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Abstract. A version of the WRF-Chem model with fully

coupled aerosol–meteorology–snowpack is employed to in-

vestigate the impacts of various aerosol sources on precipita-

tion and snowpack in California. In particular, the impacts of

locally emitted anthropogenic and dust aerosols, and aerosols

transported from outside California are studied. We differ-

entiate three pathways of aerosol effects: aerosol–radiation

interaction (ARI), aerosol–snow interaction (ASI), and

aerosol–cloud interaction (ACI). The convection-permitting

model simulations show that precipitation, snow water equiv-

alent (SWE), and surface air temperature averaged over the

whole domain (34–42◦ N, 117–124◦ W, not including ocean

points) are reduced when aerosols are included, therefore re-

ducing large biases in these variables due to the absence of

aerosol effects in the model. Aerosols affect California water

resources through the warming of mountaintops and the re-

duction of precipitation; however, different aerosol sources

play different roles in changing surface temperature, pre-

cipitation, and snowpack in California by means of various

weights of the three pathways. ARI by all aerosols mainly

cools the surface, leading to slightly increased SWE over the

mountains. Locally emitted dust aerosols warm the surface

of mountaintops through ASI, in which the reduced snow

albedo associated with dusty snow leads to more surface ab-

sorption of solar radiation and reduced SWE. Transported

aerosols and local anthropogenic aerosols play a dominant

role in increasing nonprecipitating clouds but reducing pre-

cipitation through ACI, leading to reduced SWE and runoff

on the Sierra Nevada, as well as the warming of mountain-

tops associated with decreased SWE and hence lower surface

albedo. The average changes in surface temperature from Oc-

tober 2012 to June 2013 are about −0.19 and 0.22 K for the

whole domain and over mountaintops, respectively. Overall,

the averaged reduction during October to June is about 7 %

for precipitation, 3 % for SWE, and 7 % for surface runoff for

the whole domain, while the corresponding numbers are 12,

10, and 10 % for the mountaintops. The reduction in SWE is

more significant in a dry year, with 9 % for the whole domain

and 16 % for the mountaintops. The maximum reduction of

∼ 20 % in precipitation occurs in May and is associated with

the maximum aerosol loading, leading to the largest decrease

in SWE and surface runoff over that period. It is also found

that dust aerosols can cause early snowmelt on the mountain-

tops and reduced surface runoff after April.

1 Introduction

Water resources in California are derived predominantly

from precipitation (mostly during the wintertime) and stor-

age in the snowpack in the Sierra Nevada. Snowpack pro-

vides about one-third of the water used by California’s cities
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and farms. The fresh water stored in the snowpack is gradu-

ally released through runoff into river flows during the warm

and dry season. The amount and timing of snowmelt are crit-

ical factors in determining water resources in this region. It is

important to understand the factors influencing precipitation

and snowpack on a seasonal timescale for water management

and hydropower operation.

The 2012–2014 California drought has been attributed

to both warming and anomalously low precipitation (Grif-

fin and Anchukaitis, 2014). Previous studies suggested that

warming trends are amplified in mountains compared to low-

lands (Pepin et al., 2015). The amplified warming in moun-

tain areas, also referred to as elevation-dependent warming,

is generally attributed to a few important processes (Pepin

et al., 2015) such as water vapor changes and latent heat re-

lease, surface water vapor changes, radiative flux changes as-

sociated with three-dimensional rugged topography (Gu et

al., 2012a; Liou et al., 2013; Lee et al., 2015; Zhao et al.,

2016), and snow–albedo feedback (Leung et al., 2004). A re-

view and assessment of the mechanisms contributing to an

enhanced warming over mountain areas is given in Pepin et

al. (2015).

In addition to the warming effects of greenhouse gases,

aerosols may have substantial impacts on water resources

in California. Recent observational and numerical model-

ing studies have shown that aerosol pollutants can substan-

tially change precipitation and snowpack in California (e.g.,

Rosenfeld et al., 2008a; Qian et al., 2009a; Hadley et al.,

2010; Ault et al., 2011; Creamean et al., 2013, 2015; Fan

et al., 2014; Oaida et al., 2015). Lee and Liou (2012) il-

lustrated that approximately 26 % of snow albedo reduction

from March to April over the Sierra Nevada is caused by an

increase in aerosol optical depth (AOD).

In California, aerosols can be generated locally or trans-

ported from remote sources. Among local aerosol types, dust

comprises a significant fraction over California (Wu et al.,

2017). Based on a 4-month, high-intensity record of size-

segregated particulate matter (PM) samples collected from a

high-elevation site, Vicars and Sickman (2011) found that the

mass concentration of coarse atmospheric PM in the south-

ern Sierra Nevada, California, was dominated by a contribu-

tion from dust (50–80 %) throughout the study period. Dust

aerosols can exert a significant impact on radiative forcing

and regional climate in California through their interaction

with radiation (e.g., Zhao et al., 2013a) as well as their role as

cloud condensation nuclei (CCN) for cloud formation (e.g.,

Fan et al., 2014). Anthropogenic aerosols are geographically

distributed because of localized emission sources, the short

atmospheric residence time, and regional topography. With

valleys and surrounding mountain barriers, dispersion of air

pollutants is more difficult for locally emitted anthropogenic

air pollution. The anthropogenic aerosols can cause changes

in atmospheric circulation and regional climate, especially

where aerosol concentrations are high and the synoptic at-

mospheric systems are not prominent (e.g., Qian et al., 2003;

Fast et al., 2006; Rosenfeld et al., 2008a; Zhao et al., 2013a).

Besides the local aerosol sources, the atmospheric trans-

port of aerosol pollutants from the Asian continent (e.g.,

Jiang et al., 2007; Wang et al., 2015; Hu et al., 2016) is also

a significant contributor to aerosol loading throughout the

Pacific basin. Asian aerosols can reach relatively high con-

centrations above the marine boundary layer in the western

US, representing as much as 85 % of the total atmospheric

burden of PM at some sites (VanCuren, 2003). Trans-Pacific

dust transport has been found to be particularly relevant in

high-elevation regions such as the Sierra Nevada, which typ-

ically represents free-tropospheric conditions due to the lim-

ited transport of lowland air pollutants and predominance

of upper-air subsidence (VanCuren et al., 2005). Observa-

tions from the CalWater campaign demonstrated that dust

and biological aerosols transported from northern Asia and

the Sahara were present in glaciated high-altitude clouds in

the Sierra Nevada, coincident with elevated ice nuclei (IN)

particle concentrations and ice-induced precipitation (Ault et

al., 2011; Creamean et al., 2013).

Aerosols can influence precipitation, snowpack, and re-

gional climate through three pathways: (1) aerosol–radiation

interaction (ARI, also known as aerosol direct effect), which

can warm the atmosphere but cool the surface, resulting in

changes in thermodynamic environment for cloud and pre-

cipitation and the delay of the snowmelt (Charlson et al.,

1992; Kiehl and Briegleb, 1993; Hansen et al., 1997; Ko-

ren et al., 2004; Gu et al., 2006, 2016, 2017); (2) aerosol–

cloud interaction (ACI, also known as aerosol indirect ef-

fect), which is related to aerosols serving as CCN and IN.

By changing the size distribution of cloud droplets and ice

particles, aerosols may affect cloud microphysics, radiative

properties and precipitation efficiency and thus affect the at-

mospheric hydrological cycle and energy balance (Twomey,

1977; Jiang and Feingold, 2006; Rosenfeld et al., 2008b;

Qian et al., 2009b; Gu et al., 2012b). (3) Aerosol–snow

interaction (ASI) occurs when aerosols (mainly absorbing

aerosols, such as dust and black carbon) are deposited on

snowpack. They can reduce snow albedo and affect snowmelt

(Warren and Wiscombe, 1985; Jacobson, 2004; Flanner et al.,

2007; Qian et al., 2011, 2015; Zhao et al., 2014). Numerical

experiments have shown that ARI reduces the surface down-

ward radiation fluxes, cools the surface, and warms the atmo-

sphere over California (Kim et al., 2006; Zhao et al., 2013a),

which could subsequently impact clouds, precipitation, and

snowpack. In a 2-D simulation, Lynn et al. (2007) shows

that ACI decreases orographic precipitation by 30 % over

the length of the mountain slope. Fan et al. (2014) showed

that ACI increases the accumulated precipitation of an at-

mospheric river event by 10–20 % from the Central Valley

to the Sierra Nevada due to a ∼ 40 % increase in snow for-

mation. Snow impurities (ASI) increase ground temperature,

decrease snow water, shorten snow duration, and cause ear-
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lier runoff (Jacobson, 2004; Painter et al., 2007, 2010; Qian

et al., 2009a; Waliser et al., 2011; Oaida et al., 2015).

Although recent studies showed that aerosols can sub-

stantially influence precipitation and snowpack in Califor-

nia, they focused only on one of the aerosol sources or

on a single event or pathway. A complete account of the

aerosol impacts from different sources through three path-

ways on regional climate in California has not been pre-

sented yet. The objective of this study is to investigate the

impacts of various aerosol sources on seasonal precipitation

and snowpack in California. A fully coupled high-resolution

aerosol–meteorology–snowpack model will be used. We will

distinguish and quantify the impacts of aerosols from local

emissions and transport, and the roles of different prevail-

ing aerosol types in California, particularly dust and anthro-

pogenic aerosols. In Sect. 2, we describe the WRF-Chem

model employed and experiments designed to understand the

impact of aerosols on precipitation and snowpack in Califor-

nia. Results from model simulations are discussed in Sect. 3.

Concluding remarks are given in Sect. 4.

2 Model description and experimental design

This study uses a version of the Weather Research and Fore-

casting (WRF) model with chemistry (WRF-Chem; Grell et

al., 2005) improved by the University of Science and Tech-

nology of China based on the publicly released version 3.5.1

(Zhao et al., 2014). ASI is implemented in this WRF-Chem

version by considering aerosol deposition on snowpack and

the subsequent radiative impacts through the SNow, ICe, and

Aerosol Radiative (SNICAR) model (Zhao et al., 2014). The

SNICAR model is a multilayer model that accounts for ver-

tically heterogeneous snow properties and heating and influ-

ence of the ground underlying snow (Flanner and Zender,

2005; Flanner et al., 2007, 2009, 2012). The SNICAR model

uses the theory from Wiscombe and Warren (1980) and the

two-stream, multilayer radiative approximation of Toon et

al. (1989). SNICAR simulates snow surface albedo as well

as the radiative absorption within each snow layer. It can also

simulate aerosol content and radiative effect in snow, and

was first used to study the aerosol heating and snow aging

in a global climate model by Flanner et al. (2007). Simulated

change in snow albedo by SNICAR for a given black carbon

concentration in snow has been validated with recent labo-

ratory and field measurements (Brandt et al., 2011; Hadley

and Kirchstetter, 2012). A more detailed description of the

SNICAR model can be found in Flanner and Zender (2005)

and Flanner et al. (2007, 2012).

The MOSAIC (Model for Simulating Aerosol Interac-

tions and Chemistry) aerosol model (Zaveri et al., 2008)

with the CBM-Z (carbon bond mechanism) photochemical

mechanism (Zaveri and Peters, 1999) is used and coupled

with the SNICAR model. The MOSAIC aerosol scheme

uses the sectional approach to represent aerosol size dis-

tributions with a number of discrete size bins, either four

or eight bins in the current version of WRF-Chem (Fast

et al., 2006). In this study, aerosol particles are partitioned

into four sectional bins with a dry diameter within 0.039–

0.156, 0.156–0.625, 0.625–2.5, and 2.5–10.0 µm. The 4-bin

approach has been examined in dust simulations and proved

to reasonably produce dust mass loading and AOD com-

pared with the 8-bin approach (Zhao et al., 2013b). All major

aerosol components including sulfate, nitrate, ammonium,

black carbon, organic matter, sea salt, and mineral dust are

simulated in the model. The MOSAIC aerosol scheme in-

cludes physical and chemical processes of nucleation, con-

densation, coagulation, aqueous phase chemistry, and wa-

ter uptake by aerosols. Dry deposition of aerosol mass and

number is simulated following the approach by Binkowski

and Shankar (1995), which includes both particle diffusion

and gravitational effects. Wet removal of aerosols by grid-

resolved stratiform clouds/precipitation includes in-cloud re-

moval (rainout) and below-cloud removal (washout) by im-

paction and interception, following Easter et al. (2004) and

Chapman et al. (2009). In this study, ice-borne aerosols are

not explicitly treated in the model but the removal of aerosols

by the droplet freezing process is considered. Aerosol optical

properties such as extinction, single-scattering albedo (SSA),

and asymmetry factor for scattering are computed as a func-

tion of wavelength for each model grid box. Aerosols are

assumed internally mixed in each bin, i.e., a complex refrac-

tive index is calculated by volume averaging for each bin for

each chemical constituent of aerosols (Barnard et al., 2010;

Zhao et al., 2013a). The Optical Properties of Aerosols and

Clouds data set (Hess et al., 1998) is used for the shortwave

(SW) and longwave (LW) refractive indices of aerosols, ex-

cept that a constant value of 1.53 + 0.003i is used for the SW

refractive index of dust following Zhao et al. (2010, 2011).

A detailed description of the computation of aerosol optical

properties in WRF-Chem can be found in Fast et al. (2006)

and Barnard et al. (2010).

ARI is included in the radiation scheme as implemented

by Zhao et al. (2011). The optical properties and direct radia-

tive forcing of individual aerosol species in the atmosphere

are diagnosed following the methodology described in Zhao

et al. (2013a). The activation and resuspension between dry

aerosols and cloud droplets are included in the model as

shown in Gustafson et al. (2007). By linking the simulated

cloud droplet number with shortwave radiation and micro-

physics schemes, ACI is effectively simulated in the model

(Chapman et al., 2009).

The model setups (Table 1), including the physical

schemes used, follow Wu et al. (2017), which showed that the

model simulations reasonably captured the distribution and

variation in aerosols in the San Joaquin Valley. The model

domain covers the western US centered at 38◦ N and 121◦ W,

as shown in Fig. 1. The horizontal resolution is 4 km × 4 km

together with a vertical resolution of 40 model levels. Model

integrations with time steps of 20 s have been performed for
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Figure 1. Model domain and terrain height (m). 991 DWR sites are

represented by black dots; 138 CIMIS stations are represented by

red dots; 32 SNOTEL sites are represented by magenta dots.

10 months (with the first month used for the model spinup)

from 1 September, 2012, at 00:00 UTC to the end of June

2013 to cover the major precipitation and snow seasons. To

test the robustness of the results, simulations are also con-

ducted for 2013–2014, and similar results are found. In the

following section, our analysis focuses on 2012–2013, while

quantitative information on the aerosol impacts for 2013–

2014 is provided for comparison.

Note that convective processes are resolved in the 4 km

simulations. One important subgrid process in climate mod-

els is the representation of deep convection. Parameterizing

deep convection is challenging and the use of convection pa-

rameterization schemes leads to common errors such as mis-

representation of the diurnal cycle of convective precipitation

(e.g., Dai et al., 1999; Brockhaus et al., 2008), underestima-

tion of dry days (e.g., Bergetal., 2013) and precipitation in-

tensity (e.g., Prein et al., 2013; Fosser et al., 2014; Ban et

al., 2014), and overestimation of low-precipitation frequency

(e.g., Berg et al., 2013). Although recently developed param-

eterization schemes lead to improvements in the simulation

of precipitation intensity (Donner et al., 2011), intraseasonal

variability (Benedict et al., 2013), and diurnal cycles (Bech-

told et al., 2014), a promising remedy to the error-prone

model simulations using convective parameterizations is the

use of convection-permitting horizontal resolution with grid

spacing of about 4 km or less (e.g., Satoh et al., 2008; Prein

et al., 2013; Ban et al., 2014). Advances in high-performance

computing allowed the refinement of the model grids well

below 10 km. At these scales, convection parameterization

schemes may be switched off as deep convection starts to be

resolved explicitly (e.g., Weisman et al., 1997). According

to Prein et al. (2015), it seems prudent to use horizontal grid

spacing of 4 km or less for convection-permitting model sim-

ulations. The 4 km simulation can also represent topography

and inhomogeneous distribution of anthropogenic emission

and precipitation better, leading to a better representation of

aerosol distribution compared to the 20 km simulation (Wu

et al., 2017).

Since the model explicitly considers different sources and

types of aerosols and contains the physical processes to rep-

resent various aerosol effects (ARI, ASI, and ACI), it is

useful to decompose the aerosol effects based on aerosol

sources, types and pathways. Note that the overall aerosols

effects are not a simple sum of different aerosol sources and

types, nor a linear combination of the ARI, ASI, and ACI

effects. Differences between various simulations, however,

help to identify the effect of a single source or pathway and

the decomposition approach is common practice in the exper-

imental design of modeling studies. To examine the overall

aerosol effects and the roles of locally generated and trans-

ported aerosols, the following five experiments have been de-

signed (Table 2):

1. CTRL is the control experiment with all aerosol emis-

sions and transport included in the simulation.

2. NoLocDust is performed without any local dust emis-

sion. Differences between the CTRL and NoLocDust

experiments illustrate the effect of locally emitted dust

aerosols.

3. NoLocAnth is similar to NoLocDust, except that emis-

sions of local anthropogenic aerosols are turned off. A

comparison between CTRL and this experiment will

elucidate the effect of local anthropogenic aerosols.

4. In NoTran the initial and boundary chemical condi-

tions in the CTRL simulation are taken from the global

Model for Ozone and Related Chemical Tracers, ver-

sion 4 (MOZART-4; Emmons et al., 2010). The chemi-

cal species transported into the model domain include

organic carbon, black carbon, sulfate, nitrate, ammo-

nium, sea salt, dust, etc. In the NoTran experiment,

aerosols transported from outside the model domain, in-

cluding those from East Asia and other regions, are not

considered by setting the lateral boundary conditions for

aerosols to zero. Differences between CTRL and No-

Tran will show the effect of transported aerosols.

Atmos. Chem. Phys., 18, 5529–5547, 2018 www.atmos-chem-phys.net/18/5529/2018/
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Table 1. Model configuration.

Atmospheric process WRF-Chem option

Microphysics Morrison double-moment

Radiation RRTMG for both shortwave and longwave

Land surface CLM4 with SNICAR included

Planetary boundary layer YSU

Cumulus No cumulus scheme used

Chemical driver CBM-Z

Aerosol driver MOSAIC 4-bin

Anthropogenic emission NEI05

Biogenic emission MEGAN

Biomass burning emission GFEDV2.1

Dust emission DUSTRAN

Meteorological initial and boundary conditions ERA-Interim

Chemical initial and boundary conditions MOZART-4 divided by 2

5. CLEAN is performed without any local aerosol emis-

sions or transport from outside the model domain, while

all the transported chemical species are kept, and there-

fore represents a clean condition scenario. Aerosols are

low in the simulation, but not zero, possibly due to

aerosol chemistry. The CCN concentration at supersat-

uration of 0.1 % is on the order of 10 cm−3 during most

of the CLEAN simulation. The distribution of liquid wa-

ter path and ice water path in the CLEAN simulation is

also similar to that in the CTRL simulation, with dif-

ferences in magnitude. Differences between the CTRL

and CLEAN experiments would illustrate the effects of

all primary aerosol types, including those locally emit-

ted and transported from outside the domain.

In order to distinguish the pathways through which the

aerosols influence precipitation and snowpack, we also

conducted a few other experiments (Table 3):

6. NARI is similar to the CTRL run, except that ARI is not

included. A comparison between CTRL and this exper-

iment will elucidate the effect of ARI.

7. NASI is similar to the CTRL run, except that ASI is not

included. A comparison between CTRL and this exper-

iment will show the effect of ASI.

8. NARS is similar to the CTRL run, except that both ARI

and ASI are not included. By comparing this experiment

and CLEAN, the effect due to ACI can be examined.

3 Model simulation results

3.1 Validation of model results

Since our focus is on the changes in precipitation and snow-

pack due to aerosol effects, we first show the spatial distri-

bution of the averaged results over the period from Octo-

ber 2012 to June 2013 when snow is normally present on

the Sierra Nevada. Figure 2 illustrates a few important and

relevant variables that the model simulates in the CTRL ex-

periment, including liquid water path (LWP), ice water path

(IWP), precipitation, snow water equivalent (SWE), and tem-

perature at 2 m (T2) above the ground. SWE is a common

snowpack measurement. It is the amount of water contained

within the snowpack and can be regarded as the depth of

water over a unit of flat surface that would theoretically re-

sult if the entire snowpack melted instantaneously. Here, the

model-simulated SWE is the mean value of the accumu-

lated SWE from 3 h model outputs. It is shown that clouds

(Fig. 2a, b), precipitation (Fig. 2c), snowpack (Fig. 2d), and

surface runoff (Fig. S1 in the Supplement) mostly occur

over the Sierra Nevada and Klamath Mountains in north-

ern California. For temperature (Fig. 2e), the Central Valley

area appears to be relatively warm with two maxima over

the northern and southern parts of the Central Valley, while

colder temperatures are found over the mountain ranges. The

model-simulated precipitation is compared with correspond-

ing observations from the Parameter elevation Regression

on Independent Slopes Model (PRISM, 2004) gridded data

product at 4 km resolution (Fig. 2f). Note that the precipita-

tion rate here is for total precipitation, including rainfall and

ice-phase particles. The model successfully captures the pre-

cipitation pattern observed by the PRISM data set, including

the locations of the major precipitation centers, but slightly

overestimates the magnitude over the Sierra Nevada.

In order to validate the simulated seasonal variations, the

monthly mean model-simulated precipitation and T2 are

compared with the observations (Fig. 3a, c). Model data

are sampled onto observational sites before the compari-

son is conducted. For precipitation observations, besides the

PRISM product, we employ the Climate Prediction Cen-

ter (CPC) Unified Gauge-Based Analysis of Daily Precipi-

tation product (Chen et al., 2008) at 0.25◦
× 0.25◦ resolu-

tion and the gauge measurements from Department of Water

Resources (DWR). Observed air temperatures are obtained

www.atmos-chem-phys.net/18/5529/2018/ Atmos. Chem. Phys., 18, 5529–5547, 2018



5534 L. Wu et al.: Impacts of aerosols on seasonal precipitation and snowpack in California

Table 2. Experimental design for various aerosol sources.

Experiment Anthropogenic Dust Transport Description

aerosols aerosol

CTRL Y Y Y Control experiment with all aerosol emissions and transport included

NoLocDust Y N Y Local dust aerosol emission is not included

NoLocAnth N Y Y Local anthropogenic aerosol emissions are not included

NoTran Y Y N Aerosols transported from outside the model domain are not included

CLEAN N N N Aerosol emissions and transport are not included

Table 3. Experimental design for various aerosol pathways using

the CTRL aerosol emissions.

Experiment ARI ACI ASI Description

NARI N Y Y ARI is not included

NASI Y Y N ASI is not included

NARS N Y N ARI and ASI are not included

Figure 2. Model-simulated (a) LWP (g m−2), (b) IWP (g m−2),

(c) precipitation (mm day−1), (d) SWE (mm), and (e) tempera-

ture at 2 m, T2 (K) from the CTRL simulation, and (f) PRISM ob-

served precipitation (mm day−1), averaged from October 2012 to

June 2013.

from the California Irrigation Management Information Sys-

tem (Snyder, 1984). For SWE, daily accumulated SWE sim-

ulations are compared with measurements collected at Snow

Telemetry (SNOTEL) stations. SNOTEL SWE is measured

using a snow pillow sensor and biases in SWE measurement

could occur when temperature differences between surround-

ing ground cover and the pillow sensor creates an uneven dis-

tribution of snow (Meyer et al., 2012). Both under- and over-

Figure 3. (a) Monthly mean precipitation (mm day−1) from the

CTRL simulation (red dashed) and PRISM (blue), CPC (orange),

and DWR (green) observations. (b) Daily accumulated SWE (mm)

from the CTRL simulation (red dashed) and SNOTEL observation

(blue). (c) Monthly mean T2 (K) from the CTRL simulation (red)

and CIMIS observation (blue). Model data are sampled onto obser-

vational sites before the comparison is conducted.

estimation could happen, depending on the snowmelt con-

ditions and the snow density rate of change (Serreze et al.,

1999, 2001; Johnson and Marks, 2004).

It is shown that the model captures the maximum pre-

cipitation in December, with the magnitude falling between

the observations from CPC and PRISM/DWR during winter,

which is the rainy season in California (Fig. 3a). In the rela-

tively dry months from February to June, the simulated pre-

cipitation has a similar magnitude to the observations, with a

slight overestimation or underestimation in different months.

For SWE, the model simulations represent seasonal varia-

tions of SWE with the maximum between March and April

(Fig. 3b), but the model overestimates the SWE amount com-

Atmos. Chem. Phys., 18, 5529–5547, 2018 www.atmos-chem-phys.net/18/5529/2018/



L. Wu et al.: Impacts of aerosols on seasonal precipitation and snowpack in California 5535

pared to SNOTEL. While the model overestimates the sur-

face temperature in magnitude, it captures the seasonal vari-

ations well, including the highest and lowest temperatures in

July and January, respectively (Fig. 3c).

The aerosols simulated over California using this model

have been validated extensively in Wu et al. (2017) by

comparing them to observations, such as MISR (Multiangle

Imaging Spectroradiometer), AERONET (AErosol RObotic

NEtwork) AOD, CALIPSO (Cloud-Aerosol Lidar and In-

frared pathfinder Satellite Observation) aerosol extinction,

IMPROVE (Interagency Monitoring of Protected Visual En-

vironments) and EPA CSN (National Chemical Speciation

Network operated by Environmental Protection Agency)

aerosol speciation. It has been shown than the model sim-

ulation used in this study reasonably captures the distribu-

tion and seasonal variation in aerosols during the cold season

from October to March. The simulation of aerosols in the

warm season from April to September (especially from July

to September) has larger low biases than in the cold season,

mainly due to poor simulations of dust emission and ver-

tical mixing. Because precipitation and snow mainly occur

in October–June, we focus on the simulations from October

to June which have relatively good performance for aerosol

simulations in this study.

Here, we present the distributions of AOD averaged from

October 2012 to June 2013 for the MISR (Diner et al., 1998)

observation and all aerosols in the CTRL simulation. We also

present locally emitted aerosols and those transported from

outside the model domain, derived from the difference be-

tween the CTRL simulation and the corresponding experi-

ment (NoLocAnth, NoLocDust, and NoTran). This will fa-

cilitate the understanding of the aerosol effects in different

regions and from different sources (Fig. 4). It is shown that

the model simulation captures the spatial distribution of AOD

in California well, including the maximum over the southern

part of the valley area and larger AODs over the lower lands

to the southeast of the Sierra Nevada (Fig. 4a, b). Note that

the smoother contour in MISR is due to the coarser horizon-

tal resolution (0.5◦) of the MISR data. The distribution of the

locally emitted anthropogenic aerosols (Fig. 4c), which are

mostly located over the Central Valley and associated with

the emissions from local industries and farms, presents a sim-

ilar pattern to the total AOD and substantially contributes

to the maxima AOD over the region. Local dust aerosols

mainly reside over the lower lands to the southeast of the

Sierra Nevada, while substantial amounts are also seen over

the Central Valley (Fig. 4d). Transported aerosols are carried

into the domain by atmospheric circulation and widely dis-

tributed, with more over the Central Valley due to the trap-

ping of aerosols by the surrounding mountains (Fig. 4e).

Since the observations on aerosol-in-snow concentrations

are rather limited both spatially and temporally, it is very

difficult to conduct direct comparisons with model simu-

lations. Here we evaluate the model simulations of snow

albedo which is directly affected by the ASI (Fig. S2). The

Figure 4. Spatial distribution of aerosol optical depth (AOD) aver-

aged from October 2012 to June 2013 for (a) MISR observations,

(b) all aerosols in the CTRL simulation, (c) local anthropogenic

aerosols, (d) local dust aerosols, and (e) transported aerosols from

outside the domain, derived from the difference between the CTRL

simulation and the corresponding experiment (NoLocAnth, NoLoc-

Dust, and NoTran); 10 m wind vectors from the CTRL simulation

are shown in (b).

model-simulated snow albedo is compared with the prod-

uct from NASA Land Data Assimilation Systems (NLDAS;

Sheffield et al., 2003) Mosaic (MOS). It is shown that the

model simulation provides a rather reasonable estimate of the

snow albedo when ASI is included. Overall, the WRF-Chem

model that we employ in this study is a reliable tool for ex-

amining the impact of aerosols on the seasonal variations of

precipitation and snowpack in California, especially over the

Sierra Nevada.

3.2 Aerosol effects on precipitation and snowpack

The overall aerosol effects from all aerosol types and sources

(including locally emitted and transported) through the three

pathways (ARI, ASI, and ACI) can be examined from the dif-

ferences between the experiments CTRL and CLEAN. The

two-tailed Student’s t test, in which deviations of the esti-

mated parameter in either direction are considered theoreti-

cally possible, is applied to the 3 h data for each experiment

in this study to measure the statistical significance of the

simulations. Figure 5 shows the differences averaged from

October 2012 to June 2013 for precipitation, SWE, and T2,

where the dots represent differences in the 3 h data that are

statistically significant at above the 90 % level. Due to the

aerosol effects, temperature decreases over the Central Val-

ley, where most aerosols are located, while significant warm-

ing occurs over the mountaintops (Fig. 5c). Precipitation de-
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Figure 5. Total aerosol effects (CTRL – CLEAN) on spatial distri-

butions of (a) precipitation (mm day−1), (b) SWE (mm), and (c) T2

(K). The dotted area denotes statistical significance above the 90 %

confidence level. Blue lines represent the mountaintops with eleva-

tion ≥ 2.5 km.

creases over the Sierra Nevada (Fig. 5a), consequently lead-

ing to decreased SWE (Fig. 5b).

In order to understand how the aerosols affect these impor-

tant variables, we examine the effects of ARI, ASI, and ACI

separately. In the following figures (Figs. 6–12), the differ-

ences are statistically significant at the 70 % level. It is seen

that the major effect of ARI is to decrease the surface tem-

perature over the whole domain through the scattering and

absorption of solar radiation, with the maxima over the Cen-

tral Valley where the aerosols are mostly located, contribut-

ing to the surface cooling caused by the total aerosol effect in

that region (Fig. 6c). The ARI induced surface cooling over

the Sierra Nevada, although not as strong as over the Central

Valley, leads to reduced snowmelt and hence a slight increase

in SWE, in contrast to the overall aerosol effect on SWE

(Fig. 6b). The effect of ARI on rainfall is not very signifi-

cant (Fig. 6a). The main effect of ASI is to increase the tem-

perature (Fig. 7c) over the snowy area of the Sierra Nevada

through the reduction of snow albedo (Fig. 7d). Hence there

is more absorption of solar radiation at the surface, contribut-

ing to the reduced SWE over the Sierra Nevada (Fig. 7b). The

effect of ASI on precipitation is also minimal.

Figure 8 shows the effect of aerosols on clouds through

ACI. When more aerosols are present in the atmosphere,

more CCN are available for the formation of clouds with

smaller cloud droplets. As a result, more nonprecipitating

clouds are produced when aerosols are included in the model.

The enhanced LWP (Fig. 8a) is primarily produced by the

ACI effect (Fig. 8c). There are no significant changes in IWP

(including ice, snow, and graupel) because the aerosol ef-

fect on ice cloud formation is not explicitly treated in the

model. The ACI effect leads to reduced precipitation and less

SWE over the mountains (Fig. 9a, b). Temperature decreases

over the valley due to more clouds that formed in associa-

tion with the ACI effect. The increase in temperature over

the mountain areas (Fig. 9c) is caused by the reduced snow

Figure 6. ARI effects (CTRL – NARI) on spatial distributions of

(a) precipitation (mm day−1), (b) SWE (mm), and (c) T2 (K). Blue

lines represent the mountaintops with elevation ≥ 2.5 km.

Figure 7. ASI effects (CTRL – NASI) on spatial distributions of

(a) precipitation (mm day−1), (b) SWE (mm), (c) T2 (K), and (d)

surface albedo. Blue lines represent the mountaintops with elevation

≥ 2.5 km.

amount, which results in weaker surface albedo (Fig. 9d) and

enhanced solar absorption at the surface, and overwhelms the

decrease in temperature which may be caused by an increase

in cloud.
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Figure 8. Differences in (a) LWP (g m−2) and (b) IWP (g m−2)

due to all aerosol effects (CTRL – CLEAN), and (c) LWP (g m−2)

and (d) IWP (g m−2) due to the ACI effect (NARS – CLEAN). Red

lines represent the mountaintops with elevation ≥ 2.5 km.

Overall, aerosols affect surface temperature, precipitation,

and snowpack in California through the three pathways. ACI

plays a dominant role in increasing cloud water but reduces

precipitation, leading to reduced SWE and surface runoff

(Fig. S3) over the Sierra Nevada. ASI also reduces SWE

due to the smaller snow albedo associated with dirty snow,

leading to more surface absorption and snowmelt. ARI, in

contrast, slightly increases SWE through the cooling of the

surface. For surface temperature, ARI and ACI contribute

together to the cooling of the valley area, while ACI and

ASI significantly warm the surfaces of the mountaintops.

Note that for the ASI effect, warming of the snow cover area

through aerosol induced snow–albedo feedback is the cause

of the reduced SWE. For the ACI effect, however, warm-

ing over the mountain region is a result of the reduced SWE

which can also induce snow–albedo feedback and result in

smaller surface albedo and more surface absorption of solar

radiation.

Next, we examine the roles of local anthropogenic aerosols

and local dust as well as transported aerosols. The effect of

local anthropogenic aerosols can be discovered from the dif-

ferences between CTRL and NoLocAnth. It is shown that

local anthropogenic aerosols slightly suppress precipitation

(Fig. 10a) via ACI, leading to reduced SWE (Fig. 10b) and

warming over the mountaintops (Fig. 10c). The cooling of

Figure 9. Same as Fig. 7, but for the ACI effect (NARS – CLEAN).

the valley area, where locally emitted anthropogenic aerosols

are mostly located (Fig. 4b), is associated with both the ARI

effect and more nonprecipitating clouds produced through

ACI. Dust aerosols emitted from local sources mainly warm

the surface through the reduction of snow albedo (ASI,

Fig. 11c), consequently enhancing the snowmelt and lead-

ing to the reduced SWE (Fig. 11b). Local dust aerosols have

no significant effect on precipitation (Fig. 11a).

Note that the effects of local anthropogenic and dust

aerosols do not seem to be able to explain the total effects of

aerosols as seen in Fig. 5, raising the question of whether the

transported aerosols play an important role in precipitation

and snowpack over the Sierra Nevada. Figure 12 illustrates

the impact of aerosols transported from outside the model

domain. It is shown that transported aerosols reduce the pre-

cipitation through ACI (Fig. 12a), which exceeds the ARI

effect and leads to decreased SWE and increased tempera-

ture over the southern part of the Sierra Nevada (Fig. 12b,

c). Over the Central Valley, as well as over the northern part

of the Sierra Nevada, temperature decreases (Fig. 12c) due

to the relatively larger ARI effect of the transported aerosols
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Loc anth

Figure 10. Effect of local anthropogenic aerosols (CTRL – NoLo-

cAnth) on spatial distributions of (a) precipitation (mm day−1),

(b) SWE (mm), and (c) T2 (K). Blue lines represent the mountain-

tops with elevation ≥ 2.5 km.

Loc dust

Figure 11. Same as Fig. 10, but for the effect of local dust aerosols

(CTRL – NoLocDust).

compared to the ACI effect, result in less snowmelt and in-

creased SWE over that region (Fig. 12b).

The overall changes induced by aerosols for surface tem-

perature (K) and precipitation, SWE, and surface runoff in

percentage averaged from October to June are given in Ta-

ble 4 for the whole domain (34–42◦ N, 117–124◦ W, not in-

cluding ocean points), mountaintops (elevation ≥ 2.5 km),

and lower elevations (elevation < 2.5 km). For the whole do-

main in 2012–2013, temperature is cooled by 0.19 K due to

aerosol ARI (−0.14 K) and ACI (−0.06 K), which are mainly

associated with transported aerosols (−0.17 K), and is ac-

companied by reductions in precipitation, SWE, and sur-

face runoff of about 7, 3, and 7 %, respectively. Reduction

in precipitation is mainly caused by ACI (−6.26 %) asso-

ciated with transported (−2.97 %) and local anthropogenic

(−1.02 %) aerosols. For SWE, the reduction is attributed to

ACI (−2.67 %) and ASI (−1.96 %), while ARI contributes

to an increase (1.88 %). Surface runoff is defined as water

from precipitation, snowmelt, or other sources that flows over

the land surface and is a major component of the hydrolog-

ical cycle. Overall changes in surface runoff are similar to

Figure 12. Same as Fig. 10, but for the effect of transported aerosols

(CTRL – NoTran).

those in precipitation and are accompanied by contributions

from changes in snowmelt. For the mountaintops, a warm-

ing of 0.22 K is found and attributed to ASI (0.12 K) and

ACI (0.17 K), associated with local dust and anthropogenic

aerosols, respectively, with 10 % or more reduction in pre-

cipitation, snowpack, and surface runoff. Therefore, aerosols

may contribute to the California drought through both the

warming of mountaintops and anomalously low precipita-

tion over the whole area. For lower elevations, the domain-

averaged changes are similar to those for the whole domain,

except for SWE which slightly increases by 0.42 % due to

ARI (2.43 %), with the main contribution from transported

aerosols (4.01 %).

The simulations for 2013–2014 are consistent with those

in 2012–2013 (Table 4). For the whole domain in 2013–

2014, the temperature cools by 0.21 K due to aerosols and

is accompanied by reductions in precipitation, SWE, and

surface runoff of about 6, 9, and 5 %. Aerosol impacts on

SWE are more significant in 2013–2014 (−8.88 %) than in

2012–2013 (−3.17 %), possibly due to less precipitation and

SWE in 2013–2014 than in 2012–2013 (not shown). The

changes in SWE for 2013–2014 are −15.57 % for the moun-

taintops and 2.66 % for the lower elevations. The relative

change in surface runoff on the mountaintops in 2013–2014

is smaller than 2012–2013 because the mean surface runoff

in 2013–2014 (0.33 mm day−1) is larger than that in 2012–

2013 (0.27 mm day−1), possibly contributed to by less SWE

and faster snowmelt on the mountaintops in 2013–2014. The

corresponding changes in evapotranspiration are −0.12 %

in 2012–2013 and −1.20 % in 2013–2014, which also con-

tributes to the relatively smaller change in surface runoff in

2013–2014 on the mountaintops.

3.3 Seasonal variations of aerosol effects

Figure 13 depicts the monthly mean AOD for total aerosols

(brown solid), local anthropocentric aerosols (green dashed),

local dust (blue dashed), and transported aerosols (red

dashed) averaged over the whole domain, mountaintops, and
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Table 4. Changes in surface temperature (K) and precipitation, SWE, and surface runoff in percentage averaged from October 2012 to June

2013 due to overall and various aerosol effects for the whole domain (34–42◦ N, 117–124◦ W, not including ocean points), mountaintops

(with elevation ≥ 2.5 km), and lower elevations (< 2.5 km). Total impacts for the simulations from October 2013 to June 2014 are also

included as “Total_13–14”.

Region Source/ T2 Precipitation SWE Surface runoff

pathway (K) (%) (%) (%)

Whole domain

Total −0.19 −6.87 −3.17 −6.58

Total_13–14 −0.21 −5.99 −8.88 −5.13

ARI −0.14 −0.47 1.88 −0.21

ASI 0.01 −0.03 −1.96 0.04

ACI −0.06 −6.26 −2.67 −6.30

LocAnth −0.02 −1.02 −0.91 −0.94

LocDust 0.00 −0.19 −1.35 0.01

Tran −0.17 −2.97 1.89 −2.90

mountaintops

Total 0.22 −11.53 −10.50 −9.58

Total_13–14 0.15 −9.90 −15.57 −3.55

ARI −0.09 −0.61 0.76 −0.49

ASI 0.12 0.26 −3.94 1.10

ACI 0.17 −11.03 −7.57 −10.25

LocAnth 0.03 −1.75 −1.60 −2.06

LocDust 0.10 0.31 −2.99 1.49

Tran −0.02 −5.25 −2.43 −4.76

Lower elevations

Total −0.21 −6.62 0.42 −6.42

Total_13–14 −0.22 −5.75 2.66 −5.26

ARI −0.14 −0.46 2.43 −0.19

ASI 0.00 −0.04 −0.99 −0.01

ACI −0.07 −6.00 −0.27 −6.09

LocAnth −0.03 −0.98 −0.57 −0.89

LocDust 0.00 −0.22 −0.55 −0.07

Tran −0.17 −2.85 4.01 −2.81

lower elevation area from October 2012 to June 2013. It is

seen that transported aerosols contribute to about two-thirds

of the total AOD. The total AOD has two maxima, one in

December and one in May, which are mainly associated with

the seasonal variations of transported aerosols and local dust

aerosols. Local dust AOD starts to increase in March and

reaches a maximum around May, while transported aerosol

AOD peaks in April (Fig. 13a). The seasonal variations in

AOD over the mountaintops and lower elevations are similar

to those over the whole domain (Fig. 13b, c).

The monthly mean differences in precipitation due to the

total aerosols (brown solid), ARI (green solid), ASI (blue

solid), ACI (red solid), local anthropocentric aerosols (green

dashed), local dust (blue dashed), and transported aerosols

(red dashed) are shown in Fig. 14. Reduced precipitation

is seen over the whole domain, with the most contribution

from transported aerosols, followed by local anthropogenic

aerosols, both of which play a role in precipitation changes

through ACI as previously shown. ARI, ASI, or locally emit-

ted dust aerosols do not seem to play an important role in the

monthly mean precipitation changes (Fig. 14a). Two max-

ima of aerosol effects are found: one is in December when it

is the rainy season in California (Fig. 3a) and relatively larger

AOD is present over this region (Fig. 13a); the other peak re-

duction in precipitation due to the aerosol effects is found in

May with a value of about 0.2 mm day−1 (Fig. 13a), proba-

bly associated with the maximum aerosols (Fig. 13a) and the

orographic precipitation over the mountain region during that

time period (Lee et al., 2015). Given that the monthly mean

precipitation in May is only about 1 mm day−1 (Fig. 3a), the

reduction caused by aerosols is about 20 %. For monthly

mean precipitation, changes over the mountaintops and the

lower elevation area have similar seasonal variation patterns

(Fig. 14b, c).

For SWE, however, changes over the mountaintops are dif-

ferent from those in the lower areas (Fig. 15). For moun-

taintops, negative changes in SWE are seen over the whole

time period, with a maximum reduction of about 60 mm in
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Figure 13. Monthly mean AOD simulated from CTRL for to-

tal aerosols (brown solid), local anthropocentric aerosols (green

dashed), local dust (blue dashed), and transported aerosols (red

dashed) averaged over (a) the whole domain (34–42◦ N, 117–

124◦ W, not including ocean points), (b) mountaintops (with eleva-

tion ≥ 2.5 km), and (c) lower elevation area (< 2.5 km) from October

2012 to June 2013.

May corresponding to the maximum AOD (Fig. 15b). A ma-

jor contribution is from local dust aerosols through ASI, as

well as transported and local anthropogenic aerosols through

ACI. ARI produces small positive changes (∼ 5 mm in May)

in SWE due to the scattering and absorption of solar radiation

by aerosols which leads to surface cooling. For lower eleva-

tion areas, slightly enhanced SWE is found during the win-

tertime, associated with the effects of transported aerosols

which produce more clouds through ACI, and together with

the ARI effect, lead to the cooling of the surface and hence

less snowmelt (Fig. 15c). Over the whole domain, SWE is

reduced with a maximum of about 2 mm in May, equivalent

to about 2 % reduction, which is mainly attributed to the lo-

cal dust particles through ASI, and local anthropogenic and

transported aerosols through ACI (Fig. 15a).

Changes in temperature also exhibit different patterns over

the mountaintops and at lower elevations (Fig. 16). Warm-

ing over the mountaintops is produced by dust aerosols

through ASI with a maximum around May and by trans-

ported aerosols through ACI during winter, which leads to

reduced precipitation and SWE with a maximum in January

(Fig. 16b). Cooling over the lower-elevation areas is caused

by ARI and also induced by more clouds generated in the

Figure 14. Monthly mean differences in precipitation (mm day−1)

due to total aerosols (brown solid), ARI (green solid), ASI (blue

solid), ACI (red solid), local anthropocentric aerosols (green

dashed), local dust (blue dashed), and transported aerosols (red

dashed) averaged over (a) the whole domain (34–42◦ N, 117–

124◦ W, not including ocean points), (b) mountaintops (with eleva-

tion ≥ 2.5 km), and (c) lower elevation area (< 2.5 km) from October

2012 to June 2013. Zero line is shown as a thin black line.

model simulations due to transported aerosols through ACI,

with a maximum cooling of about 0.3 K in April, correspond-

ing to the maximum AOD of transported aerosols (Fig. 16c).

The average temperature changes over the whole domain are

negative because of the large low-elevation area (Fig. 16a).

Surface runoff reaches a maximum in December for the

lower elevations and the whole domain, but a peak value

in May for mountaintops when the temperature is warmer

(Fig. S4). For lower elevations where there is not much snow,

surface runoff is mainly associated with precipitation and

the changes present a similar pattern to those for precipita-

tion (Fig. 17c). Changes in surface runoff for the whole area

present similar patterns to those of the lower elevations be-

cause of the larger area at lower elevations (Fig. 17a). How-

ever for mountaintops, changes in surface runoff are also as-

sociated with changes in snowmelt. Surface runoff on the

mountaintops shows a slight increase in spring and then a de-

crease after April (Fig. 17b). The increase can be explained

by the effect of local dust aerosols deposited on the snow,

which reduce the snow albedo through ASI and warm the

surface, leading to more and earlier snowmelt than normal,

consistent with negative changes in SWE. The decrease af-
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Figure 15. Same as Fig. 14, but for SWE (mm).

Figure 16. Same as Fig. 14, but for T2 (K).

Figure 17. Same as Fig. 14, but for surface runoff (mm day−1).

ter April is a combined effect of less snowpack available

for melting caused by earlier snowmelt due to local dust

aerosols and reduced precipitation caused by transported and

local anthropogenic aerosols through ACI. Thus, the impact

of aerosols is to speed up snowmelt on the mountaintops in

spring and modify the seasonal cycle of surface runoff.

4 Conclusions

A fully coupled high-resolution aerosol–meteorology–

snowpack model is employed to investigate the impacts

of various aerosol sources on precipitation and snowpack

in California. The relative roles of locally emitted anthro-

pogenic and dust aerosols, and aerosols transported from out-

side the model domain are differentiated through the three

pathways, aerosol–radiation interaction (ARI), aerosol–snow

interaction (ASI), and aerosol–cloud interaction (ACI). In the

following summary, the numbers in brackets represent the

domain-averaged changes (Table 4).

1. Temperature: Local dust aerosols warm the mountain-

top surface through ASI (0.12 K), in which the reduced

snow albedo associated with dirty snow leads to more

surface absorption of solar radiation. Transported and

local anthropogenic aerosols warm the surface of moun-

taintops through ACI (0.17 K), which produces more

nonprecipitating clouds but reduces precipitation and

hence the snow amount, leading to decreased surface

albedo and more absorption of solar energy. The cooling
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of the valley area (−0.21 K) is primarily caused by the

scattering and absorption of all aerosols through ARI

(−0.14 K). Transported and anthropogenic aerosols can

also cool the surface over the Central Valley through

ACI (−0.07 K), which enhances the amount of cloud,

leading to more reflection of solar radiation.

2. Precipitation and SWE: A reduction in precipitation

of −6.87 % is found due to the aerosol effects and is

mainly caused by transported and local anthropogenic

aerosols through ACI (−6.26 %). The maximum aerosol

effect on precipitation is found in December during the

rainy season when the aerosols loadings are also rela-

tively large. The other peak effect occurs in May with

a reduction of about 20 %, probably associated with the

maximum aerosol loading and more orographic precipi-

tation over the mountains. Locally emitted dust aerosols

represent one of the most important contributors to the

reduced SWE (−3.17 %) through ASI (−1.96 %), with

the largest reduction in May corresponding to the maxi-

mum dust emission over that time. Local anthropogenic

aerosols can also reduce SWE through ACI (−2.67 %).

In contrast, ARI (2.43 %) exceeds the effects of ASI

(−0.99 %) and ACI (−0.27 %) by all aerosols, with

most contributions from the transported aerosols, and

slightly enhances SWE by 0.42 % over lower elevations

in wintertime through surface cooling.

3. Surface runoff: As a major component of the water

cycle, surface runoff is mainly generated by precip-

itation, but for mountaintops, the changes in surface

runoff are also associated with changes in snowmelt.

We find that the seasonal mean surface runoff is re-

duced by −6.58 % associated with suppressed precip-

itation and caused by transported and anthropogenic

aerosols through ACI (−6.30 %). Over mountaintops,

runoff slightly increases in spring due to the enhanced

solar absorption by dust aerosols. Runoff decreases af-

ter April as a combined effect of less snowpack avail-

able for melting caused by earlier snowmelt due to local

dust and reduced precipitation due to transported and lo-

cal anthropogenic aerosols through ACI. Therefore, one

of the important impacts of aerosols is to speed up the

snowmelt at mountaintops in spring and modify the sea-

sonal cycle of surface runoff.

In summary, we find that the WRF-Chem model simula-

tions with aerosol effects included would produce lower pre-

cipitation and SWE by about 10 % and colder temperature by

0.2 K over California than the simulations without aerosols.

Therefore, including aerosol effects can reduce the high bi-

ases in these variables in the simulations reported previously.

Aerosols play an important role in California water resources

through the warming of mountaintops and the subsequent

modification of precipitation and snowmelt. From October

to June the total aerosol effects produce a warming of 0.22 K

over mountaintops and reductions in precipitation, SWE, and

surface runoff of about 7, 3, and 7 % for the whole domain,

with corresponding reductions of 10 % or more over moun-

taintops. In a dry year (2013–2014), aerosol can have more

significant impacts on SWE, with a reduction of up to 9 %

for the whole domain and 16 % over mountaintops.

It is challenging to accurately represent aerosol properties

in the model (Fast et al., 2014). As pointed out by Wu et

al. (2017), biases exist in the current model compared to ob-

servations, for example, underestimation of AOD due to poor

representation of dust emission and vertical mixing in the

warm season. The underestimation of AOD in the model im-

plies that the simulated aerosol effects could also have a low

bias. Given the important role that dust plays in the Califor-

nia snowpack, improved dust emission and vertical mixing

are needed for accurate quantification of the impact of dust.

Also, the underestimation of organic matter (associated with

secondary organic aerosol processes) in the model (Wu et

al., 2017), which is primarily made up of scattering aerosols,

would contribute to the high bias in the simulation of sur-

face temperature. More accurate representations and simula-

tions of these aerosols in the model are needed. In the current

WRF-Chem model, the aerosol effect on ice clouds is not

included. ACI associated with ice clouds are more complex

than that with liquid clouds. For example, a few studies have

shown that negative Twomey effects may occur with aerosols

and ice clouds, in which increased aerosols (and thus ice nu-

clei) lead to enhanced heterogeneous nucleation that is as-

sociated with larger and fewer ice crystals compared to the

homogeneous nucleation counterpart (Chylek et al., 2006;

DeMott et al., 2010; Zhao et al., 2018). A recent study shows

that the responses of ice crystal effective radii to aerosol load-

ings are modulated by the water vapor amount in conjunction

with several other meteorological parameters. While there is

a significant negative correlation between ice effective radius

and aerosol loading in moist conditions, consistent with the

Twomey effect for liquid clouds, a strong positive correla-

tion between the two occurs in dry conditions (Zhao et al.,

2018). Despite numerous studies about the impact of aerosols

on ice clouds, the role of anthropogenic aerosols in ice pro-

cesses, especially over polluted regions, remains a challeng-

ing scientific issue. The effect of anthropogenic aerosols on

ice formation and cloud radiative properties may be a crit-

ical pathway through which anthropogenic activities affect

regional climate and present opportunities for further studies

using observations and models.

Our model simulation produces relatively larger SWE than

the SNOTEL observations. Improvements in snowpack sim-

ulation in the land surface model are needed for accurate

quantification of aerosol impacts on snowpack. Our results

are based on 2 years of simulations. Additional simulations

under different meteorological conditions will help to better

assess the aerosol impacts on California hydrology quantita-

tively.
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Data availability. The PRISM data are available through the

following link: http://prism.oregonstate.edu/recent/ (last access:

17 April 2018). The CPC data are available through the fol-

lowing link: https://www.esrl.noaa.gov/psd/data/gridded/data.

unified.daily.conus.html. The DWR data are available through

the following link: http://cdec.water.ca.gov/snow_rain.html

The CIMIS data are available through the following link:

http://wwwcimis.water.ca.gov/. The SNOTEL data are available

through the following link: https://www.wcc.nrcs.usda.gov/snow.

The MISR data are available through the following link:

https://misr.jpl.nasa.gov/getData/accessData/. The NLDAS

MOS0125 albedo data are available through the following

link: https://giovanni.gsfc.nasa.gov/giovanni/\T1\textbackslash#

service=TmAvMp&starttime=&endtime=&variableFacets=

dataFieldMeasurement:Albedo;dataProductPlatformInstrument:

NLDASModel;dataProductTimeInterval:monthly; (last access: 17

April 2018).
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