increasingly is being used for ATFL 

diagnosis [15–19]. However, due to the limited capability of 2D ultrasound images that 

exhibits several challenges such as low resolution in ATFL region, homogeneous inten-

sities in surrounding regions of ATFL, homogeneous texture between ATFL and sur-

rounding tissues and low contrast (see Fig. 1), only expert radiologist and orthopaedic 

surgeons are able to visually interpret the injured ATFL [20–22].

Due to the challenges associated with 2D ultrasound images of ATFL ligament, direct 

interpretation and visualization of injuries associated with injured ATFL is not recom-

mended as it may lead to wrong diagnosis. �is warrants the requirement of computa-

tional methods that are capable of delineating ATFL region from 2D ultrasound images 

[23, 24]. However, the development of computational methods to delineating ATFL 

region is further challenging due to the issues associated with 2D ultrasound images. 

�ese issues can be seen in 2D ultrasound images as homogeneous intensity region in 

ATFL and surrounding tissues that results in the difficulties to extract boundaries of 

ATFL region computationally as illustrated in Fig.  1a, b. In addition, Fig.  1a has indi-

cated the location of ATFL ligament in yellow colour and homogeneous intensity region 

is presented in red circle and green line. Furthermore, computational methods might 

not be able to distinguish between ATFL and surrounding regions due to similar tex-

ture available in both regions as depicted in Fig. 1c in red and blue indicated regions. 

Finally, contrast within the ATFL region varies rapidly and may results in computational 
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difficulties to identify the correct region of interest from 2D ultrasound images, which 

are presented by the yellow colour circles.

In order to deal with the challenges associated with 2D ultrasound images, several 

computational approaches were developed to segment different tissues using region 

based, edge based, thresholding based, wavelet based, pattern or texture classification 

based, atlas and deformable based methods and non-parametric probabilistic model 

with shape driven based methods [25–28]. Although, above stated methods are capa-

ble to segment tissues from 2D ultrasound images, fake edge detection, incompatibility 

with noise, under segmentation/over segmentation, variable shape, inconstant size and 

unpredictable properties are some of the known limitations with these methods [23, 29]. 

So far, the above methods were not utilised to segment ATFL region from 2D ultrasound 

images. In addition, due to the known limitations as listed above, it is not suggestive 

to use these methods to segment ATFL region as it exhibit complex nature in shape, 

size and texture. �us, the main objective of this research is to develop a computational 

method for the segmentation and accurate visualisation of ATFL from 2D ultrasound 

images that will impact the clinical evaluation of ATFL injuries leading to betterment of 

quality of life in individuals.

In order to achieve the main objectives as stated above, a new segmentation frame-

work for ATFL segmentation from 2D ultrasound images is developed in this research 

that includes five (5) step processes comprising of region of interest (ROI) initialization, 

adaptive histogram equalization (AHE) [30, 31], particle swarm optimization (PSO) 

[32], Chan–Vese method [33] and morphological operation [34–36] as sophisticated 

image processing and computational techniques. �e ATFL segmentation framework is 

Fig. 1 Challenges in ultrasound images of ATFL a ATFL anatomy and homogeneous intensity region, b cor-
responding intensity graph, c homogeneous textures, and d low contrast regions
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developed in order to resolve the issues associated with 2D ultrasound images of ATFL 

as depicted in Fig. 1a, b, c, d. In the developed framework, selection of ROI by visual 

interpretation followed by the automatic cropping of ROI is used to resolve the issue 

of homogeneous boundaries between ATFL and surrounding tissues. Applied AHE is a 

technique to enhance contrast is used to resolve the issue of low contrast in ATFL region 

as it has been found capable of producing better results than other contrast enhance-

ment approaches in various image processing applications due to its suitability with 

variable contrast images [37]. �ereafter, the PSO algorithm is used in this framework 

to resolve the issue of high computational time and the suitability of this method have 

been demonstrated on natural and satellite image databases that shows significantly bet-

ter outcomes [15–18]. �e Chan–Vese method is applied in the developed framework to 

resolve the issues of low visibility and boundary extraction at ATFL region as it has been 

found suitable to segmented desired tissue area compared to traditional active contour 

and other existing segmentation methods, qualitatively and quantitatively [38–43].

�e descriptive illustration with detailed approach is discussed in the next section 

followed by its capability to segment ATFL region from 2D ultrasound images. In the 

next sections, performance metrics are measured to demonstrate the performance of the 

developed framework followed by the results and discussion that shows the impact of 

the developed framework for clinical evaluation of ATFL injuries.

Methods

Image dataset

In this study, a video (length—3  s, 25 frames/second) of the ATFL region is acquired 

using linear probe (5–13 MHz) of iU22 Philips colour ultrasound machine from 25 sub-

jects (12 healthy, 8 patients with tear injury and 5 with thickened ligament injury) with 

the age ranges from 18–60 (mean 34) years. Institutional medical ethics approval was 

obtained prior to the study. Subjects were informed about the study protocol and con-

sent form is obtained from all the subjects. A total of 1250 slices are extracted in the 

video acquired from 25 subjects, each video contains 75 slices representing ultrasound 

images of ATFL region. �e involved three experts have the experience of 18  years, 

9 years and 5 years in ultrasound imaging are asked to visually inspect 75 slices of each 

dataset and assign a grade (lowest 1, low 2, moderate 3, high 4, and highest 5) to each 

slices based on the quality according to the method proposed earlier [44]. In most data-

sets, around 36–37 slices are graded as score 5, around 13–14 slices are graded as score 

4, around 9–10 slices are graded as score 3, around 5–6 slices are graded as score 2 and 

remaining are graded as score 1. In this study, slices those were graded as 4 and 5 are 

included for the further processing and post processing is performed on 50 slices of each 

subject.

ATFL segmentation framework

As discussed in introduction section of this paper, this research is mainly focuses on 

three major challenges such as homogeneous intensity, homogeneous texture and low 

contrast regions that create the difficulties in ATFL interpretation and extraction from 

ultrasound images. To overcome these problems, a framework is developed to segment 

the ATFL region from ultrasound images as illustrated in Fig. 2.
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As presented in Fig.  2, there are mainly five steps involved in the segmentation of 

ATFL from 2D ultrasound images. At first, process of segmentation starts with the ini-

tialisation of ROI in ultrasound image frame consisting of ATFL region, which is fol-

lowed by the AHE method to increase the contrast of the ROI. �e contrast enhanced 

image is further processed by the PSO algorithm for optimization to produce more 

accurate results. In the following steps, the Chan–Vese method is applied on the opti-

mized image to extract the desired ATFL region. �e extracted images are smoothed 

by the morphological operation for better visualization and accurate interpretation. It 

should be noted that this research has developed a novel segmentation framework due 

to the unique hybridization of advanced image processing and optimization algorithms 

for ATFL segmentation for the first time. �e details of the developed framework are 

described in the following sections:

Initialization of ROI

In this research, ROI is initialized prior to post-processing due to the followings reasons: 

(1) simplifying the input image, (2) reducing the occurrences of errors during ATFL 

extraction and, (3) better computational performance. For the selection of ROI, variabil-

ity of ATFL location in ultrasound images is considered and expert radiologist inspected 

ATFL region in several slices. In this framework, ROI is selected by selecting a defined 

region of interest that includes presence of ATFL within this region and an automated 

cropping of selected region is made. An example of ROI selection where ROI initialized 

region is indicated by green colour rectangle on input image is shown in Fig. 3b which is 

extracted from original image as shown in Fig. 3a. Once the ROI selection is performed, 

developed framework utilises selected ROI to perform further operations as discussed in 

the next following sections.

Contrast enhancement using AHE

Contrast enhancement methods such as histogram equalization are widely used in image 

processing to improve the interpretation capability of the resultant image. However, 

Initialization of 

Region of Interest

Contrast 

Enhancement using 

AHE  

Optimization using 

PSO

ATFL Extraction 

using Chan-Vese 

Method

Hole Filling using 

Morphological 

Operations

Input Image

Segmented Image

Fig. 2 The developed segmentation framework for ankle ATFL ligament
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traditional histogram equalization does not performing well for variable contrast images 

[30]. In such cases, adaptive histogram equalisation (AHE) can be used that shows bet-

ter performance to adjust the local contrast and deals better with variable contrast [31]. 

�us, AHE is used in this research that may provide better outcomes than traditional 

histogram.

Mathematically, AHE can be described in Eqs. 1 and 2 [30, 31]:

(1)ĥ
(

m, n, g
)

= δ
(

g , x(m, n)
)m,n

· fw(m, n)

(2)
fw(m, n) =

{

w−2, |m| ≤ (w − 1)/2, |n| ≤ (w − 1)/2

0, otherwise

a Input Image ROI initialised image

Contrast enhanced image Optimized image

(1) (2)                                                 (3)

Process of contour evolution and ATFL region extraction using Chan-Vese method 

(1)                                                  (2)

ATFL Extraction as binary image and hole filling 

b

c d

e

f

Fig. 3 Steps showing ATFL segmentation using developed framework: a input 2D ultrasound image of ATFL 
region, b ROI initialised image after visual inspection by experts, c contrast enhanced image after applying 
adaptive histogram equalisation, d optimized image as a result of PSO, e process of contour evolution and 
ATFL extraction using Chan–Vese method (1–2–3) and, f ATFL extraction as binary image and hole filling 
(1–2)
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where, x is an input image, ĥ presents the histogram and δ is the Kronecker delta func-

tion. g indicates an image with grey levels. �e parameter fw indicates the rectangular 

kernel with m rows and n columns, and w represents the width of the window. In this 

research, size of the kernel is considered as equal to the size of input image to cover all 

the objects. �e ROI initialized image shown in Fig. 3b is further improved by the AHE 

method that helps in the betterment of contrast of input image as shown in Fig. 3c.

Optimization using PSO

PSO algorithm optimizes a problem iteratively to find out the candidate solution by 

moving particles around in search space. Each particle has a specific position and veloc-

ity. �e corresponding position xi(t) and velocity vi(t) are determined and update based 

on the Eqs. 3 and 4 [32, 45–47]:

where, w represents the inertia weight that provides the storage to resultant veloci-

ties, yi(t) − xi works based on each particle personal experience with respect to the 

best solution and ŷi(t) − xi indicating the confidence of whole swarm for best solution. 

�e c1 and c2 are acceleration constants that are used to speed-up the image particles, 

{r1(t), r2(t)} ∼ u(0, 1), in which u(0,1) represents a random number range from 0 to 

1. �e t indicates the time unit. �e xi(t) and vi(t) represents the current position and 

velocity of a particle i at time t. �e term yi(t) indicates the personal best position and ŷi 

is the global best position of a particle i.

PSO is a problem-independent algorithm, which means that little specific knowledge 

relevant to given problem is required. What we have known is just the fitness evaluation 

for each solution. �is advantage makes PSO more robust than many other search algo-

rithms. �e main benefits of the PSO algorithm as compared to existing genetic algo-

rithm and other heuristic algorithms in image segmentation are as follows: (1) �e PSO 

algorithm is easy to implement and only few parameters have to be adjusted, (2) unlike 

the genetic algorithm, the PSO algorithm has no evolution operators such as crossover 

and mutation, which can be the main cause of computational complexity in some cases, 

(3) in PSO, only global best particle gives out information to the other image particles 

rather than whole population that makes it more robust, (4) unlike other heuristic algo-

rithms, PSO has the flexibility to control the balance between global and local explora-

tion of the search space.

Basically, the PSO algorithm is a multilevel thresholding approach that optimizes 

the energy level of the input image and helps in efficient curve evolution to extract the 

desired ATFL ligament region. In image segmentation, the use of PSO method is quite 

simple and effective, which improves the real-time performance of the image segmen-

tation to a large extent. �is research performs the segmentation on ATFL ligament 

ultrasound images based on the PSO algorithm to optimise the energy level of the image 

as illustrated in Fig. 3d. �e experiments of segmentation indicates that the developed 

framework can get ideal segmentation results with less computation cost due to the 

efficient use of PSO algorithm. �erefore, the optimized image would help in efficient 

(3)vi(t + 1) = wvt(t) + c1r1(t)
(

yi(t) − xi
)

+ c2r2(t)
(

ŷ(t) − xi(t)
)

(4)xi(t + 1) = xi(t) + vi(t + 1)
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extraction of the ATFL boundaries by the curve evolution, which is performed by the 

Chan–Vese method as discussed in the next section of this paper.

ATFL extraction using Chan–Vese method

In this research, curve evolution is performed by the Chan–Vese method. �e Chan–

Vese method is the association of the Mumford–Shah mathematical model, level set 

method and curve evolution for energy minimization, accurate initialization and curve 

evolution during segmentation progression, respectively. �e entire processing of the 

Chan–Vese method is described in Eq. 5 [33, 48–50]:

where, c1, c2 are constants and φ is an undefined curve. EFTrepresents the external energy 

function of curve C. H(φ) is heaviside function and δ(φ) is the Dirac one dimensional 

function. L is the image gradient and μ is a fixed parameter range less than 1. �e image 

Im indicates the input image and the Im(x, y) depicts the particular image coordinate. 

Here ∇ stands for the gradient operator. In Eq.  5, function ECV(c1, c2, φ) depicted the 

Chan–Vese function.

Basically, the Chan–Vese method is the extended version of the traditional active con-

tour method [51], which used in a variety of image processing tasks such as image seg-

mentation and object boundary tracking. �e traditional active contour method initially 

specifies a contour, which evolves under smoothness control (internal energy) and image 

driven forces (external energy) embedded with energy minimization capability to detect 

the boundary of the desired object. To minimize the energy, the traditional active con-

tour method used Euler–Lagrange equation [52]. Although, this method is performing 

well, but it has some major limitations such as long runtime, need to initialize snake 

near to the object boundary and it is unable to merge two contours into one or split one 

contour into two contours. In order to overcome these issues, Chan and Vese proposed a 

segmentation method, which is applied in this research.

�e Chan–Vese method does not depend on the edge function for the termination of 

shrinking or expanding curve for a preferred object boundary. �e Chan–Vese method 

detects object boundaries much clearer; in case of undefined boundary gradients and 

noisy image. �us, the Chan–Vese method is applied on the optimized images (e.g. PSO 

outcomes) to provide more accurate segmentation results as described in the developed 

framework. For example, boundary extraction of ATFL is performed by the Chan–

Vese method [33] with 800 iterations as illustrated in Fig. 3e by three processing stages 

(1–2–3). Here, Optimized image is given as input for further processing using Chan–

Vese method that shows number of iterations at different scales as shown in Fig. 3e and 

iterations are discontinued after its optimal position that leads to the extraction of ATFL 

region as shown by marked region in Fig. 3e, which is further extracted as binary image 

shown in left image in Fig. 3f.

E
CV (c1 + c2,ϕ) = E

FT (c1 + c2,ϕ) + µL(ϕ)

(5)

=

(
∫

Ω

|Im − c1|
2H(ϕ)dxdy+

∫

Ω

|Im − c2|
2(1 − H(ϕ))dxdy

)

+ µ

∫

Ω

δ(ϕ)|∇ϕ|dxdy
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Hole �lling using morphological operation

Morphological operations are used to restore and reconstruct the damaged parts of 

the extracted image. Out of numerous morphological operations, this research applied 

the close operation to produce smoother results (see Fig. 3), which is described in Eq. 6 

[34–36]: 

where, C is the close operator. A and B are the object sets of a binary image. E and D 

indicates the erosion and dilation, respectively. �e close operation used two inputs such 

as, an image that need to be smoothed and a structuring element. However, this research 

used the disk structuring element to preserve the arbitrary shape of the object, which 

specifies a radius of 10 pixels so that the largest gap gets filled. For instance, during curve 

evolution the obtained segmented outcomes are not so accurate due to the asymmetrical 

boundaries and uncertain shape that leads to interpretation problem of the damaged tis-

sues of ATFL as shown in left image of Fig. 3f. To overcome this problem, the developed 

framework uses morphological close operation on the extracted images for smoothing 

and clear boundaries as depicted in right image of Fig. 3f.

Figure  3 presents the entire process flow of ATFL segmentation performed by the 

developed framework. Figure  3a has shown the input ultrasound image of ATFL liga-

ment, which presented the ROI initialization in green colour. �ereafter, the selected 

ROI is illustrated in Fig. 3b, which is further enhanced by the adaptive histogram equali-

zation method to improve the contrast for better visualization of ATFL region (see 

Fig. 3c). �e contrast enhanced image has shown the boundaries of ATFL ligament more 

clearly as compared to the input image. To make the enhanced image more optimized 

for further processing, the developed framework applied the PSO algorithm as depicted 

in Fig. 3d. �e optimized image is further used in contour evolution, which is performed 

by the Chan–Vese method as illustrated in Fig. 3e by the three processing stages (1–2–

3). In addition, Fig. 3e presented the process flow of the contour evolution to extract the 

ATFL region, which is indicated by the green colour. As mentioned earlier, the devel-

oped framework is capable to extract the ATFL region by the use of 800 iterations only, 

which are very less as compared to the existing methods. �e extracted ATFL region 

is shown in Fig.  3f by two stages (1–2) that has the lacking of regular boundaries. To 

recover this issue, this framework used the morphological close operation to fill the gaps 

of boundaries for accurate interpretation of ATFL ligament injuries by the clinicians.

Performance evaluation

�e developed framework was implemented on MATLAB [53, 54] running on a CPU 

(configuration: 64-bit operating system, 8.00  GB RAM, Intel (R) core (TM), i7-2600, 

3.40 GHz). Once the developed framework is tested on the sample and image datasets, 

performance of the developed framework is further evaluated by measuring few per-

formance metrics such as computation time, sensitivity, specificity, accuracy, Hausdorff 

distance, Jaccard index and segmented area which are further elaborated in the next 

sub-sections. After segmentation of ATFL region using developed method, performance 

metrics such as computation time and segmented area are directly measured from 

segmented images. However, for the measurement of sensitivity, specificity, accuracy, 

(6)C(A,B) = A · B = E(D(A,−B),−B)
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Hausdorff distance and Jaccard Index, the obtained segmentation results are compared 

with ground truths that were manually segmented from 2D ultrasound images by three 

expert radiologists having experience of 18 years, 9 years and 5 years. An example show-

ing manual segmentation of ATFL region in 2D ultrasound image performed by the 

expert is illustrated in Fig. 4.

�e reliability of above ground truths generation by different experts is estimated by 

the intra-observer variability among the experts. In order to measure the reliability of 

expert’s segmentation, measurement of true positive rate (TPR) among different experts 

is performed using Eq. 7 given in the next section.

Performance metrics

In order to analyse the performance of the developed framework, computational time, 

sensitivity, specificity, accuracy, Hausdorff index, Jaccard index and segmented area met-

rics are explained in detail in the following sections [35]:

Computational time

Computational time is the amount of  time  for which a central processing unit (CPU) 

was used for processing instructions of a computer program that can be measured in 

seconds [55].

Sensitivity

Sensitivity is the proportion of true positives that are correctly identified by a diagnostic 

test. It shows how good the test is at detecting a disease [55].

where, true positive (TP) is the number of pixels correctly labelled as ATFL region, false 

negative (FN) is the number of pixels incorrectly labelled as non-ATFL region.

Speci�city

Specificity is the proportion of the true negatives correctly identified by a diagnostic test. 

It suggests how good the test is at identifying normal condition [55].

where, true negative (TN) is the number of pixels correctly labelled as non-ATFL region, 

false positive (FP) is the number of pixels incorrectly labelled as ATFL region.

(7)Sensitivity =
TP

TP + FN

(8)Specificity =
TN

TN + FP

a Input image b Marked by expert c Binary image

Fig. 4 Manual segmentation of ATFL ligament by the expert
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Accuracy

Accuracy is the proportion of true results, either true positive or true negative, in a pop-

ulation. It measures the degree of accuracy of a diagnostic test on a condition [55].

Hausdor� distance

Hausdorff distance is a validation metrics used in medical image segmentation for shape 

matching. Hausdorff index determined the degree of similarity between two superim-

posed sets, which is defined in Eq. 10 [56]:

where, H presents the Hausdorff index. a and b are the points defined in sets A and B. 

‖a − b‖ is indicating the underlying distance in tests.

Jaccard index

Jaccard index is a similarity measure that lies 0 to 1 as presented in Eq. 11 [56]:

where, J depicts the Jaccard index, A indicates the region segmented by the developed 

framework and B is the region segmented by the experts.

Segmented area

�e extracted desired and meaningful region from an input image is referred to as 

segmented area, which is determined by the calculation of number of pixels from the 

extracted region [55]. In this research, segmented area is calculated from normal and 

patients to demonstrates the clinical significant of the developed method.

Results and discussion

Segmentation of ATFL ligament

For the visual interpretation of segmentation processing of the developed framework 

and the corresponding outcomes with four sample images is illustrated in Table 1. For 

instance, initially, ROI is initialized on input image of sample 1 as shown in the 1st row 

and 1st column of Table 1 and obtained ROI image is presented by the 2nd row of this 

table. �e selected ROI image is enhanced by the AHE method to increase the contrast 

level as shown in the 3rd row of Table  1 that helped in the better detection of ATFL 

boundaries as compared to the input image. �is enhanced image is optimized by the 

PSO algorithm, which helps in accurate visualization of ATFL region inside the sur-

rounding tissues as presented in 4th row, which is further processed by the Chan–Vese 

method to extract the ATFL region as illustrated in 5th row and the obtained segmen-

tation result is shown in 6th row that need of smoothing to get the regular boundaries 

by morphological operations as depicted in 7th row of Table  1. �e resultant of 7th 

row is further overlaid on the original image to show the region of ATFL with marked 

(9)Accuracy =
TP + TN

TP + FP + FN + TN

(10)H(A,B) = max
a∈A

·min
b∈B

∥

∥a − b
∥

∥

(11)J (A,B) =
A ∩ B

A ∪ B
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boundaries as shown in 8th row of Table  1. �e obtained results are compared with 

manual segmentation performed by experts as shown in row 9th of this table whilst the 

binary images of experts segmentation is shown in row 10 of Table 1.

Performance evaluation

Computational time evaluation

In this section, performance of the developed framework is evaluated based on the esti-

mation of computation time incurred using the Chan–Vese method and the developed 

Table 1 ATFL segmentation from  2D ultrasound images: steps involved (�rst column) 

and  corresponding outcomes at  each stages of  developed framework for  four di�erent 

samples images (column 2–5)

Process 

Involved

Sample 1 Sample 2 Sample 3 Sample 4

Original image

(1)

Initialization 

of ROI

(2)

Image 

contrast 

enhancement 

using AHE

(3)

Energy 

optimization 

using PSO

(4)

Chan-Vese 

method 

processing 

(5)

Extraction of 

ATFL 

(6)

Morphological 

operations

(7)

Segmented 

ATFL with 

marked 

boundaries

(8)

ATFL region 

marked by the 

expert

(9)

Experts’ 

segmentation

(10)
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framework at different number of iterations (e.g. 100, 500, 800, 1000, 2000 and 3000 iter-

ations). �e computational cost at different iterations is measured, which is illustrated in 

Table 2.

From Table  2, it can be clearly seen that even after 3000 iterations, the Chan–Vese 

method is not significant enough to track the ATFL region, while the developed frame-

work leads to provide the optimal solution after only 800 iterations. After 800 iterations, 

no significant difference was found in tracked ATFL boundaries using the developed 

framework. �us, 800 iterations are selected for all image segmentation in this research.

Table 2 Computational performance evaluation of the developed framework

Number of 

iterations

Chan-Vese method [33] Developed framework 

100

Execution time (44.9 seconds) Execution time (12.2 seconds)

500

Execution time (220.5 seconds) Execution time (21.5 seconds)

800

Execution time (340.6 seconds) Execution time (28.9 seconds)

1000

Execution time (621.2 seconds) Execution time (33.9 seconds)

2000

Execution time (1525.2 seconds) Execution time (61.3 seconds)

3000

Execution time (2390.8seconds) Execution time (87.1 seconds)
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For the computational time, the developed framework yields marked improvement 

over the Chan–Vese method as the computational time taken by the developed frame-

work (28.9  s) is approximately 12 times lower than the Chan–Vese method (340.6  s) 

for 800 iterations that results in optimal solution and performs faster than the existing 

Chan–Vese method.

Performance evaluation against the manual segmentation

�e developed framework is tested for its performance whereby the obtained segmented 

ATFL results are compared with manually segmented ATFL from 2D ultrasound images 

by experts. Manual segmentation of ATFL from 2D ultrasound images were perform 

by three experts radiologist and the reliability of manual segmentation (considered as 

ground truth) is measured for all three experts. For the reliability, intra-observer vari-

ability among the experts is calculated as true positive rate of segmented area as dis-

cussed in material and method section of this paper. �erefore, the Table 3 illustrated 

the Intra-observer variability in the assessment of three experts for normal, tear and 

thickened ligaments.

As shown in Table 3, true positive rates calculated among expert 1 and expert 2 are 

significantly high for normal and tear ATFL regions that shows slightly less significant. 

At the same time, the estimated true positive rates among expert 1 and expert 3 are 

significant for all three datasets. However, true positive rates calculated among expert 

2 and expert 3 are less significant compared to TPR calculated against Expert 1. �e 

results show that Expert 1 has all comparable results expert 2 and expert 3. �us, in 

this research, ground truths generated by Expert 1 are used to evaluate the performance 

of developed framework. �e manual segmentation performed by Expert 1 are consid-

ered as ground truths and compared with results obtained using developed framework. 

�e comparison is made as the measurement of sensitivity, specificity and accuracy and 

results obtained are listed in Table 4.

Table 4 presents the sensitivity, specificity and accuracy analysis for three different data-

sets used in this research. Analysis is performed on healthy and injured (such as tear and 

thickened patients) subjects ultrasound datasets. As shown in Table 4, the average sensitiv-

ity value obtained from the assessment of the developed framework results that are com-

pared with manual segmentation performed by an expert is ranges from minimum 95.7 to 

maximum 99.6 % with an average sensitivity of 98.3 % (coefficient of variation—0.01 %). 

Similarly, specificity ranges from minimum 96.2 to maximum 97.2  % with an average 

specificity of 96.6 % (coefficient of variation—0.02 %). Furthermore, accuracy of the devel-

oped framework is evaluated that ranges from minimum 96.4 to maximum 97.2 % with 

Table 3 Intra-observer reliability calculated among  three experts’ for  normal, tear 

and thickened ligaments segmentation from 2D ultrasound images

True positive rate estimation

Normal Tear Thickened

Expert 1–2 0.9345 0.9533 0.8765

Expert 2–3 0.8812 0.9268 0.9053

Expert 1–3 0.9165 0.9645 0.9434
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the average accuracy of 96.8 % (coefficient of variation—0.01 %). �e analysis based on the 

obtained results from sensitivity, specificity and accuracy have shown the significance and 

medical applicability of this research in clinical settings as the obtained accuracy is more 

than 96 %, standard deviation is less than 3 % and coefficient of variation is less than 5 %.

Performance evaluation based on the distance and similarity metrics

In this research, performance of the developed framework is not only be measured 

against ground truth segmentation, but also using performance metrics such as Haus-

dorff and Jaccard indexes that represents distance and similarity rate, which is compared 

with manually segmented ATFL results (see Table 5).

�e performance of the developed framework is compared against existing methods 

such as Chen–Vese and traditional active contour methods. As depicted in Table 5, com-

pared to segmentation made by the experts, the distance/similarity metrics (Hausdorff 

and Jaccard) are indicated that the performance of the developed framework is more 

promising for ATFL segmentation than others as the similarity index measured by Jac-

card metrics has got 91 % accuracy, which is higher than the traditional active contour 

Table 4 Performance evaluation: sensitivity, speci�city and accuracy measurements

Category of subjects Patient ID Type of used data Sensitivity (%) Speci�city (%) Accuracy (%)

Healthy subjects 1 Normal 98.7 96.3 96.6

2 Normal 99.0 96.5 96.8

3 Normal 99.0 96.4 96.8

4 Normal 98.3 96.9 97.1

5 Normal 98.9 96.6 97.0

6 Normal 98.8 96.4 96.7

7 Normal 99.3 96.6 96.9

8 Normal 97.7 96.3 96.4

9 Normal 99.2 96.3 96.7

10 Normal 97.1 96.8 96.9

11 Normal 97.7 96.8 96.9

12 Normal 98.2 96.3 96.6

Subjects with injuries 13 Tear 97.6 96.8 96.9

14 Tear 97.2 97.2 97.2

15 Tear 95.7 97.1 96.9

16 Tear 95.8 97.0 96.8

17 Tear 98.0 96.6 96.8

18 Tear 98.8 97.0 97.2

19 Tear 99.6 96.3 96.8

20 Tear 99.2 96.2 96.6

21 Thickened 99.0 96.2 96.6

22 Thickened 98.9 96.7 97.0

23 Thickened 98.1 96.2 96.4

24 Thickened 99.0 96.5 96.8

25 Thickened 98.5 96.6 96.9

Average 98.3 96.6 96.8

Standard deviation 2.02 0.29 0.20

Coefficient of  
variation

0.020 0.003 0.002
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(42 %) and the Chan–Vese method (71 %) accuracy rate. In addition, Hausdorff index 

value is achieved the lowest 14.2 than the others. �e obtained metrics (Hausdorff and 

Jaccard) estimation has proven the strong validation of the developed framework.

Similarly, the average segmented area is measured from the results obtained from the 

developed framework, experts segmentation, traditional active contour method and the 

Chan–Vese method as shown in Table 6.

As illustrated in Table 6, segmented area determined based on the results produced 

by the experts is 17,045 pixels. However, calculated area from the traditional active con-

tour method and Chan–Vese method are 50,045 and 17,242 pixels, respectively that are 

somehow far from the experts’ segmentation results. �e area pixels calculated from the 

results obtained using developed framework is 16,941 pixels that shows the nearest val-

ues to the experts segmentation results and shows better performance than the existing 

methods.

Clinical signi�cance

Since the developed framework works well for ATFL segmentation based on 2D ultra-

sound images and its performance evaluation shows high applicability in clinics. Next 

step is to measure the clinical significance of the developed framework. In this research, 

clinical significance of the developed framework is measured by evaluating three dif-

ferent kinds of subjects such as healthy subjects, injured ATFL comprises tear and 

thickened ligaments. In the first phase of evaluation to show clinical significance, the 

developed framework is applied on datasets containing normal, tear and thickened 

ATFL in ultrasound images and sensitivity, specificity and accuracy analysis is per-

formed to demonstrate accuracy of developed framework not only for normal ATFL but 

also for injured ATFL. Table 7 presented the sensitivity, specificity and accuracy analysis 

for 12 normal, 8 tear and 5 thickened subject dataset.

As shown in Table 7, obtained average values of sensitivity, specificity and accuracy for 

normal, tear and thickened ATFL are more than 95 %. �erefore, the developed frame-

work has performed well for Normal (sensitivity 98.70, specificity 96.44 and accuracy 

Table 5 Average similarity measure with Hausdor� and Jaccard indices

Distance and similarity measures

Comparative analysis Hausdor� index Jaccard’s index

The developed framework versus experts 14.2 0.91

The Chen–Vese method versus experts [33] 19.2 0.71

Traditional active contour method versus experts [51] 41.3 0.42

Table 6 Average segmented area and area ratio of the obtained results

Method Segmented area (pixels)

The developed framework 16,941

Experts 17,045

The Chen–Vese method [33] 17,242

Traditional active contour method [51] 50,045
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96.74), tear (sensitivity 97.73, specificity 96.77 and accuracy 96.90) and thickened (sensi-

tivity 98.49, specificity 96.52 and accuracy 96.90). As seen from the above table, it can be 

depicted that in all the measures, coefficient of variation is less than 5 % that shows the 

highest degree of significance of the developed framework for the clinical applications 

not only for normal ATFL evaluation but also for injured ATFL.

�e clinical significance of the developed framework is also measured by estimating 

the total area of segmented region. In order to measure clinical significance by area anal-

ysis, five (5) datasets from each group of subjects are selected randomly. We have taken 

five normal subjects (indicated as N1, N2, N3, N4, and N5), five tear subjects (presented 

as TA 1, TA 2, TA 3, TA 4, and TA 5) and five thickened subjects (indicated as �ick 1, 

�ick 2, �ick 3, �ick 4 and �ick5) datasets. First, the developed framework is applied 

to segment ATFL region from all the datasets and from the resulting segmented ATFL 

region, pixel area measurement is performed for all datasets (as shown in Fig. 5).

As illustrated in Fig. 5, the graph presents the area pixel measured from the automati-

cally segmented ATFL region using the developed framework. Here, the mean pixels 

obtained from ATFL region segmented from 2D ultrasound images of five normal sub-

jects is 16,345.09 that shows higher values compared to the mean pixels obtained from 

Table 7 Clinical signi�cance of the developed framework

Type of injury Measures Sensitivity (%) Speci�city (%) Accuracy (%)

Normal (12 subjects) Average 98.70 96.44 96.74

Standard deviation 0.39 0.23 0.24

Coefficient of variation 0.004 0.002 0.002

Tear (8 subjects) Average 97.73 96.77 96.90

Standard deviation 1.46 0.37 0.21

Coefficient of variation 0.015 0.004 0.002

Thickened (5 subjects) Average 98.49 96.52 96.78

Standard deviation 0.69 0.22 0.19

Coefficient of variation 0.007 0.002 0.002
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ATFL region segmented in 2D ultrasound images of five tear (14,940.96) and five thick-

ened (12,179.20) subjects’ datasets. As expected, normal ATFL have much bigger region 

compared to injured ATFL measurements. It should be noted that we have selected five 

subjects from each category due to the highest number of subjects in thickened category 

is five to maintain the consistency for this research. �e developed framework is able to 

identify the normal and injured ATFL based on the average pixels and shows its appli-

cability in clinical practices. Such measurements at the moment are not available. �us, 

the developed framework can be used for the diagnosis of ATFL inquiries after a slight 

modification that can provide the user accessibility to directly important and perform all 

the steps involved in the developed framework.

Conclusions

�is research developed a novel framework to segment ATFL from 2D ultrasound 

images based on the integration of the ROI initialization, AHE, PSO, Chan–Vese 

method and morphological operation. �e developed framework has marked a promis-

ing improvement over existing Chan–Vese method in terms of computational cost. In 

addition, distance/similarity, segmented area and area ratio metrics show the encour-

aging performance of the developed framework compared to existing methods. Since, 

ATFL segmentation from 2D ultrasound images has not been investigated earlier; this 

framework has opened new entrances for clinicians, radiologists, orthopaedists, rheu-

matologists and sports physician to visualize injuries and abnormalities of ATFL more 

accurately. In future, segmentation results can be used in 3D modelling of musculoskel-

etal tissues for better visualization and measurements. Hence, once the framework is 

bundled as a computer aided diagnosis (CAD) Tool, it would be able to assist the physi-

cian to diagnose ATFL disorders faster than the existing manual inspection methods by 

the clinicians.
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