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Abstract

In this paper, we evaluate the capability of the Beijing Climate Center Climate System Model (BCC-CSM) in simulating and

forecasting the boreal summer intraseasonal oscillation (BSISO), using its simulation and sub-seasonal to seasonal (S2S) hindcast

results. Results show that the model can generally simulate the spatial structure of the BSISO, but give relatively weaker strength,

shorter period, and faster transition of BSISO phases when compared with the observations. This partially limits the model’s

capability in forecasting the BSISO, with a useful skill of only 9 days. Two sets of hindcast experiments with improved

atmospheric and atmosphere/ocean initial conditions (referred to as EXP1 and EXP2, respectively) are conducted to improve

the BSISO forecast. The BSISO forecast skill is increased by 2 days with the optimization of atmospheric initial conditions only

(EXP1), and is further increased by 1 day with the optimization of both atmospheric and oceanic initial conditions (EXP2). These

changes lead to a final skill of 12 days, which is comparable to the skills of most models participated in the S2S Prediction

Project. In EXP1 and EXP2, the BSISO forecast skills are improved for most initial phases, especially phases 1 and 2, denoting a

better description for BSISO propagation from the tropical Indian Ocean to the western North Pacific. However, the skill is

considerably low and insensitive to initial conditions for initial phase 6 and target phase 3, corresponding to the BSISO

convection’s active-to-break transition over the western North Pacific and BSISO convection’s break-to-active transition over

the tropical Indian Ocean and Maritime Continent. This prediction barrier also exists in many forecast models of the S2S

Prediction Project. Our hindcast experiments with different initial conditions indicate that the remarkable model errors over

the Maritime Continent and subtropical western North Pacific may largely account for the prediction barrier.

1 Introduction

The boreal summer intraseasonal oscillation (BSISO) and

Madden-Julian oscillation (MJO) are two major modes of at-

mospheric intraseasonal variability over the tropics. Different

from the MJO that is robust in the boreal winter with eastward

propagation along the equator, the BSISO prevails in the bo-

real summer and often propagates northward over the tropical

Indian Ocean to the western Pacific region. The BSISO is

closely related to the weather and climate events in Asia or

globally: the generation and reinforcement of tropical cy-

clones over the western Pacific (Wang and Zhou 2008;

Kikuchi and Wang 2010), the outbreak and retreat of Asian

summer monsoon (Hoyos and Webster 2007; Rajeevan et al.

2010), and the variability of extra-tropical circulation and pre-

cipitation (Ding and Wang 2007; Moon et al. 2013; Hsu et al.

2016). Therefore, the BSISO is an important target in climate

modeling and forecasting.

The simulation of the BSISO, however, bears various prob-

lems, e.g., the unrealistic BSISO structure, propagation, and

intensity due to the misrepresented essential model physics

and air-sea coupling (Waliser et al. 2003; Fu and Wang

2004; Kim et al. 2008; Lin et al. 2008b, 2011). The state-of-

the-art climate models are slowly and steadily improved in

capturing the basic characteristics of the BSISO (Sabeerali

et al. 2013; Fang et al. 2017), which leads to steady progresses

in dynamic forecasts of the BSISO to some extent. It is found

that the intraseasonal oscillation over the western Pacific
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monsoon region and Indian monsoon region can be predicted

with a lead time of 1–2 weeks in several climate models (Lin

2013; Suhas et al. 2013). Particularly, the European Centre for

Medium-Range Weather Forecast (ECMWF) model can pro-

vide a useful skill of nearly 20 days for BSISO prediction (Lee

et al. 2017). Moreover, the forecast skill can be further en-

hanced by multi-model ensemble forecasts (Fu et al. 2013;

Neena et al. 2014; Lee et al. 2015). Although tangible pro-

gresses have been made, the intraseasonal forecasting by dy-

namic models is still challenging due to its remarkable sensi-

tivity to various model settings, such as model physics, initial

conditions, and air-sea coupling (Seo et al. 2005; Fu et al.

2008, 2011; Ling et al. 2014; Jie et al. 2017).

The prediction skill and predictability of the BSISO depend

on the initial state of various climate components and their

persistence. As a phenomenon with the time scale between

synoptic weather and seasonal climate, the BSISO is remark-

ably affected by both the atmospheric initial conditions and

underlying surface forcing. By assessing the sensitivity of

BSISO forecast to atmospheric initial conditions, it is found

that the forecast skills of the BSISO vary when initialized with

different atmospheric reanalysis data (Fu et al. 2009, 2011).

Previous study revealed that the tropical intraseasonal oscilla-

tion is sensitive to different sea surface temperature (SST)

forcing, especially to that varying on the intraseasonal time

scale (Pegion and Kirtman 2008). Moreover, lower boundary

SST state is important for the structure and propagation of the

BSISO (Liu et al. 2015). Accurate SST is thought to be essen-

tial for maintaining a higher predictability of the BSISO, and

skills of the ocean-atmosphere coupled forecasts and

uncoupled forecasts may be comparable under the same SST

conditions (Fu et al. 2008). It is also indicated that the SST

initial conditions can exert more influence on the predictabil-

ity of tropical intraseasonal oscillation than the atmospheric

initial conditions (Liu et al. 2017).

In recent years, the Sub-seasonal to Seasonal (S2S)

Prediction Project, which provides S2S hindcasts (up to

60 days) and real-time forecast products from 11 operational

and research centers, has been jointly established by the

World Weather Research Program (WWRP) and the World

Climate Research Program (WCRP) (Vitart et al. 2017). One

of the key foci of the S2S Prediction Project is the predictabil-

ity of intraseasonal variability. A series of studies have exam-

ined the performances of multiple S2S forecast models in

predicting MJO, BSISO, and corresponding teleconnected in-

fluences, demonstrating remarkable differences among vari-

ous models (Jie et al. 2017; Vitart 2017; Zhou et al. 2018).

Results have partially shown that the Beijing Climate Center

(BCC) S2S forecast model, which participates in the S2S

Prediction Project, exhibits relatively low skill in MJO and

BSISO forecasts. Furthermore, the BCC S2S model’s limited

forecast skill of the BSISO is thought to be associated with its

inability to describe the physics for northward propagation of

BSISO at relatively longer lead time (He et al. 2019). To

reduce the deficiency in S2S forecasts, Liu et al. (2017) im-

proved model initial conditions and enhanced MJO forecast

skill by using the BCC S2Smodel. Therefore, it is worthwhile

to investigate whether or not and to what extent the BSISO

forecast can be improved by the optimization of initial condi-

tions, and to further explore the relationship between BSISO

forecasts and the reliability of model’s simulation and initial-

ization. It is also necessary to verify the validity of the opti-

mization of initial conditions in improving S2S forecasts, and

to understand different impacts of model initial conditions and

internal physics on BSISO forecasts.

The rest of this paper is organized as follows. Details of the

model, experiments, validation data, and methods are given in

Section 2. In Section 3, we present the BSISO simulation by

the BCC S2S model, and in Section 4, we show the BSISO

prediction skill of the model and its sensitivity to initial con-

ditions. Conclusions are provided in Section 5.

2 Model and data

The model used in this study is the BCC Climate System

Model (BCC-CSM) version 1.2, which participates in the

S2S Prediction Project (Liu et al. 2017). In the fully coupled

BCC-CSM, the atmospheric component is the BCC

Atmospheric General Circulation Model (AGCM) version 2,

with a T106 triangular truncation in the horizontal direction

and 40 layers in the vertical direction. The land component is

the BCC Atmosphere and Vegetation Interaction Model ver-

sion 1.0. The ocean and sea ice components are the National

Oceanic and Atmospheric Administration (NOAA)

Geophysical Fluid Dynamics Laboratory (GFDL) Modular

Ocean Model version 4 (MOM4) and Sea Ice Simulator, re-

spectively. The BCC model has been used in short-term cli-

mate operational prediction with reasonable skills in forecast-

ing major climate variability at seasonal and sub-seasonal time

scales (Liu et al. 2015a, 2018).

The hindcast dataset of the BCC model for the S2S

Prediction Project is used in this study, and the hindcasts

started on 1st, 6th, 11th, 16th, 21st, and 26th of each month

during 2000–2013 are selected. Each hindcast makes a 60-day

forecast integration and includes four ensemble members,

with a 6-h time lag of atmospheric initial conditions for two

neighboring members. For the S2S hindcasts, the atmospheric

initial conditions (i.e., surface pressure, air temperature, zonal

and meridional winds) are from the NCEP Reanalysis 1

(NCEP-R1; Kalnay et al. 1996), and the oceanic initial condi-

tions (i.e., temperature and salinity) are from the multi-level

temperature and salinity fields of the BCC Global Ocean Data

Assimilation System (BCC-GODAS). A long-term coupled

initialization run is conducted to assimilate the above obser-

vations by using nudging strategy, which produces the model
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initial conditions for all hindcasts.More details about the BCC

S2S hindcast experiments can be found in Liu et al. (2017).

Two additional sets of hindcast experiments are con-

ducted to improve model’s sub-seasonal forecast skill.

Experiment I (EXP1) uses the similar schemes as the

S2S hindcast experiments, except that the atmospheric

initial conditions are improved by introducing more reli-

able atmospheric reanalysis data, i.e., the National Centers

for Environmental Prediction (NCEP) FNL (final)

Operational Model Global Tropospheric Analyses to re-

place the NCEP-R1. On the basis of EXP1, Experiment II

(EXP2) introduces the daily Optimum Interpolation Sea

Surface Temperature version 2 (OISST; Reynolds et al.

2007) to upgrade the SST initial conditions; in other

words, EXP2 uses improved atmospheric and SST initial

conditions. From sea surface to the depth of 30 m, a linear

transition of initial fields from OISST to BCC-GODAS is

adopted to keep the vertical continuity of the ocean state,

and to amplify the downward impact of reliable SST ini-

tial conditions. With improved initial conditions, both

EXP1 and EXP2 use the same hindcast dates as the S2S

hindcast experiments. In addition, a 15-year free run with-

out the assimilation of observations is conducted to eval-

uate the performance of the model itself in simulating the

BSISO.

For model evaluation, we use daily outgoing longwave

radiation (OLR) and wind fields from the ERA-Interim re-

analysis (Dee et al. 2011), and daily SST field from the

NOAA OISST (Reynolds et al. 2007). The observed daily

anomalies of OLR and 850-hPa zonal wind (U850) are ob-

tained by removing the slow annual cycle (annual mean and

the first three annual harmonics of the 15-year average) and

interannual variability (average of the previous 120 days).

This processing method is mostly used for the verification

of real-time intraseasonal forecast, although itmaybe limited

in filtering out the interannual and long-termvariability (Lyu

et al. 2019a). For the results from the S2S hindcast, EXP1,

and EXP2, the daily anomalies are defined by removing the

lead-dependent model climatology and the mean of anoma-

lies over the previous 120 days. To better describe theBSISO

features as in Lin (2013), multivariate Empirical Orthogonal

Functions (EOFs) are calculated for the observed anomalies

of OLR and U850 averaged over 90°–150° E fromMay 1 to

September 30, and the BSISO index is then defined by the

two leading PCs (PC1 and PC2). The amplitude and phase

angle of the BSISO are expressed as (PC12 + PC22)1/2 and

tan−1(PC2/PC1), respectively. The forecasted PCs are fur-

ther computed by projecting the forecasted intraseasonal

anomalies onto the observed EOFs. Following the definition

inLin et al. (2008a), the bivariate anomaly correlation (BAC)

and root mean square error (RMSE) between the forecasted

and observed PCs are computed to measure the BSISO fore-

cast skill.

3 BSISO characteristics in the model
simulation

Given that the capability of BCC-CSM in simulating the key

characteristics of BSISO is highly influential to its perfor-

mance in predicting the BSISO, an uninitialized 15-year free

run is conducted to show the representation of the BSISO in

the model control simulation. Figure 1 presents the two lead-

ing EOF modes of daily OLR and U850 anomalies averaged

over 90°–150° E. In the observation, the first EOF mode

shows a strong positive center of convection anomaly near

15° N, and the second mode exhibits suppression and en-

hancement of convection near 10° N and 25° N, respectively.

In these two modes, the maximum westerly (easterly) wind

anomalies are about 5° to the south of the maximum

(minimum) convection anomalies. The simulated EOF modes

agree well with the observation, exhibiting a pattern correla-

tion coefficient of 0.95 (0.91) between the observed and sim-

ulated EOF1 (EOF2) mode. The first two leading modes ex-

plain about 47% and 38% of the total variance in the obser-

vation and simulation, respectively. The results suggest that

Fig. 1 Latitudinal distributions of the two leading EOF modes of

combined outgoing longwave radiation and 850-hPa zonal wind in

observation (solid) and control simulation (dashed). a EOF1; b EOF2.

The variance explained by each mode is shown at the top right of each

panel
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the model can reasonably reproduce the spatial structure of the

observed BSISO despite some deficiencies.

Power spectral features of the first two PCs in the observa-

tion and simulation are shown in Fig. 2. The observed PC1

and PC2 are characterized by a typical intraseasonal period,

showing a dominant period of 30–70 days. In the simulation,

the power spectrum of PC1 has no significant peak at the

intraseasonal time scale, while that of PC2 shows two bumps

near the 40-day and 20-day time scales, respectively.

Compared with the observation, the spectral variances are

clearly underestimated at 40–100-day time scale, but are

somewhat overestimated at 20–30-day time scale in the sim-

ulation, indicating that the northward-propagating BSISO is

featured by a weaker strength and faster speed in the model.

Figure 3 displays the lag correlation between PC1 and PC2.

In the observation, maximum (minimum) correlation between

corresponding PCs is found when PC1 leads (lags) PC2 by

10 days, which are similar to the results of Lin (2013). In the

model, when PC1 leads PC2, the positive correlation is basi-

cally consistent with that in the observation. However, when

PC1 lags PC2, the negative correlation is obviously different

from the observation, showing a lower correlation and a

quicker transition with lag time. It suggests that the simulated

BSISO propagates faster and shows an unreasonable phase

evolution when transitioning from EOF2 to EOF1, which par-

tially corresponds to the overestimated variance at high fre-

quency (Fig. 2).

Composites of the OLR and 850-hPa wind anomalies for

different BSISO phases are shown in Fig. 4, only BSISO

events with larger-than-one amplitude being selected. In the

observation, the convection initiates from the tropical Indian

Ocean and Maritime Continent (phase 1), and propagates

northeastward to the South China Sea as well as the tropical

western Pacific (phases 2–4). With further northward propa-

gation, the convection signal finally reaches southeastern

China and the subtropical western North Pacific (phases 7–

8). The model can basically reproduce the northward-

propagating convection from the Indian Ocean to southeastern

China, but with some apparent deficiencies. Particularly, the

simulated wet anomalies at phases 1–5 and dry anomalies at

phases 6–8 are considerably weaker than the observation. The

underestimate is especially remarkable over the tropical

IndianOcean andMaritime Continent. In addition, from phase

6 to phase 8, a faster-than-observed propagation of convection

anomaly over southeastern China and the western North

Pacific and a more northward extension of convection anom-

aly are found, which generally agree with the results shown in

Fig. 3. The weaker-than-observed BSISO variability over the

tropics, especially over the equatorial Indian Ocean, is also a

common deficiency for state-of-the-art climate models, in-

cluding most models participated in the Coupled Model

Intercomparison Project Phase 5 (Sabeerali et al. 2013).

Fig. 2 Power spectra of the first

two PCs of the combined EOF

analysis for observations (solid

red) and control simulation (solid

blue). a PC1; b PC2. The red-

noise spectrum at 95% confidence

level is shown by dashed line

Fig. 3 Lag correlations between PC1 and PC2 in observation (solid) and

control simulation (dashed)

�Fig. 4 Composites of outgoing longwave radiation (shadings; units:

W/m2) and 850-hPa wind anomalies (vectors; units: m/s) for different

BSISO phases in a observations and b control simulation. The number

of days used to generate the composite for each phase is given at the top

left of each panel. The spatial pattern correlation coefficient between

observation and simulation is given at the top right of each panel
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4 BSISO forecasts and impacts of improved
initial conditions

Several sets of hindcast experiments are conducted using the

BCC S2S forecast model. The hindcasts for the S2S

Prediction Project suffer severe limitations due to the prob-

lems of imperfect model and unreliable initial conditions (Liu

et al. 2017). Thus, EXP1 and EXP2 are carried out to improve

the model forecast skill by upgrading the atmospheric and

both atmospheric and SST initial conditions, respectively.

Figure 5 shows the forecast skills of SST and U850 in the

first 2 weeks of forecasts, and the differences of skill among

different hindcasts. In the first week, with optimized atmo-

spheric and ocean initial conditions in the model, remarkable

forecast skills of SST and U850 are found over most areas in

EXP2 (Fig. 5a1, b1). In the second week, the forecast skill of

SST remains high over the extra-tropics but relatively lower

over the tropical Indian Ocean and western Pacific (Fig. 5a5),

while that of U850 is considerably low over most areas

(Fig. 5b5), denoting an obviously higher predictability of

SST than that of atmospheric circulations. During the first

2 weeks of forecasts, SST forecast skill is little increased over

the tropics from the S2S hindcasts to EXP1 (Fig. 5a2, a6),

while U850 forecast skill is enhanced over many regions,

especially over the southeastern Indian Ocean and southwest-

ern Pacific (Fig. 5b2, b6). Moreover, during the first 2 weeks,

the SST forecast skill is remarkably improved over most areas

in EXP2 over EXP1 (Fig. 5a4, a8), while the U850 forecast

Fig. 5 Anomaly correlations between observations and forecasts for a1,

a5 SST and b1, b5 850-hPa zonal wind averaged during the first and

second weeks of forecast. Also shown are the differences of correlation

skills a2, a6, b2, b6 between EXP1 and S2S hindcasts; a3, a7, b3, b7

between EXP2 and S2S hindcasts; and a4, a8, b4, b8 between EXP2 and

EXP1. Stippling represents the statistical significance of correlation

above the 99% confidence level
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skill basically remains unchanged in the first week, but is

slightly improved over the tropical western Pacific in the sec-

ond week (Fig. 5b4, b8). It indicates that for climate variability

forecasts over the western Pacific, the improvement of atmo-

spheric initial conditions exerts more impacts on atmospheric

circulation forecasts rather than on SST forecasts. The optimi-

zation of SST initial conditions can impact SST forecasts, and

meanwhile affect the atmospheric circulation forecasts be-

yond the lead time of 1 week.

Figure 6 shows the overall forecast skills of the BSISO in

various hindcast experiments. The BAC and RMSE between

forecasted and observed PCs are computed to measure the

BSISO forecast skill. Taken BAC = 0.5 as the threshold of

useful skill, the forecast skill of about 9 days is found in the

S2S hindcasts, and the skill increases to 11 and 12 days in

EXP1 and EXP2, respectively (Fig. 6a). Also, taken the

RMSE = 1.414 as the upper limit of useful skill, similar im-

provements are seen as those of BAC (Fig. 6b). The forecast

skills in the experiments with improved atmospheric and

oceanic initial conditions are comparable to those in several

state-of-the-art models (Lee and Wang 2016; Jie et al. 2017).

These results reveal a 3-day increase of forecast skill from the

S2S hindcasts to EXP2, demonstrating the impacts of opti-

mized atmospheric and oceanic initial conditions. It confirms

the importance of accurate initial conditions in BSISO fore-

casts revealed by previous studies (Fu et al. 2008, 2009; Lee

et al. 2015). In addition, from EXP1 to EXP2, the BSISO

forecast skill remains almost unchanged in the first week but

is improved in the second week. This corresponds to the skill

difference of U850 over the tropical western Pacific between

the two sets of hindcasts as shown in Fig. 5, indicating the

gradually emerging impacts of ocean initial conditions beyond

the lead time of 1 week.

The sensitivity of forecast skill to initial conditions may

vary with different definitions of the BSISO. The BSISO in-

dex defined by Lin (2013) is used in this study, namely, the

zonal average of OLR and U850 over 90°–150° E is exam-

ined. By using another BSISO index (Lee et al. 2013), the

Fig. 7 BSISO forecast skill

(bivariate anomaly correlation) in

a the first week and b second

week of forecast in each year

during 2000–2013 for the S2S

hindcasts (black), EXP1 (red),

and EXP2 (green). The values in

parentheses show the skill

averages of all years

Fig. 6 a Bivariate anomaly

correlation and b root mean

square error between observations

and forecasts in the S2S hindcasts

(black), EXP1 (blue), and EXP2

(red). The horizontal dashed line

represents the values of 0.5 and

1.414 in a and b, respectively
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two-dimensional OLR, U850, and 850-hPa meridional wind

over the region (40°–160° E, 10° S–40° N) are analyzed.

Results show that the forecast skill is about 9 days in the

S2S hindcasts, which increases to 10 and 12 days in EXP1

and EXP2, respectively (figures omitted). Although the for-

mer index, which shows a smoother spatial feature, is more

easily to be depicted by the model than the latter index, com-

parable skills are found for both indexes. Comparison with the

results shown in Jie et al. (2017) indicates that the forecast

skill of EXP2 is comparable to those of the models in the

S2S Prediction Project.

Figure 7 shows the interannual variation of BSISO forecast

skill in the first 2 weeks of forecasts during 2000–2013. From

the S2S hindcasts to EXP1 and EXP2, the overall forecast

skill of the BSISO shows a slight improvement in both the

first and second weeks, indicating the positive effects of the

optimization of initial conditions. Meanwhile, the forecast

skill exhibits significant interannual variation. For example,

the forecast skill was extremely low in 2010, while it was

relatively higher in 2003 and 2004 than that in the other years.

From the S2S hindcasts to EXP1 and EXP2, the features of

monthly evolution of forecast skill (Fig. 8) reveal that the

useful skill increases to 2–3 weeks during May–August

2003 several times. However, relatively low skills remain un-

changed in most summers, and especially low values of less

than 5 days are found during May–July 2010. The failure of

initialization optimization in 2010 may be caused by the ob-

viously low predictability of the BSISO itself, in addition to

the uncertainty in the interaction between model errors and

initial errors. The above skill differences might be closely

related to the interannual variation of BSISO amplitude (Liu

et al. 2015b), given that the forecasts by various models are

always more skillful for BSISO events with stronger ampli-

tude than those with weaker amplitude (Lee et al. 2015; Jie

et al. 2017). In this study, we find that clear interannual dif-

ferences are also featured by different skill degrees for the

three hindcast sets, and different amplitude of skill declines

from the first week to the second week in those years, alto-

gether revealing complicated impacts of atmospheric and oce-

anic initializations.

Figure 9 illustrates the dependence of BSISO forecast skill

on initial/target phases and lead times in various hindcasts.We

again take BAC= 0.5 as the threshold of useful skill. In the

S2S hindcasts, the forecast skills range from 8 to 12 days for

different initial phases, with the minimum for initial phase 6

and relatively high skills near initial phases 8 and 1 (Fig. 9a). It

indicates that the BSISO is easy to predict when it initiates

from the equatorial Indian Ocean, but difficult to forecast

when it starts from the South China Sea and western North

Pacific. From the S2S hindcasts to EXP1, the forecast skills

are obviously improved for many initial phases except phases

4–6 (Fig. 9b). Moreover, the forecast skills from initial phases

1 and 2 are further improved in EXP2, with the maximum skill

near the 18-day lead time. However, useful skills at the lead

time less than 10 days for forecasts near initial phase 6 are

hardly changed (Fig. 9c). Besides, the forecast skill varies

with target phase, with relatively higher values near target

phases 5–8 and lower values near target phases 3–4,

Fig. 8 Bivariate correlation

between observations and

forecasts as a function of lead

time and calendar date. Skills are

computed by using experiments

within a monthly window

centered on each forecast date

starting from May to September

in 2003 and 2010 for a, b S2S

hindcasts; c, d EXP1; and e, f

EXP2

400 Z. Bo et al.



corresponding to skill peaks near initial phases 8, 1, and 2, and

to skill valley near initial phase 6 (Fig. 9e, f). The results

indicate that the BSISO is difficult to forecast when the con-

vection signal dissipates over the western North Pacific and

reinitiates from the Indian Ocean and Maritime Continent, but

can be skillfully predicted when the convection signal propa-

gates from the Indian Ocean into the western North Pacific in

both EXP1 and EXP2. Previous study has shown that the most

significant forecast skills of the BSISO near initial phases 1

and 8 are found in two thirds of the models in the Intraseasonal

Variability Hindcast Experiment (ISVHE) Project (Lee et al.

2015), whereas the lowest forecast skills of the BSISO mostly

appear around target phases 3–5 for 10 models in the S2S

Project (Jie et al. 2017). Although the forecast skill and its

sensitivity to initial and target phases are always model-de-

pendent, these results to some extent suggest a common pre-

diction barrier of the BSISO as depicted in many of the state-

of-the-art climate forecast models.

Given the most significant skill enhancement for initial

phase 2 and the smallest improvement for initial phase 6,

Fig. 10 shows the time–latitude composites of forecasted

OLR and U850 anomalies for these two initial phases. For

initial phase 2, the enhanced convection anomaly in the ob-

servation propagates northward from the equator to the South

China Sea, and the suppressed convection anomaly propa-

gates from the South China Sea to the Northwest Pacific

(Fig. 10a). In the S2S hindcasts, the intensity of convection

anomaly is apparently underestimated, and the northward

propagation of convection shows a faster-than-observed de-

cay with lead time (Fig. 10c). The intensity and propagation of

convection anomalies in EXP1 and EXP2 are obviously im-

proved due to the improvements of initial conditions

(Fig. 10e, g). For initial phase 6, the negative convection

anomaly in the observation propagates from the equator to

the South China Sea, while the positive convection anomaly

propagates over the South China Sea (Fig. 10b). In the S2S

Fig. 9 BSISO forecast skill (bivariate anomaly correlation) as a function of lead time and BSISO phase for strong initial or target cases (amplitude > 1.0)

in a, d S2S hindcasts; b, e EXP1; and c, f EXP2. The forecast skill is stratified by initial phase (top panels) and target phase (bottom panels)
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Fig. 10 Time–latitude

composites of outgoing longwave

radiation (shadings; units: W/m2)

and 850-hPa zonal wind

(contours; units: m/s) anomalies

for the BSISO initial phase 2 (left

column) and phase 6 (right

column) in a, b observations; c, d

S2S hindcasts; e, f EXP1; and g, h

EXP2

Fig. 11 Time–latitude diagram of

predictability error of outgoing

longwave radiation (contours;

units: W/m2) and 850-hPa zonal

wind (shadings; units: m/s)

anomalies for the BSISO initial

phase 2 (left column) and phase 6

(right column) in a, b S2S

hindcasts; c, d EXP1; and e, f

EXP2
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hindcasts, the intensity of convection anomaly is apparently

weaker than the observation, and the convection enhancement

shows a longer duration over the South China Sea with a more

northward propagation over the subtropical areas (Fig. 10d).

In EXP1 and EXP2 (Fig. 10f, h), although the magnitude of

convection enhancement is improved at short lead time to

certain extent, the abovementioned deficiencies generally

maintain, indicating that improved initial conditions have no

obviously positive effect on the forecast of BSISO propaga-

tion from initial phase 6. It is suggested that the intrinsic model

problem to sustain dry phases near the equator, as shown in

Fig. 4, might have contributed to the unskillful forecasts of the

BSISO from phase 6 significantly.

For the two initial phases mentioned above, the variations

of predictability errors and forecast errors of U850 and OLR

with lead time are shown in Figs. 11 and 12. The forecast error

is defined as the RMSE between forecasts and observations,

and the predictability error is estimated by computing the

RMSE between each perturbed member and the control mem-

ber and then averaging the results of the three ensemble sub-

samples. These definitions are similar to the forecast skill and

predictability measured by BAC in Kim et al. (2014). Based

on a perfect-model assumption, the predictability error is used

to measure the error features caused by the uncertainty of

initial conditions, and its difference with the forecast error

can partially represent the impacts of model errors. For pre-

dictability errors of the forecasts (Fig. 11), the differences

among ensemble members are always small at short lead time,

and gradually increase with lead time, thus showing large spreads at

longer lead time. The increase of predictability errors due to the

uncertainty of initial conditions is obviously faster in the S2S

hindcasts than those in EXP1 and EXP2 within 10-day lead time,

denoting more reliable initial conditions adopted by the latter two.

The predictability errors become remarkable near 15° N and 40° N

beyond the lead time of 10–15 days, whereas the errormagnitude is

generally comparable among various forecasts, suggesting that an

upper limit of potential predictabilitymaybe reached. The variations

of forecast errors show different features (Fig. 12). In EXP2, the

forecasts from initial phases 2 and 6 are both featured by relatively

remarkable forecast errors over the tropical and subtropical western

Pacific beyond 1-week lead time, with a maximum center near 10–

20° N at 10–20-day lead time (Fig. 12a, b). Especially, the error

magnitude for forecasts from initial phase 2 is obviously smaller

than that from initial phase 6. The differences between forecast

errors and predictability errors (Fig. 12c, d) further indicate that

associatedwith the northward propagation of the BSISO, themodel

error evolves with lead time and latitude, presenting a much larger

amplitude and longer duration for forecasts from initial phase 6 than

from initial phase 2. Particularly, two maximum error centers are

located over the Maritime Continent and the subtropical western

North Pacific, respectively. These results agree with those shown

in Figs. 1, 2, 3, and 4, in which a significantly underestimated

convection near the Maritime Continent and a clearly faster-than-

observed propagation of the BSISO with a gradual subsiding con-

vection anomaly over the western North Pacific are simulated. All

these factors lead to a rapid decline of forecast skill for the propaga-

tion of the BSISO beyond the 10-day lead time from initial phase 6.

It demonstrates that themodel deficiency other than unreliable initial

conditions should largely account for the abovementioned BSISO

prediction barrier.

5 Conclusions

In this study, we evaluated the capability of the BCCmodel in

simulating and forecasting the BSISO. We also explored the

impacts of improved initial conditions on BSISO prediction

skill by the model. Our main findings are summarized here.

The model simulates a faster-than-observed propagation of

the BSISO from the equatorial Indian Ocean to southeastern

China and the subtropical western North Pacific, with an ap-

parently underestimate in the intensity of convection over the

Indian Ocean and western equatorial Pacific. The useful fore-

cast skill of the BSISO is about 9 days in the S2S hindcasts,

which is increased to 12 days in EXP2 due to the improved

atmospheric and oceanic initial conditions. The improved

Fig. 12 Time–latitude diagram of

a, b forecast error and c, d

differences between forecast error

and predictability error of

outgoing longwave radiation

anomalies (contours; units:

W/m2) and 850-hPa zonal wind

anomalies (shadings; units: m/s)

for the BSISO initial phase 2 (left

column) and phase 6 (right

column) in EXP2
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forecast skill in EXP2 is comparable to the skills in several

state-of-the-art dynamic forecast models (Lee and Wang

2016; Jie et al. 2017). Note that from EXP1 to EXP2, the

BSISO forecast skill remains almost unchanged in the first

week of forecast, but is slightly improved in the second week,

indicating the gradually emerging influence of the ocean ini-

tial conditions beyond the lead time of 1 week.

The BSISO forecast skill significantly depends on initial

and target phases. In the S2S hindcasts, the model shows

higher skills in initial phases 8 and 1 when the convection

anomaly develops over the tropical Indian Ocean, and shows

lower skill in initial phase 6 when the convection anomaly is

initially located over the South China Sea. From the S2S

hindcasts to EXP1 and EXP2, the overall forecast skill is

enhanced for most initial phases except phase 6 due to the

improved initial conditions. In EXP1 and EXP2, the propaga-

tion from the tropical Indian Ocean andMaritime Continent to

the South China Sea is obviously improved, but the propaga-

tion from southern China and the subtropical western North

Pacific is still difficult to predict. Further exploration reveals

that the rapid increase of model errors over the Maritime

Continent and the subtropical western North Pacific near ini-

tial phase 6 is responsible for the low forecast skill of the

BSISO and its insensitivity to the change of initial conditions.

The above results reveal that the BSISO forecast skill can

be improved with the introduction of more accurate atmo-

spheric and oceanic initial conditions. However, there are still

some obvious deficiencies in the BSISO prediction due to the

imperfection of the model itself. On the one hand, the faster-

than-observed propagation is predicted in various hindcasts by

the model, which is attributed to the short periodicity of the

BSISO in the model as shown in Fig. 2. Given that the slower-

than-observed northward propagation is also found in other

models, it is suggested that this feature is highly model-

dependent (Wang et al. 2009; Fu et al. 2013). On the other

hand, the model shows apparent difficulties in predicting the

BSISO propagation from southern China and the subtropical

western North Pacific, which also occurs in most models in

the S2S Project (Jie et al. 2017). In this case, the convection

over the western North Pacific is in an active-to-break transi-

tion, whereas the convection from the tropical Indian Ocean

and the South Asian monsoon region to the Maritime

Continent is in a break-to-active transition. Several studies

have shown that the break-to-active transition is less predict-

able than the active-to-break transition of monsoon over the

South Asia region (Goswami and Xavier 2003; Fu et al.

2013), which is consistent with the finding of this study.

Therefore, for the prediction barrier of the BSISO during its

northward propagation, which is a common deficiency in

many climate models, more efforts should be made in the

future for further improving the forecast skill of the BSISO.

In addition to the BSISO, the MJO is also one of the targets

for improving the S2S forecast in this study, given that the

MJO is a dominant mode of intraseasonal atmospheric vari-

ability and exerts remarkable modulations on the tropical and

extra-tropical weather and climate events (e.g., Kikuchi and

Wang 2010; He et al. 2011; Moon et al. 2013; Hsu et al. 2016;

Lyu et al. 2019b). Liu et al. (2017) showed that the useful skill

of MJO forecast by the BCC model was about 16 days in the

S2S hindcasts, and increased to 18 days by optimizing atmo-

spheric initial conditions and 22 days by optimizing both at-

mospheric and oceanic initial conditions. This indicates that

the BSISO and MJO can both be well predicted by the model

with updated initialization schemes, although these two cli-

mate phenomena differ in active period and propagation fea-

ture. At the second phase of the S2S Project, a BCC model

version with enhanced resolution and upgraded initialization

schemes will be used to further improve sub-seasonal forecast.
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