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Abstract

Global sea level rise (SLR) associated with a warming climate exerts significant stress on 

coastal societies and low-lying island regions. The rates of coastal SLR observed in the 

past few decades, however, have large spatial and temporal differences from the global 

mean, which to a large part have been attributed to basin-scale climate modes. In this 

paper, we review our current state of knowledge about climate modes’ impacts on coastal 

sea level variability from interannual-to-multidecadal timescales. Relevant climate modes, 

their impacts and associated driving mechanisms through both remote and local processes 

are elaborated separately for the Pacific, Indian and Atlantic Oceans. This paper also iden-

tifies major issues and challenges for future research on climate modes’ impacts on coastal 

sea level. Understanding the effects of climate modes is essential for skillful near-term pre-

dictions and reliable uncertainty quantifications for future projections of coastal SLR.
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1 Introduction

1.1  Background

Sea level rise (SLR) and extreme events associated with a warming climate are direct 

threats to human society in low-lying coastal areas and island nations (Wong et al. 2014; 

Wahl et  al. 2018). For adaptation purposes, planners and decision makers require skill-

ful decadal predictions and longer-term projections of SLR along coastlines (e.g., Milne 

et al. 2009; Church and White 2011; Church et al. 2014; National Research Council (NRC) 

Report 2012). Producing reliable predictions and future projections of coastal sea level, 

however, remains challenging due to the complex causes for coastal sea level variations, 

which differ significantly from the global mean and vary along shore. In addition to non-

climate-related local human interferences (e.g., groundwater extraction that causes land 

subsidence) and geodetic factors, coastal sea level responds to local and remote changes 

in atmospheric and oceanic circulations. These circulation changes may result from natural 

internal climate variability, natural external forcing (e.g., solar and volcano) and anthropo-

genic forcing (e.g., Church et al. 2014; Kopp et al. 2015a, b; Carson et al. 2016).

It is virtually certain (P = 0.99) that at least 45% of the global mean SLR over the past 

century is of anthropogenic origin (Bindoff et  al. 2013; Church et  al. 2014; Dangendorf 

et al. 2015; Kopp et al. 2016; Slangen et al. 2016). In contrast, the spatially uneven regional 

and coastal sea level variability at interannual-to-multidecadal timescales observed since 

the 1950s has been attributed primarily to internal climate variability, with a large fraction 

being associated with basin-scale climate modes such as the El Niño and Southern Oscilla-

tion (ENSO; e.g., Stammer et al. 2013; Bilbao et al. 2015; Han et al. 2017a). Progress has 

been made in understanding the impacts of climate modes on basin-wide patterns of sea 

level variability (Han et al. 2017a). Yet, our understanding of coastal sea level variability 

caused by climate modes and associated mechanisms is far from complete. In particular, it 

is unclear to what extent and how remote sea level signals from the open ocean can affect 

the coasts, as the continental slope can act as a barrier for the communication between the 

shelf areas and the open ocean (e.g., Brink 1998; Bingham and Hughes 2012; Hughes et al. 

2019).

1.2  Purpose of This Review

Given the importance of climate modes in causing open-ocean sea level variability on 

interannual-to-multidecadal timescales, a thorough understanding of their impacts on 

coastal sea level is instrumental for improving reliability of decadal predictions and uncer-

tainty quantifications of future SLR projections at coasts. In this paper, we first review the 

dynamics of communication between coastal and open ocean (Sect. 2); then we summarize 

the observational evidence for, and our current understanding of, coastal sea level variabil-

ity from interannual-to-multidecadal timescales induced by climate variability, particularly 

basin-scale climate modes, in the Pacific, the Indian and the Atlantic Oceans (Sects. 3–5). 

In Sect. 6, we provide a summary and discuss science issues and future outlook. In this 

review, unless specified otherwise “decadal-to-multidecadal variability (including multi-

decadal trend)” is collectively referred to as “decadal” variability (periods ≥ 10 years), and 

“interannual” refers to periods < 10 years.
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2  Communication Between the Open Ocean and Coasts: Dynamics

The idea that open-ocean variability can impact coastal sea level has been suggested early 

on (e.g., Montgomery 1938). Sea level signals in the open ocean and over the shelf com-

municate through different processes for the eastern and western ocean boundaries. Along 

the eastern ocean boundaries, sea level anomalies (SLAs) can be significantly affected by 

signals originated from the equatorial basin through eastward-propagating equatorial Kel-

vin waves (e.g., Wyrtki 1975) and subsequently poleward-propagating coastally trapped 

waves after the equatorial Kelvin waves impinge on the coast. If the ocean bottom is flat 

and coasts are vertical walls, sea level signals along the eastern boundary radiate west-

ward as Rossby waves in regions equatorward of Rossby waves’ critical latitudes, and pole-

ward as coastal Kelvin waves poleward of the critical latitudes. Bottom topography and 

bottom friction associated with continental shelf and slope, however, can trap part of the 

incoming equatorial Kelvin waves’ energy to the coast, producing poleward-propagating 

sea level signals even in regions below the critical latitudes (e.g., Clarke and Vangorder 

1994). Compared to meridional coastlines, slanted eastern ocean boundaries affect critical 

latitudes and somewhat increase the poleward propagation speed, but they do not alter the 

fundamental nature of coastally trapped sea level signals (e.g., Clarke and Vangorder 1994; 

Han et al. 2011).

Along the western ocean boundaries, it has been shown that SLAs at particular lati-

tude can be expressed by the sum of contributions from interior SLAs propagating onto the 

boundary via Rossby waves at and above that latitude, and the western boundary SLAs at 

higher latitudes via coastally trapped waves (Minobe et al. 2017). This result is based on 

a linear ocean model that excludes bottom topography and western boundary current. In 

real coastal oceans, however, continental shelf and slope exist. Under geostrophic approxi-

mation and neglecting planetary beta, circulations over the shelf have distinct separations 

from the large-scale circulations in the open ocean: Currents flow along the isobaths of the 

continental slope (Brink 1998), setting a “barrier” for cross-isobath flows and thus con-

straining the remote influence from the open ocean on the coast. The generation of cross-

isobath currents must be through ageostrophic processes (e.g., external forcing, nonlinear 

eddy transport, friction). The long continental slopes in high latitudes also strongly sup-

presses the effects of open-ocean mesoscale eddies on coasts (e.g., Hughes and Williams 

2010; Bingham and Hughes 2012; Hughes et al. 2018, 2019).

By including planetary beta and considering time-dependent large-scale circulations 

(i.e., greater than Rossby radius), some Rossby waves’ energy is able to cross the “barrier” 

and arrive at the western boundary, particularly at lower latitude where the topographic 

effect is weaker due to its dependence on Coriolis parameter (Yang et al. 2013). The degree 

of the open-ocean impact on coastal sea level depends on bottom friction and on the shapes 

of the shelf and slope (e.g., width and depth), based on the experiments using a linear 

model that extends the Minobe et al. (2017) solution by including idealized shelf and slope 

(Wise et al. 2018). Observational analyses support these theoretical results, showing that 

offshore sea level is likely to be representative of the coastal signal in areas where the shelf 

is narrow (e.g., the Florida Straits in the Atlantic), but not likely over the broad shelf of the 

mid-Atlantic Bight (e.g., Higginson et al. 2015).

At the latitudes of subtropical and subpolar gyres, western boundary currents prevail 

and they can affect the incoming Rossby waves through advection, and the advection effect 

is less on the first baroclinic mode Rossby wave compared to higher baroclinic modes (Liu 

1999). Observational analyses find that variations of the western boundary currents (e.g., 
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the Gulf Stream and Kuroshio) are significantly correlated with the variability of coastal 

sea level (e.g., Blaha 1984; Haigh et al. 2011; Ezer et al. 2013; Sasaki et al. 2014). Baro-

clinic Rossby waves driven by open-ocean wind stress curl propagate westward, affecting 

the transport of the western boundary currents and therefore the cross-current sea level 

gradients (i.e., alongshore geostrophy). Given that the cross-shore sea level gradients are 

weak over the shelf compared to the sea level gradients across the boundary current, SLAs 

at the inshore side of the boundary current were used to represent coastal SLAs (Hong 

et al. 2000).

3  The Pacific Ocean

In this section, we first provide observational evidence for coastal sea level variability 

using tide gauge and satellite observations (Sect. 3.1). Since the dynamics of sea level vari-

ability along the eastern and western boundaries are different, we review our understanding 

of the causes for SLAs first along the eastern boundary (Sect. 3.2) and then along the west-

ern boundary (Sect. 3.3). For each boundary, we first focus on remote and local processes 

that induce the observed SLAs and then assess the effects of climate modes. The reviews 

for the Indian and Atlantic Oceans follow a similar structure.

It is worth noting that satellite altimeters do not observe sea level within 10–20 km of 

the coast (partly due to land contamination), but they provide a near-global coverage albeit 

with a relatively short span (~ 26 years since October 1992). In the immediate vicinity of 

the coast, information about sea level variability relies on tide gauge observations, which 

provide long records but only at particular locations. Consequently, reconstructed and rea-

nalysis products, which provide near global sea level with relatively long time span (e.g., 

since 1950s when more in situ data are available), are often used in sea level studies. How-

ever, neither the satellite altimetry data over the shelf nor reconstruction or reanalysis prod-

ucts are able to capture the full magnitude of interannual sea level events observed by tide 

gauges in most coastal areas (e.g., Hamlington et al. 2015).

3.1  Observations

Satellite altimetry data show unambiguous regional differences in sea level trends since the 

early 1990s (Church et al. 2014; Fig. 1). Near the eastern boundary of the Pacific, satel-

lite data show no or weak rising trends from 1993 to 2018, and similar situations are also 

shown in tide gauge data at San Francisco of the North Pacific and Antofagasta of the 

South Pacific for the same time period (Fig. 1). The multidecadal trend of 1950–2018 at 

San Francisco tide gauge, however, shows SLR, suggesting that sea level along the Pacific 

east coast exhibits large-amplitude decadal variability. Indeed, strong interannual and dec-

adal variability has been detected in a number of long, high-quality tide gauge records 

along the US west coast, and San Francisco holds the longest record since 1854 (e.g., 

Enfield and Allen 1980; Chelton and Davis 1982; Clarke 1992; Ramp et al. 1997; Meyers 

et al. 1998; Strub and James 2002; Ponte 2006; Papadopoulos and Tsimplis 2006; Cham-

bers et al. 2012; Breaker and Ruzmaikin 2013; Hamlington et al. 2015). South of the equa-

tor, tide gauge records are generally shorter; however, interannual and decadal variability is 

clearly observed (Fig. 1; Pizarro et al. 2001).
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Near the western boundary of the Pacific, satellite data observed marked SLR from 

1993 to 2018, with maximum rise occurring in the tropics (Fig.  1). Compared to the 

eastern Pacific, the western Pacific has complex basin geometry and topography, host-

ing various marginal seas, broad and narrow shelves and slopes, multitude islands and 

straits that connect with the Indian Ocean (i.e., the Indonesian Throughflow (ITF); see 

Sect.  4). These can complicate our understanding of the western boundary sea level 

variability. The satellite-observed sea level trends in the marginal seas (e.g., the South 

China Sea, East China Sea and Sea of Japan) and near the ITF straits show the same 

sign as that of the western Pacific Ocean, indicating that open-ocean signals may exert 

significant influence on coastal ocean. Consistent with satellite observations, tide gauge 

data at Manila of the Philippines and Pago Pago in the tropical south Pacific also show 

SLR from 1993 to 2018, albeit with larger rates. Overlying the multidecadal trends of 

1950–2018, sea level at both tide gauges exhibit strong interannual and decadal varia-

tions (Fig.  1). Indeed, tide gauges detected coherent multi-scale variability in various 

Fig. 1  Map of rates of change (trends) in sea surface height (SSH; geocentric sea level) for the period 
1993–2018 from satellite altimetry; trend values exceeding 90% significance are shown in color and those 
below 90% significance are shown in white. Also shown are relative sea level changes (gray lines) from 
selected tide gauge stations for the period 1950–2018. For comparison, estimates of global mean sea level 
change from tide gauges (red lines) and satellite altimetry (blue lines) are shown with each tide gauge time 
series. The relatively large, short-term oscillations in local sea level (gray lines) are due to the natural cli-
mate variability, such as the large deviations at Pago Pago of the western Pacific and San Francisco of the 
eastern Pacific are associated with the El Niño-Southern Oscillation. This is an updated figure of Church 
et al. (2014)
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subregions along the western boundary of the North and South Pacific (e.g., Senjyu 

et al. 1999; Church et al. 2006; Sect. 3.3.1).

3.2  Eastern Boundary of the Pacific

3.2.1  Remote Versus Local Processes

On interannual timescales, sea level variability along the Pacific eastern boundary is domi-

nated by wind forcing, and the relative contributions of remote versus local wind vary geo-

graphically. From the equator to Southern California, interannual SLAs primarily reflect 

remotely forced, coastally trapped signals of tropical origin (Enfield and Allen 1980; Chel-

ton and Davis 1982). Trade wind anomalies in the equatorial Pacific force eastward-propa-

gating equatorial Kelvin waves; after they impinge upon the eastern boundary, a portion of 

the energy is reflected back into the ocean interior as Rossby waves, and a portion propa-

gates poleward as coastally trapped waves due to bottom friction and topography, as illus-

trated by the analytic solutions to a linear ocean model (Clarke and Vangorder 1994) and 

discussed in Sect. 2. Coherent signatures of these propagating SLAs have been observed as 

far north as Alaska (Clarke 1992; Ramp et al. 1997; Meyers et al. 1998; Strub and James 

2002).

North of San Francisco, however, the impacts of local longshore wind and atmospheric 

pressure increase with latitude (Enfield and Allen 1980; Chelton and Davis 1982; Hermann 

et  al. 2009). Atmospheric sea level pressure affects sea level via loading, often referred 

to as inverted barometer (IB) effect (Close 1918; Wunsch and Stammer 1997), which can 

account for substantial fractions (20–60%) of monthly sea level variance at locations in the 

Pacific Northwest and Gulf of Alaska regions (Ponte 2006). Longshore winds can produce 

onshore/offshore Ekman transport, which generates a poleward (equatorward) longshore 

sea level gradient for southerly (northerly) wind anomalies. The longshore wind and sea 

level pressure anomalies are, in large part, related to the strength and position of the Aleu-

tian Low (Emery and Hamilton 1985), which is the dominant feature of atmospheric circu-

lation over the Northeast Pacific. Increased strength or eastward displacement of the Aleu-

tian Low raises coastal sea level along the west coast of North America by lowering sea 

level pressure and increasing the southerly component of wind stress. Along the Canada/

Alaska coast, interannual SLAs result from the signals propagating from lower latitudes 

and those forced by local longshore winds (Qiu 2002).

At decadal time scales, remote tropical forcing—rather than local forcing—is the 

dominant mechanism. Decadal variations in thermocline depth and sea level of the east-

ern Pacific as far north as southern California are remotely driven by variability in trade 

winds of the tropical Pacific (Clarke and Lebedev 1999; Thompson et al. 2014; Merrifield 

and Thompson 2018). Further north, recent decadal sea level trends at the coast are more 

closely related to remote equatorial wind forcing with a substantially smaller contribution 

from local longshore winds (Thompson et al. 2014), even though local forcing is important 

for interannual SLAs in the higher latitude region; local wind stress curl may also be an 

important driver (Bromirski et al. 2011), but it is ineffective in accounting for coastal sea 

level variance in statistical regressions (Chelton and Davis 1982; Thompson et al. 2014). 

Certainly, wind stress curl is an important driver of open-ocean SLAs (Lagerloef et  al. 

1995; Fu and Qiu 2002), which propagate westward away from the eastern ocean bound-

ary, leaving the relationship between open-ocean wind stress curl and eastern boundary sea 

level unclear.
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South of the equator, the dynamics of remotely forced SLAs along the eastern boundary 

largely mirror that of the North Pacific (Enfield and Allen 1980; Pizarro et al. 2001) with 

interannual SLAs of tropical origin being detected at the southern tip of South America 

in satellite altimetry (Strub and James 2002; Colas et al. 2008). In contrast to the North 

Pacific, however, the role of local atmospheric forcing is smaller at higher latitudes, which 

is reflected by the overall poleward decrease in coastal sea level variance measured by tide 

gauges (Pizarro et al. 2001). This is at least partially due to the smaller IB effect (< 20%) 

on monthly mean sea level variance along the South American west coast (Ponte 2006). 

The role of longshore winds is smaller than in the North Pacific as well, but the effect is 

not negligible as longshore winds modulate the remotely forced SLAs and account for the 

seasonal asymmetry between hemispheres in the coastal sea level response to interannual 

tropical forcing (Strub and James 2002).

3.2.2  Effects of Climate Modes

The major modes of climate variability over the Pacific are ENSO (Bjerknes 1969), the 

Pacific Decadal Oscillation (PDO; Mantua et  al. 1997; Zhang et  al. 1997), Interdecadal 

Pacific Oscillation (IPO; Power et al. 1999; Folland et al. 2002) and North Pacific Gyre 

Oscillation (NPGO; Di Lorenzo et al. 2008). While the PDO is defined as the first empiri-

cal orthogonal function (EOF) of monthly sea surface temperature (SST) anomalies in the 

North Pacific (north of 20°N; with time series of global mean SST removed), the IPO is 

often regarded as the Pacific-wide manifestation of the PDO (Folland et  al. 2002; Tren-

berth and Jones 2007). On decadal timescales, the indices of PDO, IPO and decadal vari-

ability of ENSO are all highly correlated, with correlation coefficients for PDO-IPO and 

IPO-NINO3.4 (8 year low-passed indices) being both 0.88 during 1900–2008 (Zhang and 

Church 2012; Han et al. 2014a; Newman et al. 2016). The NPGO is defined as the sec-

ond EOF of sea surface height anomalies over (180°–110°W, 25°–62°N) of the Northeast 

Pacific (Di Lorenzo et al. 2008). Since the Southern Annual Mode (SAM) has very weak 

influence on Indo-Pacific coastal and open-ocean sea level (e.g., Haigh et al. 2011; White 

et al. 2014; Frankcombe et al. 2015), its effect will not be further discussed in this review.

Climate modes manifest themselves in basin-wide patterns of sea level variability (Han 

et al. 2017a). The relative importance of these modes in the basin interior, however, differs 

from the coastal region along the eastern boundary. Eastern boundary sea level is more 

closely related to remote and local wind forcing along the equatorial and coastal wave-

guides, whereas SLAs due to open-ocean forcing propagate westward away from the east-

ern boundary. Thus, coastal SLAs in the East Pacific are expected to correlate with climate 

modes that have a strong expression in the tropics and/or atmospheric centers of action that 

affect longshore winds and sea level pressure. Existing studies demonstrate that interan-

nual SLAs along the East Pacific coasts are highly correlated with ENSO, with El Niño 

(La Niña) causing large-amplitude coastal sea level rise (fall) (Fig.  2a; e.g., Enfield and 

Allen 1980; Chelton and Davis 1982; Emery and Hamilton 1985; Clarke and Vangorder 

1994; Meyers et al. 1998; Strub and James 2002; Papadopoulos and Tsimplis 2006; Her-

mann et al. 2009; Thompson et al. 2014; Hamlington et al. 2015). Indeed, large sea level 

increases during major El Niño events are clearly seen in San Francisco tide gauge data 

since 1880 (Fig. 3) and are identifiable in Antofagasta tide gauge at the South American 

west coast since 1950 (Fig. 1).

Below, we use the monthly mean sea level from the long and highest-quality tide 

gauge records to explore the relative importance of climate modes on coastal sea level 
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Fig. 3  San Francisco tide gauge record showing relative sea level increases during major El Niño events. 
Tide gage data from the Permanent Service for Mean Sea Level. Figure from NRC report (2012)

Fig. 4  Percentage of interannual and longer variance accounted for by Pacific climate indices in detrended 
sea level observations from long, high-quality tide gauges in the East Pacific from 1950 to 2017. Colors 
map to values; large (small) percentages of variance are highlighted in yellow (purple). Values not sig-
nificant at the 95% level are marked with a diagonal line. “Total” is the ratio between the sum of (vari-
ance accounted for by climate mode at each tide gauge record) and sum of (total sea level variance at each 
record). A low-pass convolution filter was applied to monthly tide gauge data and climate indices to isolate 
variability with periods longer than 18 months. The analysis was restricted to the period 1950–2017, which 
is the period spanned by all climate indices considered here and satisfies the requirement of at least 50 years 
for separating the influence of climate modes from trends in Pacific sea level (Frankcombe et  al. 2015). 
Tide gauge data are from Permanent Service for Mean Sea Level (Holgate et al. 2013), and detrending is 
performed using the fitted trend from the regression with the index. See Sect. 3.1.3 of the text for the defini-
tions of climate indices
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along the eastern boundary of the North Pacific. In addition, we have also examined the 

effects of other climate indices (Fig. 4). For each tide gauge and index pair, we perform 

a least-squares, multiple linear regression of the tide gauge data onto a linear trend and 

the climate index in question; then the trend is removed before calculating the variance 

for Fig. 4. We do not perform regressions onto multiple indices simultaneously, because 

in some cases the indices are highly correlated. Thus, our results reflect the maximum 

amount of variance that might be attributed to any particular mode or index.

Of particular interest is that the PDO and NPGO are among the least effective cli-

mate modes in capturing interannual and decadal sea level variance along the eastern 

boundary (Fig. 4). To be clear, these modes are dominant drivers of basin-wide patterns 

of open-ocean sea level variability in the North Pacific (e.g., Han et al. 2017a), but this 

does not necessarily make them optimal predictors of coastal sea level. The multivari-

ate ENSO index (MEI; Wolter and Timlin 2011) and IPO index (defined here as a SST 

tri-pole as in Henley et al. 2015) are far more effective as predictors of eastern bound-

ary SLAs at low- to mid-latitudes, presumably because they capture tropical processes 

that induce the remotely forced, propagating SLAs observed in tide gauge records. In 

agreement with Frankcombe et al. (2015), the fraction of variance accounted for by the 

tropical indices decreases with latitude as the influence of local atmospheric forcing 

becomes more important.

Between San Francisco and Seattle, although ENSO and IPO still explain large frac-

tions of variance, coastal SLAs are most effectively captured by the Northern Oscilla-

tion Index (NOI; Schwing et  al. 2002), which is defined as the atmospheric sea level 

pressure difference between Darwin, Australia and the North Pacific High. The NOI 

is highly correlated with both the MEI and IPO (r = − 0.83 in both cases), but the NOI 

is particularly effective as a predictor of sea level along the US west coast (Fig. 4) due 

to the inclusion of the North Pacific High as a center of action, which better captures 

variability in the longshore wind stress there. Such a mechanism has been proposed 

as an explanation for a large (≈ 80 cm peak to trough) multidecadal fluctuation in San 

Francisco sea level spanning the late nineteenth and early twentieth centuries prior to 

the establishment of other gauges in the region (Miller and Douglas 2007). Note that 

lengthening the filter from 18 months to 7 years to isolate decadal variations results in 

a substantial increase in the fraction of coastal sea level variance accounted for by the 

NPGO (not shown), though statistical significance drops below 95% for the three north-

ern most gauges due to the reduction in degrees of freedom caused by the heavier filter. 

The increase in variance captured by the NPGO is likely due to the fact that at longer 

time scales it becomes difficult to statistically distinguish between the various modes 

and indices. Using the seven-year filter, the correlation between the NPGO and NOI 

increases from 0.44 to 0.58 (both significant at the 99% level), while anticorrelation 

between the NPGO and IPO increases from − 0.37 to − 0.67 (both at 99% significance).

For high latitudes in the Gulf of Alaska, the most effective predictors of coastal SLAs 

are the North Pacific Index (NPI; Trenberth and Hurrell 1994) and the Pacific/North Amer-

ican pattern (PNA; Wallace and Gutzler 1981). Both of which are closely related to vari-

ability in the Aleutian low with NPI being a direct measure of the Aleutian low intensity 

and the latter incorporating the Aleutian low as a primary center of action. The NOI, NPI 

and PNA are significantly correlated with ENSO, IPO, PDO and NPGO, but they are more 

effective predictors of coastal SLAs, due to the dynamic link between Aleutian low vari-

ability and SLAs via the effects on local sea level pressure and longshore winds. This is 

related to the fact that PDO is an empirical mode and can be caused by both extratropical 

and tropical processes. This issue is further discussed in Sect. 6.
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In the South Pacific, ENSO indices—i.e., MEI, Niño3.4 index and southern oscillation 

index (SOI)—and IPO, the climate modes that are centered in the tropics, do not capture 

large fractions of coastal sea level variance outside the tropics (Fig. 4, right panel; Frank-

combe et al. 2015). This is partially due to the regional tectonic and seismic activities that 

cannot be removed from tide gauge data due to the short GPS record as well as the inability 

of ENSO and IPO indices to capture a greater fraction of the variance. For example, the 

MEI accounts for less than 30% of the interannual and longer variance at Valparaiso prior 

to 1977 and more than 50% of the variance during 1993–present. The relationship dur-

ing the latter period is dominated by the 1997–98 El Niño event, which suggests that the 

largest tropical events do affect coastal sea level at mid- to high latitudes along the South 

Pacific eastern boundary and supports previous findings suggesting this connection (e.g., 

Strub and James 2002).

More recently, sea level in the East Pacific has undergone a shift from near-zero trends 

during most of the first two decades of satellite altimetry (Bromirski et al. 2011; Thompson 

et al. 2014) to large positive trends since around 2012 (Hamlington et al. 2016). It is dif-

ficult to distinguish the effects of individual climate modes on sea level over the altimetry 

period alone (e.g., Zhang and Church 2012), as the Pacific indices can be highly correlated 

over short periods. For example, after applying the 18-month low-pass filter described 

above, the PDO index is correlated at magnitude 0.65 or greater (and exceeding the 99% 

significance level) with all of the following indices during 1993–present: MEI, IPO, NOI, 

SOI, NPI and NPGO. This underscores the importance of process-oriented studies of the 

relationships between climate indices and coastal sea level, as not all of these indices rep-

resent processes with a clear physical link to sea level along the eastern boundary of the 

basin. Nevertheless, the inflection in decadal sea level trends can be statistically decou-

pled from canonical ENSO sea level fluctuations during recent decades (Hamlington et al. 

2016), which suggests that recent trends may reflect a phase change in basin-scale Pacific 

climate.

Fig. 5  (Left) Regression coefficient map of satellite SLAs onto the normalized time series of the 1st SVD 
mode (between satellite and tide gauge) from satellite data during 1993–2010, which is the solid curve on 
the right panel; the line contour indicates the regions where the corresponding correlations are significant 
at 95% confidence level. (Right) Normalized time series of the 1st SVD mode of satellite SLA (solid line; 
left axis) and the latitude (dashed line; right axis) of the Kuroshio Extension jet averaged for 140°E–165°E. 
From Sasaki et al. (2014)
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3.3  Western Boundary of the Pacific

3.3.1  Remote Versus Local Processes

In the subpolar western North Pacific, interannual SLAs along the east coast of Kuril 

islands are determined by the wind-driven, westward-propagating baroclinic Rossby waves 

(Qiu 2002). In the Sea of Japan, ocean general circulation model (OGCM) experiments 

suggest that the tide-gauge observed bidecadal variability of sea level around Japanese 

coastlines results from the westward propagation of Rossby waves forced by winds in the 

central and eastern North Pacific basin (Yasuda and Sakurai 2006). Prominent decadal 

variability of sea level was found along the Kuroshio Extension jet, due to the westward-

propagating Rossby waves from the east Pacific (Fig. 5) causing north–south shifts of the 

jet and thus inducing SLAs around the Japanese coasts, as observed by both tide gauge 

and satellite data from 1993 to 2010 (Sasaki et  al. 2014). The SLAs are large along the 

southeast coast of Japan due to the direct influence of the jet-trapped Rossby waves, and 

along the west coast of Japan likely due to coastally trapped waves excited by the incoming 

Rossby waves.

Along the China east coast, sea level variations are strongly influenced by coastally 

trapped waves (Hsueh and Pang 1989; Hsueh and Yuan 1997). Over the continental shelf 

of the East China Sea, local wind stress curl is suggested to be the cause for decadal SLAs 

(Moon and Song 2017). In the South China Sea, Rossby waves from the western tropical 

Pacific impinge on the east coast of the Philippines, where their associated SLAs propa-

gate clockwise as coastally trapped waves, causing interannual-to-decadal SLAs around the 

Philippine coasts (e.g., Liu et al. 2011; Zhuang et al. 2013; Cheng et al. 2016). The effect 

of local longshore wind is important for SLAs along the west coasts of Borneo and Pala-

wan islands (Cheng et al. 2016).

In the western tropical Pacific, interannual and decadal SLAs around the multitude of 

islands and ITF straits are primarily attributed to the variability of the easterly trade winds. 

On interannual timescales, variations in zonal wind in the equatorial Pacific cause SLAs 

along the Arafura/Australia shelf break via equatorial Rossby waves, which excite coastally 

trapped waves off the western tip of New Guinea, with portion of the energy entering the 

Indian Ocean through the Indonesian Archipelago (e.g., Clarke 1991; Wijffels and Meyers 

2004; also see Sect. 4). Theoretical studies suggest that SLA signals in the western equa-

torial Pacific and on the western boundaries of the major landmasses should be in phase 

and have similar amplitudes based on the island rule (Clarke 1991; Godfrey 1996). Recent 

observations suggest that nonlinear interactions between the Rossby waves and the Mind-

anao Current result in significant elevation of sea level in the northern Indonesian seas, 

which forces significant ITF transport into the Indian Ocean (Yuan et al. 2018).

On decadal timescales, rapid SLR in the western tropical Pacific during recent decades, 

which opposes the sea level fall in the eastern tropical Pacific basin, has been detected by 

satellite, tide gauge, reconstructed and reanalysis data (Fig.  1; e.g., Church et  al. 2006; 

Merrifield 2011; Zhang and Church 2012). Both observational analyses and ocean mode-

ling experiments show that the steady intensification of the trade wind is the primary cause 

for the rapid SLR since the early 1990s (Merrifield 2011; McGregor et al. 2012; Merri-

field and Maltrud 2011; Qiu and Chen 2012; Meyssignac et al. 2012; Nidheesh et al. 2013; 

Han et al. 2014a; Hamlington et al. 2014; Palanisamy et al. 2015). Furthermore, intensified 

amplitudes of SLAs at 8–20 year periods since the late 1980s were observed and attributed 

to the intensified decadal variability of easterly trade and its associated off-equatorial wind 
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stress curl (Han et  al. 2014a). Interannual and decadal fluctuations of the easterly trade, 

which are linked to climate modes and inter-basin interactions (see Sect. 3.3.2), cause the 

west–east seesaw of decadal SLAs (e.g., Carton et al. 2005; Bindoff and Willebrand 2007; 

Kohl et al. 2007; Lombard et al. 2009; Timmermann et al. 2010; McGregor et al. 2012; 

England et al. 2014; Han et al. 2014a; Merrifield and Thompson 2018). Local land subsid-

ence, however, may also be an important factor in the amplification of relative SLR (e.g., 

Ballu et al. 2011; Becker et al. 2012).

In the western South Pacific, the leading EOF pattern from 16 tide gauge records around 

the Australian coasts explains 69% of the total sea level variance, with larger amplitudes 

occurring at the northern and western Australian coasts of the Indian Ocean, from where 

SLAs propagate counterclockwise around the coasts as coastally trapped waves with mag-

nitude decreasing with distance (White et  al. 2014). Direct influence from the western 

equatorial Pacific on SLAs along the Australian east coast is weak, because there is no 

direct oceanic pathway. Instead, westward-propagating Rossby waves from the subtropi-

cal Pacific interior directly impact coastal sea level and the East Australian Current (EAC; 

Holbrook et al. 2011), with the Indian Ocean (via coastally trapped waves) and Southern 

Ocean having much weaker influence (White et al. 2014). Interannual-to-decadal variations 

of EAC transport and SLA measured at the Fort Denison tide gauge in Sydney Harbor are 

significantly correlated; Rossby waves generated by winds in the Tasman Sea explain the 

large variances of EAC transport and coastal sea level, and remotely forced Rossby waves 

from the South Pacific interior account for the multidecadal sea level trend along the New 

South Wales coast (Holbrook et al. 2011). Observational analysis and OGCM experiments 

showed that decadal variations of wind stress curl in the South Pacific interior excite baro-

clinic Rossby waves, causing decadal SLAs along the east coast of New Zealand; subse-

quently, Rossby waves emanated from New Zealand propagate into the Tasman Sea, caus-

ing decadal SLA along Australian southeast coast and the coasts of Tasmania (Sasaki et al. 

2008).

3.3.2  Effects of Climate Modes

The trade wind anomalies that cause the sea level east–west seesaw and interannual vari-

ability in the western tropical Pacific result primarily from ENSO (Fig. 2; e.g., Nerem et al. 

1999; Landerer et  al. 2008; Zhang and Church 2012; Wu et  al. 2017). Sea level is low 

(high) in the western tropical Pacific during El Niño (La Niña), and its variability exhibits 

pronounced seasonality and north–south asymmetry. During El Niño, low sea level appears 

north of the equator (e.g., Guam and Marshall islands) from July to December and south 

of the equator (e.g., American Samoa islands) from January to June, due to the seasonal 

evolution of westerly wind anomalies in the western and central equatorial basin (Chowd-

hury et  al. 2007). On decadal timescales, the IPO phase transitions are linked to SLAs 

in the western tropical Pacific, such as the rapid SLR since the early 1990s (e.g., Merri-

field et al. 2012; Meyssignac et al. 2012; Zhang and Church 2012; Hamlington et al. 2013, 

2014; Moon et al. 2013; Han et al. 2014a; Palanisamy et al. 2015; Lyu et al. 2017). The 

intensified wind and SLAs during recent decades, however, cannot be fully explained by 

the IPO (Han et al. 2014a); decadal variability of SST over the tropical Indian and Atlantic 

Oceans also had significant contributions (Luo et  al. 2012; Han et  al. 2014a; McGregor 

et al. 2014).

In the western North Pacific, ENSO influence on coastal SLAs weakens with latitude, as 

shown by the analysis of 27 tide gauges along the China Coastline from 1968 to 2016 and 
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satellite altimetry (Wang et al. 2018). From 1993 to 2015, ENSO-SLA correlations are the 

largest in the South China Sea (> 0.6 in most areas; also see Cheng et al. 2015), weaker in 

the East China Sea (> 0.4 in most areas) and weakest in the Bohai and Yellow Seas (< 0.4), 

with all correlation coefficients being statistically significant at the 95% confidence level. 

Significant correlations between PDO index and interannual SLAs (up to 10 cm) have also 

been found in the northwest Pacific including the East China Sea (Papadopoulos and Tsim-

plis 2006; Han and Huang 2008). On decadal timescales, SLAs are significantly correlated 

with the PDO in the East China Sea (Han and Huang 2008) and South China Sea in recent 

decades, due to Rossby waves forced by PDO-associated wind stress curl propagating to the 

South China Sea through the Philippine Archipelago (Cheng et al. 2016). Moon and Song 

(2017), however, found that decadal SLAs in the East China Sea in the past 50 years were 

highly correlated with the NPGO rather than PDO (also see Merrifield 2011), although 

the PDO can explain the multidecadal trend reversal since the mid-1980s. Indeed, either 

NPGO or PDO can dominate coastal SLAs, depending on locations and periods (Fig. 2).

In the western South Pacific, variations of the wind stress curl that drive interannual-to-

decadal Rossby waves and coastal SLAs along the east coasts of Australia and New Zea-

land and around the coasts of Tasman Sea are associated with ENSO (e.g., Sasaki et al. 

2008; Haigh et al. 2011; Holbrook et al. 2011; White et al. 2014). As discussed above, due 

to the lack of direct oceanic pathway the impacts of ENSO and IPO on sea level along the 

Australian east coast are not as strong as those along the north and west coasts (Fig. 2; e.g., 

Zhang and Church 2012; Frankcombe et al. 2015; Wu et al. 2017).

Wu et  al. (2017) examined the interannual and decadal (6-year low-passed) SLAs as 

well as trend associated with ENSO and PDO over 1993–2011 and found that the SLAs 

and trend were well explained by the steric component in the open ocean, with a major 

contribution from the thermosteric component while the halosteric component only played 

a minor role in the western equatorial Pacific region. Over the shallow shelves of the west-

ern Pacific boundary, however, mass component plays a significant role (their Fig. 4).

4  The Indian Ocean

4.1  Observations

Tide gauge observations show evident multidecadal trends and interannual-to-interdec-

adal sea level variability around the coastal and island regions of the Indian Ocean (e.g., 

Shankar and Shetye 1999; Unnikrishnan and Shankar 2007; Han et al. 2010; Frankcombe 

et al. 2015; Unnikrishnan et al. 2015; Parekh et al. 2017; black lines of Fig. 6). Centennial 

trends of SLR are also detected at Mumbai, the west coast of India (Shankar and She-

tye 1999) and Fremantle, the west coast of Australia (Feng et al. 2004), the only two tide 

gauges within the Indian Ocean with record lengths longer than 100 years (Bradshaw et al. 

2015). The rates of SLR and amplitudes of sea level variability, however, differ consider-

ably from region to region. In particular, a falling trend was detected in a ~ 20-year tide 

gauge record in recent decades at Zanzibar, the east coast of Tanzania and the western 

boundary of the Indian Ocean, while rising trends were observed at all other tide gauges 

since the 1960s/1970s.

Overlying the multidecadal trend, coastal sea level exhibits strong interannual and dec-

adal variations (Fig. 6), with apparently larger amplitudes along the coasts of the east basin 

(stations 3–8 around the Bay of Bengal and Australian coasts) compared to that of the west 
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basin (stations 1–2 of the Indian west coast and 9–10 of the South African coast). These 

results agree with the variance map of Shankar et al. (2010), showing the SLA minima in 

the central equatorial basin and eastern Arabian Sea, but large variance along the bounda-

ries of the East Indian Ocean. Indeed, tide gauge observations detected coherent interan-

nual SLAs along the 8000 km coastline from Java to Mumbai (Clarke and Liu 1994).

Satellite altimetry since the early 1990s (Fig.  7c) and various reanalysis and recon-

structed sea level products since the 1960s show strong interannual-to-decadal SLAs 

over the Seychelles islands and Chagos Archipelago regions of the tropical South Indian 

Ocean where the thermocline is shallow (McCreary et al. 1993; Murtugudde et al. 1999), 

referred to as the Seychelles–Chagos thermocline ridge (SCTR; e.g., Hermes and Reason 

2008; Yokoi et  al. 2008). Large spread, however, exists among different reanalysis and 

reconstructed products, suggesting large uncertainties in detecting sea level variability 

using these datasets (Nidheesh et al. 2017). Decadal variations are evident, although the 

Fig. 6  Tide gauge observed and HYCOM simulated annual mean sea level anomalies (SLA) and their Ken-
dall Theil trends during 1961–2008. The 10 tide gauge stations with records longer than 30 years (20 years 
for Zanzibar) are shown. All trends exceed 95% significance except for stations 6 and 9 tide gauge data. 
Middle color panel shows Kendall Theil trend of HYCOM simulated SLA for 1961–2008. Light blue/green 
regions are below and the rest above 95% significance. Tide gauge locations are marked by 1–10. Custom-
ized from Han et al. (2010)
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magnitudes are weaker than that of interannual (e.g., Shankar and Shetye 1999; Feng et al. 

2004, 2010, 2011; Holgate and Woodworth 2004: Nidheesh et al. 2013; Figs. 6 and 7d). 

Indeed, decadal reversals of basin-wide sea level trend patterns have been observed in sat-

ellite data (e.g., Lee and McPhaden 2008; Thompson et al. 2016; Srinivasu et al. 2017). 

The leading EOF of satellite SLAs for 1993–2016 agrees with the tide gauge results, show-

ing larger amplitudes around the boundaries of the east basin and over SCTR, compared to 

the weaker magnitude in the central equatorial basin and east Arabian Sea (Fig. 7c, d).

4.2  Eastern and Northern Indian Ocean Boundaries and the Seychelles‑Chagos 

Thermocline Ridge (SCTR) Region

Unique to the Indian Ocean, its northern boundary is located in the tropics and its eastern 

boundary is separated by the ITF, which connects the Indian and Pacific Oceans, the only 

low-latitude connection between ocean basins in the world. As a result, sea level signals 

generated in the equatorial basin can propagate southward to Sumatra and Java coasts (e.g., 

Wijffels and Meyers 2004) and northward into the Bay of Bengal until the west coast of 

India along equatorial and coastal waveguides (Clarke and Liu 1994), and those signals 

generated in the equatorial Pacific can exert strong influence on the west coast of Australia 

(i.e., southeast coast of the Indian Ocean).

Fig. 7  a September, October and November (SON) mean SSTA for the 1997 positive IOD-El Nino co-
occurrence, based on detrended and demeaned HadISST data from 1950 to 2012; b 5-month running mean 
Dipole Mode Index (DMI; thin black curve) based on monthly SSTA, defined as SSTA difference between 
western pole (50°E–70°E, 10°S–10°N average) and eastern pole (90°E–110°E, 10°S–0°N average); thin red 
curve shows 5-month running mean Nino3.4 index; corresponding thick curves are their 8-year low-passed 
indices; c EOF1 of monthly AVISO SSHA (linear trend and monthly climatology removed); d SSHA PC1 
(blue), DMI and Nino3.4 indices. Horizontal dashed lines show the ± 1STD of DMI (black) and Nino3.4 
(red) index
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4.2.1  Remote Versus Local Processes

The multidecadal sea level trends observed by tide gauges around the coasts are associated 

with a basin-wide spatial pattern, with sea level fall in the tropical southwest basin (includ-

ing Zanzibar) accompanying SLR elsewhere (including all other tide gauge stations; map 

of Fig. 6). Similar patterns have been shown in various reconstructed and reanalysis sea 

level products (e.g., Church et al. 2004; Hamlington et al. 2011; Dunne et al. 2012; Han 

et al. 2018) and in ocean model simulations (e.g., Timmermann et al. 2010; see Han et al. 

2014b and 2017a for reviews). The changing surface winds over the Indian Ocean are the 

major driver for this distinct pattern (Han et al. 2010; Timmermann et al. 2010; Schwarz-

kopf and Böning 2011), although the ITF has a significant contribution to the SCTR sea 

level fall in an OGCM experiment (Schwarzkopf and Böning 2011; Han et  al. 2014b). 

Natural internal variability dominates external forcing in causing the spatially uneven dis-

tribution of sea level trends (Fig. 2 of Han et al. 2018). Over the SCTR region, the falling 

rate of sea level obtains its maximum, and internal variability (external forcing) contrib-

utes ~ 81% (19% ± 2.4%) after global mean SLR removed, based on the reanalysis data and 

large ensemble climate model simulations.

On interannual timescales, the observed interannual SLAs (up to 10–25 cm) in the Bay 

of Bengal result mainly from surface wind forcing, with influence from buoyancy flux 

being weak (Han and Webster 2002). Equatorial wind is the main driver of SLAs along 

the eastern and northern Bay boundaries, by exciting equatorial Kelvin waves and sub-

sequently coastally trapped waves. In the western Bay (i.e., east coasts of India and Sri 

Lanka), wind within the Bay has a comparable effect as equatorial wind especially during 

the summer monsoon season, because longshore winds around the Bay generate coastally 

trapped waves and wind stress curl in the Bay interior cause westward-propagating Rossby 

waves. Near the Australian west coast, remote forcing by wind from the equatorial Pacific 

is much more important than local forcing for determining interannual SLAs (e.g., Feng 

et al. 2003; Wijffels and Meyers 2004; Trenary and Han 2012; White et al. 2014; Deepa 

et al. 2018), even though composite analyses showed that during some seasons (e.g., May), 

forcing over the Indian Ocean has a larger effect (Fig. 11 of Trenary and Han 2012). Recent 

theoretical and modeling studies showed that the sloping ocean bottom plays a crucial role 

in trapping the Leeuwin current to the coast, even though some energy radiates offshore via 

Rossby waves (Furue et al. 2013; Benthuysen et al. 2014).

In the central equatorial basin (e.g., the Maldives) and east Arabian Sea (e.g., Indian 

west coast), interannual SLAs attain their minima (Figs. 7c, 8 and 9), due to the destruc-

tive interference between the direct wind-forced signals and reflected Rossby waves from 

the eastern ocean boundary (Shankar et al. 2010). Over the interior South Indian Ocean, 

interannual SLAs obtain the maximum in the SCTR region, and they are primarily driven 

by westward-propagating Rossby waves forced by wind stress curl east of the SCTR (e.g., 

Tozuka et al. 2010; Trenary and Han 2012), with local wind forcing also playing a non-

negligible role (Tozuka et al. 2010).

On decadal timescales, surface wind over the Indian Ocean is suggested to be the domi-

nant forcing for SLAs in most regions (Nidheesh et al. 2013; Trenary and Han 2013; Li 

and Han 2015), and equatorial wind variability is crucial for driving decadal SLAs in the 

Bay of Bengal (Nidheesh et  al. 2013). Along the west coast of Australia, decadal SLAs 

are strongly influenced by remote forcing from the trade wind anomalies in the equato-

rial Pacific (e.g., Feng et al. 2004, 2010; Deepa et al. 2019), although local forcing also 

has comparable contributions (Trenary and Han 2013). While surface wind is an important 
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driver, changes in salinity due to regional precipitation may also play a role in some 

regions. For instance, the century-long-tide gauge at Mumbai observed interdecadal sea 

level variations, which mimic the variability of monsoon rainfall over the Indian subconti-

nent, suggesting the influence of halosteric effects on coastal sea level (Shankar and Shetye 

1999). While thermosteric sea level dominates the observed SLAs in most regions, halos-

teric sea level also has apparent contributions in some areas, such as the north and west 

coasts of Australia and the coasts of Bay of Bengal and India (e.g., Fukumori and Wang 

2013; Nidheesh et al. 2013; Llovel and Lee 2015; Wu et al. 2017).

Fig. 8  Spatial SLA composite (cm) during El Niño years of 1965, 1976, 1986, 1987 and 2002 (a–d); pure 
positive IOD years of 1961, 1967, 1977 and 1994 (e–h); and co-occurrence years of 1963, 1972, 1982, 1997 
and 2006 (i–l) for the months August, October, December and February based on ORAS4 reanalysis (color 
shaded) and OGCM experiment (white contours) from 1959 to 2008. Black contours are OGCM results sig-
nificant at 90% confidence level. Figure from Deepa et al. (2018)
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4.2.2  Effects of Climate Modes

Over the tropical Indian Ocean, the most influential climate modes are ENSO and the 

Indian Ocean Dipole (IOD). The IOD is a coupled ocean–atmosphere mode operat-

ing at interannual timescale (e.g., Saji et  al. 1999; Webster et  al. 1999) but with sig-

nificant decadal modulation (Song et al. 2007; Tozuka et al. 2007). Its positive phase is 

associated with cold SST anomaly (SSTA) in the tropical southeast Indian Ocean and 

warm SSTA in the tropical western basin, reaching peak amplitudes during Septem-

ber–November (Fig.  7a, b). Its temporal variability is measured by the Dipole Mode 

Index (DMI), which exhibits large interannual variability with decadal modulation 

(Fig.  7b). While some IOD events co-occur with ENSO, others are ENSO-independ-

ent (e.g., Meyers et  al. 2007; Sun et  al. 2015; Yang et  al. 2015). Additionally, varia-

tions of monsoon winds, which are often correlated with ENSO and IOD but some-

times act independently, also induce variability in sea level over the Indian Ocean (Han 

et  al. 2017b; Swapna et  al. 2017). In the south Indian Ocean, the subtropical Indian 

Ocean dipole (SIOD) was identified as a coupled ocean–atmosphere mode (Behera and 

Yamagata 2001; Suzuki et al. 2004). Its temporal variability is measured by Subtropical 

Dipole Mode Index (SDMI), which peaks in January–March and is the weakest during 

July–September (Fig. 10b). Like the IOD, while some SIOD events are associated with 

ENSO, others act independently (Zhang et al. 2019).

For the multidecadal sea level trends, it is unknown to what extent the dominant effect 

of natural internal variability discussed above can be attributed to climate modes. For inter-

annual variability, existing studies demonstrate the importance of ENSO and IOD in caus-

ing the observed SLAs in different coastal and island regions. Over the north Indian Ocean, 

the IOD-related basin-scale wind is an important cause for interannual SLAs along the 

coasts of Java, Sumatra and Bay of Bengal (e.g., Han and Webster 2002; Chen et al. 2016), 

but ENSO can also play a significant role (Sreenivas et al. 2012). Along the Indian west 

coast, interannual variability of boreal fall (September–November mean) sea level is corre-

lated with the IOD (Parvathi et al. 2017), even though the magnitude is overall small there 

(Shankar et al. 2010; Fig. 7c, d). Over the South Indian Ocean, ENSO-related trade wind 

variations induce SLAs in the western tropical Pacific (Sect. 3.3), which propagate to the 

west coast of Australia via the ITF (e.g., Pariwono et al. 1986; Pearce and Phillips 1988; 

Clarke and Liu 1994; Godfrey 1996; Meyers 1996; Feng et al. 2003, 2013; Wijffels and 

Meyers 2004; Holgate and Woodworth 2004). Using Geosat sea level data from 1985 to 

1989, Perigaud and Delecluse (1993) showed large interannual SLAs in 10°S–20°S of the 

Indian Ocean, with the strongest variability occurring in the El Niño year of 1986–1987.

Correlation, regression and composite analyses suggest that the IOD (ENSO) domi-

nates interannual SLAs north (south) of ~ 10°S (e.g., Rao and Behera 2005; Yu et al. 2005; 

Gnanaseelan and Vaid 2010). Similar results are shown in the SLA composites for pure El 

Niño and pure positive IOD years from 1959 to 2008, and the ENSO-IOD co-occurrence 

significantly enhances the SLA magnitudes (Fig. 8; Deepa et  al. 2018; also see Webster 

et al. 1999; Rao et al. 2002; McPhaden and Nagura 2014). Along the Indian west coast, the 

weak SLAs are indeed affected by IOD but also ENSO (Fig. 8). The leading EOF of SLAs 

over the Indian Ocean is significantly correlated with ENSO (r = 0.74) and IOD (0.62) dur-

ing 1993–2016 (Fig. 7c, d). The somewhat higher correlation with ENSO is likely due to 

the inclusion of the entire tropical South Indian Ocean where ENSO’s influence is strong. 

The effect of monsoon wind variability that is independent of ENSO and IOD on interan-

nual coastal SLAs requires systematic investigation.
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On decadal time scales, the impacts of climate modes have strong seasonality and spa-

tial variability (Han et  al. 2018). During boreal winter, climate modes account for most 

observed decadal SLAs from 1962 to 2011, with the total effects of IPO, IOD and mon-

soon accounting for 86%, 84%, 80% and 78% of the observed SLA standard deviation 

(STD) near the Australian coast, SCTR region, coasts of Sumatra and coasts of the eastern-

northern Bay of Bengal, respectively. During summer, they explain 95% of observed STD 

near the Australian coast but only 67%, 58% and 63%, respectively, over the SCTR, Suma-

tra and Bay of Bengal coasts. In the equatorial and North Indian Ocean, wind associated 

with IPO is the major cause for coastal SLAs along the coasts of Java, Sumatra and Bay of 

Bengal during winter. However, during summer, winds associated with decadal IOD and 

to a lesser degree monsoon control the coastal SLAs, through both remote forcing from 

the equator and local forcing adjacent to the coasts (Han et al. 2018). In the South Indian 

Ocean, IPO dominates SLAs near the Australian coast and, to a lesser extent, the SCTR 

region (Frankcombe et al. 2015; Deepa et al. 2019) during both winter and summer (Han 

et al. 2018), with a sea level fall in the SCTR islands region corresponding to a SLR along 

the boundaries of the East Indian Ocean (Fig.  9A, B). The trade wind anomalies in the 

tropical Pacific associated with the IPO are the major cause for decadal SLAs along the 

Australian west coast via the ITF (Feng et  al. 2004, 2010; Behera and Yamagata 2010), 

with local winds, which are partly associated with the IPO (Han et  al. 2018) playing a 

comparable role (Trenary and Han 2013). Over the SCTR region, IPO drives the SLAs 

through affecting the surface wind over the Indian Ocean, with the influence of ITF being 

negligible (Deepa et al. 2019; Han et al. 2018). Decadal variations of winter and summer 

monsoon winds also have significant contributions, and the effect of IOD is non-negligible 

during winter (Fig. 9A).

The impact of SIOD on interannual SLAs shows a dipole structure over the southwest 

basin and its influence is negligible along the eastern and northern Indian Ocean bounda-

ries (Fig. 10). A positive SIOD corresponds to negative SLA over the Chagos Archipelago 

of the SCTR and positive SLA over the Mascarene islands (e.g., Réunion, Mauritius and 

Rodrigues) southeast of Madagascar. Therefore, the SIOD primarily affects sea level of the 

island nations of the southwest Indian Ocean. The basin-scale wind stress curls associated 

with the SIOD excite Rossby waves propagating from the east; combined with forcing by 

the local wind stress curl, they produce the interannual SLA dipole, which also exhibits 

significant decadal variations (Zhang et al. 2019).

4.3  Western Indian Ocean Boundary

4.3.1  Remote Versus Local Processes

Compared to the eastern and northern boundaries, studies on sea level variability along the 

western boundary (African coastline) are lacking, likely due to the relatively weaker SLA 

amplitude and shorter tide gauge records there. Along the east coasts of South and North 

Africa, multidecadal trend and interannual-to-decadal SLAs seem to be connected to the 

open-ocean SLAs with substantially reduced magnitudes (Figs. 6, 7c and 9), indicating that 

part of the open-ocean Rossby waves’ energy may pass the slope barrier (Sect. 2) to arrive 

at the western boundary. Near Zanzibar (Fig. 6), the continental slope is steep and the shelf 

is narrow; therefore, signals from the open ocean could have a significant impact on the 

observed SLA, including the observed falling trend there (see Sect. 2).
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(a)

(c)

(d)

(e)

(b)

Fig. 10  a Time evolution of the subtropical dipole mode index (SDMI; °C; black line), defined as the difference of 

SSTA from HadISST data averaged over (55°E–65°E, 37°S–27°S) and (90°E–100°E, 28°S–18°S), boxed regions 

in (c). Red line shows the SDMI independent of ENSO; blue and purple lines denote monthly SLA (cm) time 

series averaged in the SLA dipole areas of SCTR region in the north and Mascarene islands region in the south, 

respectively. Data are detrended with monthly climatology removed. b Monthly standard deviation of the normal-

ized SDMI. c Regression of January–March (JFM) mean SSTA onto normalized JFM SDMI (°C), and vectors 

denote regression of the JFM surface wind stress from ECMWF twentieth-century reanalysis (N m−2). Box in the 

tropical Pacific denotes the Niño-3.4 region. d Same as (c) but for regression of JFM SLA (cm). SLA data are 

from ORAS4 reanalysis. Boxes in the Indian Ocean denote the SLA dipole region (60°E–80°E, 15°S–5°S and 

50°E–70°E, 30°S–20°S). e Same as (d) but for regressions of SLA and wind stress residuals (with ENSO signals 

removed by removing linear regression on the November–January mean Niño-3.4 index) onto SDMI. Shading and 

black vectors in c–e denote results that are statistically significant at 90% confidence level
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4.3.2  Effects of Climate Modes

While both ENSO and IOD are associated with interannual and decadal SLAs in some 

areas of the western boundary including the coast of Madagascar (Figs. 7, 8, 9), and the 

SIOD is associated with weak SLAs along the Somali coast (Fig. 10), variations of mon-

soon appear to have an overall larger effect on decadal SLAs for both winter and summer 

(Figs. 9A, B). How the Rossby waves generated in the basin interior affect the Somali cur-

rent, East African coastal current and western boundary SLAs remains unknown. How the 

climate modes affect sea level in the Persian Gulf and Red Sea remains unclear.

5  The Atlantic Ocean

Different from the Pacific and Indian Oceans whose coastal sea level variability is domi-

nated by the wind-driven ocean circulation, sea level along the Atlantic coasts—particu-

larly the east coast of North America—may also be influenced by the Atlantic Meridional 

Overturning Circulation (AMOC) driven by buoyancy flux, as suggested by OGCM and 

coupled climate model studies. Observational evidence, however, has not yet firmly estab-

lished the relationship between AMOC and coastal sea level variability.

5.1  Observations

The spatial distribution of sea level variability in the Atlantic as seen in altimeter data from 

1993 to 2017 (Fig. 11) identifies several regions of large-amplitude SLAs, most notably the 

Gulf Stream in the western North Atlantic, the Brazil Current in the western South Atlan-

tic, the South African coast in the eastern South Atlantic where the Agulhas rings shed 

from the Indian Ocean, and the North Sea as well as other European shelf regions of the 

eastern North Atlantic. Tide gauge records also show large-amplitude interannual and dec-

adal SLAs along the European coast, and to a lesser extent the east coast of North Amer-

ica (Figs. 1 and 12). Spectral peaks at interannual, 12–14 year, bidecadal 20–30 year and 

50–70 year periods were detected in most of the tide gauges along the US northeast coast 

(e.g., Figure 1 of Kenigson and Han 2014; Sects. 5.2 and 5.3), and the near 60-year cycle 

was also observed along European coasts and other ocean basins (Chambers et al. 2012).

Using long-tide gauge records, several recent studies detected a region of rapid SLR 

acceleration along the US northeast coast from Cape Hatteras to Cape Cod during recent 

decades particularly in the ~ 1990–2010 period (e.g., Boon 2012; Ezer and Corlett 2012; 

Sallenger et al. 2012). Sallenger et al. (2012) dubbed the region of SLR rate much faster 

than the global mean, from Cape Hatteras to Cape Cod, the “hotspot.” From 2010 to 2015, 

however, the area of the highest SLR rate shifts to south of Cape Hatteras, suggesting 

interannual and decadal variability of the rapidest SLR region (Valle-Levinson et al. 2017; 

Domingues et al. 2018; Ezer 2019).

Long-tide gauge records with lengths ≥ 75 years and no major gaps (blue dots of Fig. 11) 

are available primarily along the west and east coasts of the North Atlantic, with only a few 

available along the coasts of the South Atlantic. Nevertheless, coherent interannual SLAs 

were also detected by tide gauges along the South Atlantic west and east coasts, respec-

tively (Brundrit et al. 1984, 1987; Douglas 2001; Papadopoulos and Tsimplis 2006). Based 

on the data availability and dynamical distinctions, in our discussion below we divide the 

Atlantic into three regions: the western North Atlantic, the eastern North Atlantic and the 
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South Atlantic. Each region is not only unique in the dynamics involved, but also in the 

amount of data available (Fig. 11), leading to substantial differences in our understanding 

of the relevant processes and time scales of variability.

Fig. 11  Sea surface height anomaly (SSHA) (units are log of root mean square in cm) from satellite altime-
ter data (1993–2017) and location of tide gauge stations (blue dots) with records of 75 years and longer and 
no major gaps. Altimeter data are from the Permanent Service for Mean Sea Level (PSMSL) organization 
(https ://las.aviso .ocean obs.com/) and tide gauge data are from the Permanent Service for Mean Sea Level 
(PSMSL) organization (http://www.psmsl .org/)

https://las.aviso.oceanobs.com/
http://www.psmsl.org/
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5.2  Western Boundary of the North Atlantic

5.2.1  Remote Versus Local Processes and Buoyancy Versus Wind‑Driven

Sea level along the US east coast has received renewed attention in recent years, due to 

the detection of the accelerated SLR in the mid-Atlantic Bight (Sallenger et al. 2012; Ezer 

2013; Ezer et al. 2013; Yin and Goddard 2013; Goddard et al. 2015; Ezer 2015). While 

the IB effect was suggested to contribute 10–30% of the acceleration (Piecuch and Ponte 

2015), a slowdown of the AMOC was suggested to be an important cause (Sallenger et al. 

2012), based on a qualitative comparison between the observed coastal SLR pattern with 

that of climate model experiments driven by buoyancy flux of Yin et al. (2009). Extensive 

modeling studies showed that surface warming and freshwater flux into the subpolar North 

Atlantic increased steric sea level, weakened the AMOC, reduced the sharp sea level gra-

dients across the Gulf Stream and North Atlantic Current, and resulted in rapid dynami-

cal SLR along the northeast coast of North America (e.g., Hakkinen 2001; Hakkinen and 

Rhines 2004; Levermann et  al. 2005; Hewitt et  al. 2006; Landerer et  al. 2007; Kleinen 

et al. 2009; Yin et al. 2009; Lorbacher et al. 2010; Hu et al. 2011; den Toom et al. 2014; 

Brunnabend et al. 2015; Yu et al. 2016; Hu and Bates 2018). Because the mean sea level 

is low on the inshore side but 1–1.5 m higher on the open-ocean side of the Gulf Stream, 

a weakened cross-stream gradient corresponds to a rising sea level inshore and falling sea 

level offshore of the Gulf Stream; these signals are clear in climate model solutions (e.g., 

Yin et al. 2009).

Fig. 12  Tide gauge locations (red circles) and the detrended, 18-month low-pass filtered sea level anom-
aly time series (gray lines) with monthly climatology removed at each tide gauge, based on the PSMSL 
monthly tide gauge observations from 1950 to 2010. The thick black line is the average of the individual 
time series and accounts for greater than 50% of the variance in the low-passed data set. The filter passed 
more than 90% of the amplitudes at periods longer than 1.9 years, and thus the SLA represents interannual-
to-decadal variability. From Thompson and Mitchum (2014)
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On interannual timescales, OGCM experiments showed an anticorrelation between the 

US northeast coast SLAs and variability of the Atlantic meridional overturning circula-

tion (AMOC) strength, with a 2 cm drop in sea level corresponding to a 1 Sverdrup (Sv) 

increase in the AMOC (Bingham and Hughes 2009). It is unclear, however, whether this 

anticorrelation represents the effect of buoyancy-driven geostrophic component of the 

AMOC or reflects large-scale wind-driven ocean circulation. Note that the northward trans-

port of AMOC’s upper branch consists of three components: the Gulf Stream (or at higher 

latitudes, the North Atlantic Current), meridional Ekman transport driven by wind and 

upper-mid-ocean transport driven by wind and buoyancy flux in the open ocean (McCarthy 

et al. 2015; Ezer 2015; Piecuch et al. 2019).

Using the RAPID monitoring array at 26°N and tide gauge data along the New Eng-

land coasts during 2004–2017, Piecuch et al. (2019) found that the anticorrelation between 

intraseasonal/interannual coastal SLAs and AMOC transport was forced by large-scale 

wind patterns. While the local longshore winds drive negative coastal SLAs, open-ocean 

winds along 26°N force positive (northward) Ekman transport, resulting in an anticorrela-

tion between SLAs and the AMOC. The geostrophic component of AMOC (Gulf Stream 

plus upper-mid-ocean transport), however, is uncorrelated with coastal SLAs. In fact, cor-

relations of 0.70–0.95 are shown between the Ekman component of AMOC transport and 

three interannual modes from empirical mode decomposition (EMD) of the SLA differ-

ence between Atlantic City and Bermuda, using the RAPID data and tide gauge obser-

vations during 2004–2012; the correlations are low between the geostrophic AMOC and 

SLA difference except for the ~ 6-year EMD mode, which shows a correlation of 0.89 but 

it only has one cycle during the 2004–2012 period (Fig. 8 of Ezer 2015; also see Ezer et al. 

2013). Wind stress curl in the Labrador Sea shows significant correlation with interannual 

SLAs along the US northeast coast (Andres et  al. 2013; Kenigson et  al. 2018), and IB 

effect accounts for ~ 25% in the region (Piecuch and Ponte 2015). These results agree with 

Piecuch et al. (2019), suggesting that the anticorrelation between AMOC and US northeast 

coast SLAs on interannual timescales during the RAPID period are primarily wind-driven. 

Further studies are needed to explore the relationship between geostrophic AMOC and US 

east coast interannual SLAs using observations.

Modeling solutions support the above observational results. The local longshore winds 

(Woodworth et al. 2014) are shown to be important for interannual SLAs all the way from 

Cape Hatteras to Nova Scotia (Andres et al. 2013; Kenigson et al. 2018). Using a global 

barotropic model, Piecuch et al. (2016) showed that local wind stress over the continental 

shelf and slope is the major forcing for interannual SLAs along the coast north of Cape 

Hatteras from 1980 to 2015, explaining 50% of tide gauge variance.

On decadal timescales, modeling studies showed that variations of both surface buoy-

ancy flux and wind stress over the North Atlantic can induce AMOC variability (e.g., Mar-

shall et al. 2001; Schloesser et al. 2012, 2014; Yeager and Danabasoglu 2014; Danabaso-

glu et al. 2016; Elipot et al. 2017). OGCM experiments, however, suggested that changes 

of downward heat flux were the major cause for the spin down/up in the Subpolar Gyre 

and AMOC, causing the 12–14 year SLAs along the US northeast coast (Hakkinen 2000, 

2001; Hakkinen and Rhines 2004), with 1 Sv weakening of AMOC corresponds to 1.5 cm 

SLR along the US northeast coast (Woodworth et al. 2014). Local longshore winds may 

also affect the decadal SLAs (Woodworth et al. 2014). Due to the short data record of the 

RAPID array, observational relationship between geostrophic AMOC and US east coast 

SLAs on decadal timescales has not yet been established.

South of Cape Hatteras, interior wind stress curl is the dominant forcing for coastal 

SLAs at interannual-to-decadal time scales (e.g., Sturges and Hong 1995; Ezer 1999; Hong 
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et  al. 2000; Woodworth et  al. 2014). Baroclinic Rossby waves generated by open-ocean 

wind stress curl propagate westward, affecting the Gulf Stream transport, cross-stream 

sea level gradient and thus coastal sea level (Hong et al. 2000; Sect. 2). Both wind stress 

curl and surface heat flux in the basin interior could cause interannual-to-decadal variabil-

ity of the Gulf Stream (e.g., Curry and McCartney 2001; Di Nezio et  al. 2009; Meinen 

et al. 2010; Chaudhuri et al. 2011), but these studies did not explicitly examine coastal sea 

level. Indeed, data analyses and modeling experiments showed significant anticorrelations 

between the Gulf Stream transport and US east coast SLAs on a wide range of time scales, 

from a few days to decades (Hong et al. 2000; Ezer 2001; Sturges and Hong 2001; Papa-

dopoulos and Tsimplis 2006; Ezer 2013; Ezer et al. 2013; Kopp 2013; Ezer and Atkinson 

2014, 2017; Park and Sweet 2015).

It has also been argued that variations in the Gulf Stream position are related to vari-

ations in the southward-flowing Slope Current in the mid-Atlantic-Bight (Rossby et  al. 

2010), which connects the recirculation gyre between the coast and the Gulf Stream. When 

the Gulf Stream moves offshore, the northern recirculation gyre between the Gulf Stream 

and the coast can expand and the Slope Current along the coast can increase its flow, result-

ing in increased coastal sea level (Ezer et  al. 2013; Ezer 2015, 2019). Conversely, other 

studies suggest that intrusion of the Labrador Sea Water into the Slope Sea affects coastal 

sea level gradients and therefore the latitudinal position and separation point of the Gulf 

Stream (e.g., Rossby 1999; Hameed and Piontkovski 2004; Andres et al. 2013).

Despite the dynamical differences between coastal regions north and south of Cape Hat-

teras, there are multidecadal periods when coherent SLAs were observed from the Carib-

bean to Nova Scotia (e.g., Maul and Hanson 1991; Hakkinen 2000; Douglas 2005; Thomp-

son and Mitchum 2014; Calafat et al. 2018; Fig. 12). This coherence is surprising given 

the substantial longshore distances and the distinct dynamical regimes partitioned by the 

Gulf Stream separation and the Straits of Florida. Analyses of ocean hindcasts find that the 

spatial coherence is largely the result of changes in upper ocean heat content spanning the 

coastal and open-ocean areas of the western boundary region rather than changes in slope 

across the boundary current (Hakkinen 2000, Thompson and Mitchum 2014). During a 

large part of the second half of the twentieth century, the spatial coherent coastal SLAs are 

largely driven by changes in basin-wide wind stress curl that force basin-scale, zonal redis-

tributions of volume into and out of the western boundary region (Thompson and Mitchum 

2014). It has also been shown that Rossby waves have coherent modulation on the ampli-

tudes of sea level annual cycle along US east coast (Calafat et al. 2018).

5.2.2  Effects of Climate Modes on US East Coast Sea Level

Two climate modes dominate the variability of the North Atlantic Ocean: the North Atlan-

tic Oscillation (NAO)—representing variations in the amplitude of a dipole pattern in sea 

level pressure over the Atlantic (e.g., Barnston and Livezey 1987; Hurrell 1995)—and the 

Atlantic Multidecadal Oscillation (AMO)—representing the average SST over the North 

Atlantic (e.g., Schlesinger and Ramankutty 1994; Delworth and Mann 2000; Kerr 2000; 

Enfield et al. 2001a, b). Both have imprints in surface wind stress and buoyancy flux and 

thus are closely connected with variations in gyre strength and AMOC (e.g., Curry and 

McCartney 2001; Schloesser et al. 2014). The NAO and AMO have different time scales, 

with more interannual-to-decadal variability in NAO compared to ~ 60–80-year time scales 

of the AMO (Delworth and Mann 2000). It has been hypothesized that at multidecadal 

timescales the SST variability of the AMO reflects the temporal integration of the ocean 
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Fig. 13  a Correlation map between winter (DJFM mean) NAO index and annual mean AVISO satellite 
SSHA over the Atlantic Ocean for the 1993–2016 period; correlation coefficients of ± 0.3 are shown by 
the black line contours; b Same as a but for the correlation between ENSO and satellite SSHA. (The NAO 
index is downloaded from: www.clima tedat aguid e.ucar.edu/clima te-data/hurre ll-north -atlan tic-oscil latio 
n-nao-index -stati on-based .)

Fig. 14  The 5-year rates of sea level change (in mm/yr) calculated from the detrended, 1-year filtered data 
for the long time series of tide gauge along the US east coast from 1920 to 2010. a Spatial structures of the 
first two EOF modes; b Hovmöller diagram of the sea level change rate along US east coast from tide gauge 
A (southern tip of Florida) to Q (Maine); the white-dashed horizontal line shows the location of Cape Hat-
teras; c, d time series of the principle components (or temporal variability) of EOF modes 1 and 2 shown 
in a. The blue arrows above c show that the highest peaks in Mode 1 correspond to the timing of the SLR 
hot spots in b. Cumulative and 7-year filtered versions of e EOF Mode 1 and negative ENSO index and f  
EOF2 and NAO index. The blue arrows are like those between panels (b) and (c). Customized from Valle-
Levinson et al. (2017)

http://www.climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based
http://www.climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based
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circulation (and associated heat transport) variability forced by wind stress associated 

with the NAO (McCarthy et al. 2015; Woodworth et al. 2016); therefore, NAO and AMO 

may not be fully independent of each other. It has also been argued that variations of the 

AMO SST index in the past few decades resulted partly from external forcing (natural and 

anthropogenic; e.g., Booth et al. 2012; Knudsen et al. 2014; Mann et al. 2014) and partly 

from natural variability (Ting et al. 2009; Zhang et al. 2013). In addition, a recent study 

suggested the influence of ENSO on multidecadal variability of US east coast sea level 

(Valle-Levinson et al. 2017).

The surface wind and heat flux, which drive interannual and decadal SLAs along the 

west coast of North Atlantic through both remote and local processes (Sect.  5.2.1) are 

in part associated with the NAO. Satellite observations from 1993 to 2016 show that the 

NAO is associated with distinct spatial patterns of coastal SLA (Fig. 13), showing oppo-

site SLA signs between north and south of Cape Hatteras with lower (higher) sea level in 

the north (south) during a positive NAO. Tide gauge records from 1920 to 2010 confirm 

this north–south contrast pattern, which appears in the 2nd EOF mode of coastal SLAs 

(Fig. 14a, red line). This EOF2 mode however is not significantly correlated with the NAO 

index using 1  year filtered data (Valle-Levinson et  al. 2017), which is inconsistent with 

the correlation shown in Fig. 13; but the 7 year filtered cumulative EOF2 and NAO index 

agree well (Fig. 14f), showing coherent 50–70 year cycle. This result indicates that cumu-

lative ocean response to NAO forcing can produce ~ 60 year cycle in coastal SLA. 

The inconsistency of correlations between coastal SLA and NAO using satellite data 

of 1993–2016 and tide gauge data of 1920–2010 indicates that NAO impact may exhibit 

significant decadal variability. Empirical analyses showed that the NAO impact on inter-

annual SLAs is strong during some decades but weak during others (e.g., Woolf 2003; 

Andres et  al. 2013; Woodworth et  al. 2017), due to changes of local longshore wind 

associated with changes in NAO-related wind patterns near the coast (Kenigson et  al. 

2018). A strong negative NAO superimposed on a 30% AMOC reduction likely caused 

the 2009–2010 extreme SLR along the US Northeast coast (Goddard et al. 2015; Ezer 

2015), with up to 50% of the sea level increase resulted from the IB effect (Piecuch and 

Ponte 2015).

Tide gauge data showed that the ~ 60-year cycle in US northeast coast sea level coin-

cided with the positive transition of the AMO index, with SST warming since ~ 1970 

corresponding to rapid SLR in the mid-Atlantic Bight (Kopp 2013; Ezer 2013; Ezer 

et  al. 2013; Scafetta 2014). Kenigson and Han (2014) demonstrated that the ~ 60-year 

cycle has contributed a large portion to the SLR acceleration along the US northeast 

coast since ~ 1970; without the ~ 60-year cycle, the acceleration dramatically reduces. 

Empirical analyses indicated that the US northeast coast SLR acceleration is also 

linked to the sea level pressure and winds associated with the NAO (e.g., Ezer 2015). 

Tide gauge data during the past 95 years showed that the locations of accelerated SLR 

exhibit significant intra-decadal variability, and they were not correlated with the AMO 

(Valle-Levinson et al. 2017). While the multidecadal variation of the spatially coherent 

SLAs along the entire US east coast (EOF1 of Fig.  14a, black line) agrees well with 

the 7-year filtered cumulative ENSO index (Fig.  14e), the EOF2 mode, which shows 

opposite signs north and south of Cape Hatteras, corresponds to cumulative NAO index. 

They suggested that the cumulative ocean response to the combined ENSO and NAO 

forcing determines the timing and location of the accelerated SLR, even though direct 

correlations for EOF1-ENSO (also see Fig. 13b) and EOF2-NAO were not found. Near 

the coasts of Caribbean and Gulf of Mexico, ENSO has higher correlations with coastal 

SLAs (Fig. 13b).
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5.3  The Eastern Boundary of the North Atlantic Ocean

5.3.1  Remote Versus Local Processes

Along the east coast of the North Atlantic, while some studies suggested the likely link 

between coastal SLAs and changes of gyre-scale ocean circulation (Miller and Douglas 

2007; Woodworth et al. 2010), others show the dominance of remote and local coastal pro-

cesses, rather than remote forcing from the basin interior, are the primary causes for coastal 

SLAs (e.g., Sturges and Douglas 2011; Calafat et al. 2012; Wahl et al. 2013; Dangendorf 

et al. 2014; Chafik et al. 2019). Interannual and decadal SLAs at Cascais tide gauge, Por-

tugal (39°N, 9°W), was primarily forced by longshore wind integrated from the equator 

to Cascais, suggesting the dominant role played by northward propagation of coastally 

trapped waves driven by longshore wind (Sturges and Douglas 2011). Along the European 

west coast and in the Mediterranean Sea (27°N–55°N), decadal SLAs up to 15 cm in tide-

gauge data are highly correlated with the cumulative longshore wind stress, which fur-

ther demonstrates the deterministic role of coastally trapped waves forced by longshore 

wind (e.g., Calafat et al. 2012; Chafik et al. 2019); the IB effect contributes 14–27% sea 

level variance and forcing by local wind and heat flux is weak (Calafat et al. 2012). These 

coastal SLA signals can propagate into the Norwegian coast, Barents Sea and Kara Sea, 

affecting coastal sea level there (Richter et al. 2012; Calafat et al. 2013). In the Mediter-

ranean Sea, coastal sea level variability results from the IB effect, surface wind forcing and 

mass exchange with the Atlantic Ocean, and mass exchange dominates other factors during 

some years such as 2010 (e.g., Fukumori et al. 2007; Menemenlis et al. 2007; Gomis et al. 

2008; Calafat et al. 2012; Landerer and Volkov 2013; Tsimplis et al. 2013; Volkov 2019). 

South of 27°N, decadal SLAs along the African west coast of the North Atlantic are asso-

ciated with heat advection by Ekman transport (Calafat et al. 2012).

In the North Sea, various processes account for interannual SLAs detected by tide gauge 

data around the coasts (Dangendorf et al. 2014). While the IB effect dominates the SLAs 

along the UK and Norwegian coasts, wind controls the SLAs in the south from Belgium up 

to Denmark. On decadal time scales, SLAs mainly reflect steric changes and result largely 

from remote longshore wind forcing. Spatial correlation analyses of altimetry observations 

and steric heights suggest coherent SLAs extending from the Norwegian shelf in the north 

down to the Canary islands of Spain in the South, further supporting the importance of 

longshore wind-forced coastally trapped waves.

5.3.2  Effects of Climate Modes

Since the NAO index is based on sea level pressure pattern west of the European coast, a 

strong influence from NAO on sea level via changes in wind stress and sea level pressure 

(IB effect) is expected. Numerous studies find that IB effect and large-scale wind patterns 

that drive the coastal SLAs along the eastern boundary of the North Atlantic spanning 

Fig. 15  (Top) Location of tide gauge stations near European coast; (Bottom) low-frequency modes of SLA 
(colored, thin lines) obtained from Ensemble Empirical Mode Decomposition (EEMD) method and indices 
of NAO (solid, heavy, black line) and AMO (dashed, heavy, black line) for 1865–2012 at six of the eight 
tide gauge stations shown in the top panel; the amplitude is normalized by the standard deviation (SD), 
which is listed for each record (NAO and AMO have no units; sea level is in mm). Adapted from Ezer et al. 
(2016)

▸
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the coasts of Morocco, Europe and Mediterranean Sea, largely result from the NAO (e.g., 

Wakelin et al. 2003; Woolf et al. 2003; Yan et al. 2004; Hughes and Meredith 2006; Tsim-

plis et  al. 2006; Miller and Douglas 2007; Gomis et  al. 2008; Tsimplis and Shaw 2008; 

Calafat et  al. 2012; Tsimplis et al. 2013; Dangendorf et al. 2014; Ezer et al. 2016). The 

NAO impacts, however, are spatially and temporally variable, with stronger NAO influence 

observed during the second half of the twentieth century relative to the first half. Spatial 

variations of the NAO influences are evident, with positive coastal SLA-NAO correlations 

appearing in the North Sea and northern coasts of Europe, but negative correlations in the 

south as revealed by satellite altimetry data from 1993 to 2016 (Fig. 13a). Changes in the 

center of action of the Icelandic low and Azores high associated with the NAO, which 

affect surface wind, sea level pressure and SST patterns, play a crucial role in affecting 

decadal sea level variability and multidecadal trend along both the east and west coasts of 

the North Atlantic Ocean (Kolker and Hameed 2007).

The decadal variations of coastal sea level along the coasts of the North Sea and the 

UK can be either dominated by low-frequency variations of the NAO or AMO, depend-

ing on the temporal periods (Ezer et al. 2016). The ~ 60-year cycle of AMO is evident in 

Fig.  15 with negative AMO phases in ~ 1910–1920 and ~ 1970–1980 and positive AMO 

phases in ~ 1930–1950 and ~ 2000–2012; however, the very low-frequency variations of the 

NAO are in different phases. Around 1915–1920 when NAO is positive and AMO is nega-

tive, five of the six stations show positive SLA maxima indicating that NAO may dominate 

the sea level variability (i.e., the positive correlation in Fig. 13a), while around 1980 when 

AMO is negative and NAO is near zero, all 6 stations show peak negative SLAs indicating 

that AMO is likely dominating the SLAs. The bidecadal variations of tide-gauge observed 

SLAs along the east and west coasts of the North Atlantic were also shown to be associated 

with the AMO (Frankcombe and Dijkstra 2009). In addition, ENSO also seems to be cor-

related with SLAs near the eastern boundary of the North Atlantic (Fig. 13b).

5.4  The Western and Eastern Boundaries of the South Atlantic Ocean

5.4.1  Remote Versus Local Processes

Due to the very limited long-term tide gauge records in the South Atlantic Ocean, studies 

of remote influence on coastal sea level are rare and often involve numerical model simula-

tions rather than observations. The few analyses of tide gauge data, such as studies of sea 

level trends at the southernmost tip of South America (e.g., Dragani et  al. 2014), show 

significant interannual variations, but the lack of long-term records prevents researchers 

from fully understanding the sources of this variability. In the western South Atlantic, cir-

culations near the coast of South America are largely influenced by local winds and tides 

(e.g., Tonini and Palma 2011). Modeling studies suggest that the upwelling dynamics of 

the shallow coastal area near the Brazilian coast are largely influenced by a combination 

of local winds and the interaction of the Brazil Current with the coastal topography (Palma 

and Matano 2009). While this study focused on seasonal upwelling, one may expect that 

longer-term variations in the wind and the Brazil Current would also impact the coastal 

sea level. Observations by Olson et al. (1988) found that the Brazil Current as well as the 

Malvinas (Falkland) Current (a cold current flowing northward along the tip of South 

America opposing the Brazil Current) have significant interannual variations in their sep-

aration point from the coast, which can thus cause interannual variations in coastal sea 
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level. No studies are available that examine the forcing mechanisms of coastal sea level 

variability.

Piecuch and Ponte (2013) used models to study interannual SLAs in the tropical South 

Atlantic Ocean. They showed that Rossby waves forced by surface wind and buoyancy 

fluxes communicated across the basin in a similar fashion to processes found in other 

tropical and subtropical regions. By analyzing ocean reanalysis data, Vianna and Menezes 

(2013) showed that the leading Complex EOF mode of the bidecadal sea level signals over 

the entire Atlantic basin is characterized by in phase variations of Subtropical Gyres in the 

North and South Atlantic with an opposite sign in the tropical and subpolar regions, and it 

is associated with the AMOC variability. For the second CEOF mode, the North and South 

Subtropical Gyres are not in phase, and it is associated with westward propagation of tem-

perature anomalies via Rossby waves (also see Sevellec and Fedorov 2013). The impacts of 

AMOC and Rossby waves on coastal sea level along the South American coasts, however, 

remain unclear. Their interactions with the western boundary current, the southward-flow-

ing Brazil Current (maximum variability around ~ 50°W, 40°S; Fig. 11) and thus coastal 

SLAs are not known. One of the few observations of AMOC in the South Atlantic is the 

35°S section from Africa to South America (Dong et al. 2009), which shows seasonal and 

interannual variations that impact variations in the northward heat transport. These obser-

vations also indicate large interannual variability in the eastern and western boundary cur-

rents, but the influence of these variations on coastal sea level has not been evaluated.

Along the eastern boundary of South Atlantic (i.e., west coast of Africa), remote influ-

ence from the equatorial Atlantic by events similar to the Pacific El Niño can cause coher-

ent interannual sea level variability of up to 10–20 cm along the entire coast (Brundrit et al. 

1984, 1987). Years of 1963, 1974 and 1984 are the years similar to Pacific El Niño, caus-

ing SLR along the west African coast. Although the modeling work of Piecuch and Ponte 

(2013) focused on the open ocean, their results suggest the importance of wind forcing ver-

sus effects of buoyancy, ocean internal variability and nonlinear ocean response in causing 

interannual SLAs near the west coast of Africa (their Fig. 2). The effects longshore winds 

versus equatorial forcing, local versus remote longshore wind and buoyancy versus wind, 

however, have not been examined. The influence of northward flowing Benguela Current 

along the western coast of Africa is not known. In the southeast Atlantic basin, energetic 

rings shed from the Agulhas Current over the southern tip of Africa (e.g., Olson and Evans 

1986) propagate northwestward and contribute to considerable sea level variability there 

(~ 10°E, 40°S; Fig. 11). These rings are generally larger than Gulf Stream eddies, and they 

are shed in an irregular frequency with a signature clearly seen in satellite altimetry data 

(e.g., Schouten et al. 2000; review of Beal et al. 2011). The impact of the rings on coastal 

sea level has not been studied, however.

5.4.2  Effects of Climate Modes

Existing studies found that the AMOC in the South Atlantic is correlated with SST, which 

leads to a reconstruction of South Atlantic AMOC (Lopez et al. 2017); this study shows a 

strong connection between the South Atlantic AMOC, SST and the IPO. Therefore, dec-

adal variations in the South Atlantic Ocean are expected to be quite different from those 

in the North Atlantic Ocean, which are largely influenced by the NAO. ENSO has sig-

nificant impacts on coastal SLAs along the southwest Atlantic coast (r = 0.5 for SLA and 

SOI index from 1958 to 1997) and the correlation increased after 1980, likely through the 

Pacific–South American teleconnection mechanism by affecting surface wind, sea level 
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pressure and precipitation (Papadopoulos and Tsimplis 2006; also see Douglas 2001). 

While ENSO is significantly correlated with SLAs at tide gauge Buenos Aires, east coast 

of Argentina within the estuary, from the late 1910 to early 1980s, the SLAs at tide gauge 

Quequen, which is somewhat south of Buenos Aires near the open ocean, are not corre-

lated with ENSO (Douglas 2001). This result further suggests the complication of coastal 

processes relative to open-ocean sea level.

Correlation analyses using satellite altimetry data from 1993 to 2016 show weak influ-

ence of NAO on south Atlantic coastal sea level except for some areas along the southeast 

coast of South America (Fig. 13a), but ENSO appears to have significant effects near the 

coasts of Caribbean Sea, and the north as well as some regions of the southeast coast of 

South America (Fig.  13b). Comprehensive studies using both observations analysis and 

modeling experiments are needed to understand the climate modes impact on coastal sea 

level at various time scales in the South Atlantic Ocean.

6  Summary, Issues and Future Outlook

6.1  Summary

While reviewing coastal sea level variability and underlying mechanisms, one has to 

emphasize on the significant impacts of climate modes on coastal oceans via both local and 

remote processes, such as sea level signals from the open ocean. Tide gauge data detected 

large interannual and decadal sea level variability around the coasts of the Pacific, Indian 

and Atlantic Oceans. The variability amplitudes show strong regional differences, consist-

ent with satellite observations (Figs. 1, 3, 6, 7, 11, 12, 14 and 15). While at least more than 

45% of the global mean SLR over the past century has been attributed to anthropogenic cli-

mate change, interannual and decadal variability of coastal sea level mainly reflects inter-

nal climate variability, with a large fraction being associated with climate modes.

Over the Pacific Ocean, ENSO, PDO/IPO and NPGO are the dominant climate vari-

ability modes, which exert significant influence on coastal sea level (Sect. 3). Variations 

of trade wind in the equatorial Pacific related to ENSO (IPO) drive eastward-propagating 

equatorial Kelvin waves and westward-propagating Rossby waves, causing an east–west 

SLA seesaw that dominates coastal SLAs at interannual (decadal) timescales along the 

eastern and western boundaries of the tropical basin. Upon impinging on the eastern bound-

ary, part of the equatorial Kelvin waves’ energy propagates poleward as coastally trapped 

waves, resulting in coherent SLAs all the way through Alaska in the North and southern 

tip of South America in the South (Figs. 2 and 3; Sect. 3.2). North of San Francisco, the 

effects of longshore wind and sea level pressure (atmospheric loading or IB effect), with a 

large part being associated with the PDO, increase with latitudes on interannual timescales, 

but remote forcing from the tropics remains the dominant factor for decadal SLAs. The 

PDO and NPGO indices, however, are least effective in capturing sea level variance along 

the coasts of Northeast Pacific, whereas the NOI, NPI and PNA, which are significantly 

correlated with the PDO and IPO, are much more effective predictors there (Fig. 4). This is 

likely because NOI, NPI and PNA can better capture the local longshore wind and air pres-

sure than the PDO and NPGO indices. In extratropical western North and South Pacific, 

westward-propagating Rossby waves driven by interior wind stress curl related to ENSO, 

PDO/IPO and NPGO are the dominant force for interannual and decadal SLAs around the 

coasts and marginal seas. Rossby waves can excite coastally trapped waves upon impinging 
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on the coasts and affect the location and transport of the western boundary currents and 

thus coastal SLAs (Sect. 2; Fig. 5). Local longshore wind and wind stress curl within the 

marginal seas can also be important in some coastal regions (Sect. 3.3).

Over the Indian Ocean, the most influential climate modes are ENSO, IOD and SIOD 

plus monsoon variability. Large-amplitude interannual and decadal SLAs occur along 

the eastern boundary and over the Seychelles–Chagos islands (SCTR) region (Sect.  4.1; 

Figs. 7c, 8 and 9). Along the Australian west coast, remote forcing by trade wind in the 

equatorial Pacific related to ENSO (IPO) via the ITF is the dominant cause for interan-

nual (decadal) SLAs for all seasons, while IPO-associated wind over the Indian Ocean 

also plays a comparable role for decadal SLAs. From Java to the northern Bay of Ben-

gal, coastal SLAs are primarily forced by equatorial winds at both interannual and decadal 

timescales, and IOD likely dominates ENSO for interannual SLAs; but quantitative assess-

ment on their relative importance remains to be done. Along the east coast of India and 

Sri Lanka, longshore wind and wind stress curl in the Bay of Bengal interior are equally 

important as equatorial wind forcing in driving interannual SLAs during boreal summer. 

On decadal timescales, IPO dominates coastal SLAs during northern winter, but IOD and 

monsoon dominate during summer (Fig. 9). Over the SCTR region, Indian Ocean winds 

associated with ENSO (IPO) are the major cause for interannual (decadal) SLAs, with 

IOD and monsoon also having significant contributions. The SIOD has its largest influ-

ence on SLAs over the SCTR and Mascarene island regions, with negligible effect on the 

eastern and north boundaries of the Indian Ocean. Along the western boundary, monsoon 

variability appears to have larger impact on decadal SLAs compared to decadal ENSO (or 

IPO) and IOD (Fig. 9), and SIOD is associated with weak SLAs along the Somali coast 

(Fig. 10). Although Rossby waves associated with ENSO and IOD have been discussed, 

their impacts on coastal SLAs have not been explicitly examined. Even though the multi-

decadal trend of Indian Ocean sea level (with global SLR removed) since the 1960s was 

attributed largely to internal variability, contributions by climate modes remain unclear.

In the Atlantic Ocean, the dominant climate modes are NAO and AMO. Along the east 

coast of the South Atlantic, coherent interannual SLAs were observed and attributed to 

remote forcing from the equator. Along the east coast of the North Atlantic, Ekman heat 

transport associated with variations of subtropical gyre is the major cause for SLAs south 

of ~ 27°N. North of ~ 27°N particularly along the European coast, local and remote long-

shore wind (integrated from the equator), which drive coastally trapped waves, together 

with air pressure associated with the NAO are the major causes for interannual SLAs 

(Sect. 5.2). On decadal timescales, the effects of NAO may dominate coastal SLAs dur-

ing some decades and AMO dominate during other decades (Figs.  13a and 15). Along 

the west coast of the North Atlantic, instraseasonal and interannual SLAs along the US 

northeast coast north of Hatteras results mainly from longshore wind forcing and IB effect; 

the influence of NAO is strong during some decades but weak during others, depending 

on its influence on longshore wind. No correlation was found between intraseasonal and 

interannual SLAs along New England coast and AMOC geostrophic transport, based on 

tide gauge and RAPID observations from 2004 to 2017. On decadal timescales, modeling 

experiments suggest that SLAs along US northeast coast are linked to AMOC changes, 

which are largely driven by basin-wide buoyancy flux associated with the NAO over the 

North Atlantic, with ~ 1.5 cm SLR corresponding to ~ 1 Sv AMOC weakening. Observa-

tional evidence, however, has not been established due to the short data records. South 

of Cape Hatteras and in subpolar region, westward-propagating Rossby waves and subse-

quently coastally trapped waves are the major causes for interannual and decadal SLAs. 

Rossby waves can affect the location and transport of the Gulf Stream and thus coastal 
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SLAs (Sect. 5.3). Along the west coast of South Atlantic, ENSO-associated wind, sea level 

pressure and precipitation near the coast were suggested to be the major cause for coastal 

SLAs. The impacts of Rossby waves and AMOC on coastal SLAs remain elusive.

6.2  Science Issues and Future Outlook

(a) Coastal and open-ocean connections. Currently, our understanding of the open-ocean 

impact on coastal sea level is based primarily on linear ocean models using idealized conti-

nental shelf and slope geometry. In the real ocean, however, shelf, slope and bottom shape 

vary largely from region to region. To what extent the remote equatorial SLA signals are 

trapped to the eastern boundary of each ocean basin as coastally trapped waves, and to 

what extent the open-ocean SLAs can pass through the slope barrier to arrive at the west-

ern boundary in different regions of each ocean are not well understood. From observa-

tional perspective, continued and new tide gauge records, together with satellite observa-

tions such as the Surface Water and Ocean Topography (SWOT) mission, which aims to 

detect sea level within 10 km from the coasts, will significantly improve our understanding 

of coastal and open-ocean connections. From modeling perspective, high-resolution mod-

els that can adequately resolve continental shelf, slope and western boundary currents are 

needed, to understand the crosstalk between coastal and the open ocean and to quantify the 

relative effects of coastal versus open-ocean processes on coastal sea level.

(b) Representation of climate modes. Climate modes are represented by their indices, 

which are either the principle component (PC) of an EOF mode or time series of SSTA 

over specific regions. Regression analyses onto these indices are used to extract their asso-

ciated winds and sea level pressure that force coastal sea level variability. These methods, 

however, may not well represent the climate modes’ effects on sea level, because climate 

modes, such as ENSO dynamics, are best represented by a few eigenmodes with differ-

ent periods and decay rates but nonorthogonal spatial patterns (e.g., Penland and Sardesh-

mukh 1995; Alexander et al. 2008; Compo and Sardeshmukh 2010; Solomon and Newman 

2012). Using a fixed EOF pattern to represent climate mode (e.g., PDO) may not depict the 

temporal changes of their spatial patterns. Improved representations of climate modes need 

to be sought, in order to achieve more accurate depictions of their impacts on coastal sea 

level. Since local longshore wind and IB effect are important for driving coastal SLAs in 

extratropical oceans, it is important to make the distinction between extratropical climate 

indices (e.g., PDO) and tropical-centered indices (e.g., IPO), even though they are highly 

correlated. For instance, the PDO index can capture the PDO phase transitions in the North 

Pacific, whereas the IPO index cannot always capture them (Thompson et al. 2014; Merri-

field and Thompson 2018). This is because the PDO is an empirical mode and not a physi-

cal mode, which reflects a superposition of multiple processes including teleconnection to 

the tropics, variability of Aleutian Low due to stochastic weather noise, and oceanic pro-

cesses in the North Pacific (Schneider and Cornuelle 2005; Newman et al. 2016). There-

fore, PDO phase transitions caused by extratropical processes may not correspond to phase 

changes of IPO or ENSO in the tropics.

Climate mode indices can be significantly correlated especially on decadal time scales 

(Sect.  3.2.2), either because of the relatively short data record that cannot make statisti-

cally significant distinctions or because they are physically connected. Robust relationships 

between coastal SLAs and decadal climate modes require long data records. While changes 

of AMOC and Gulf Stream were thought to be important for causing decadal SLAs along 

the US east coast, studying their long-term relationship using observations is challenging, 
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because continuous observations of the Florida Current transport started only in 1982 and 

the RAPID observations of AMOC in 2004. Therefore, the impacts of AMOC on coastal 

SLAs are based exclusively on modeling studies. Long observational records are needed 

to confirm the modeling results. Furthermore, variations in SST indices of decadal climate 

modes (e.g., PDO and AMO) can be partly caused by external forcing (e.g., Booth et al. 

2012; Dong et al. 2014). Due to these complications, extracting the effect of internal cli-

mate modes on coastal sea level from that of external forcing using observational analysis 

remains a challenge. To this end, the recently available large ensemble experiments of cli-

mate models with long integrations using anthropogenic, natural, and all forcing, respec-

tively, will be helpful; however, climate models suffer from significant biases in simulating 

climate modes (e.g., Lyu et al. 2016).

(c) Relation with global SLR. Due to the global SLR, US east coast communities see 

acceleration in flooding incidents and severity; even small temporal elevated sea level 

due to internal variability, which were undetected in the past, can now pass a threshold 

and cause unpredictable flooding (Ezer and Atkinson 2014; Sweet and Park 2014; Park 

and Sweet 2015). When sea level increases induced by climate modes are added to global 

SLR and land subsidence, which is especially large in the mid-Atlantic Bight region (Boon 

2012; Karegar et al. 2017), they can cause unexpected year-to-year variations in coastal sea 

level and flooding. For instance, El Niño years are found to be more prone for flooding; the 

extremely strong negative NAO was associated with higher coastal sea level along US east 

coast in 2009–2010, and flooding increased in many locations (2009 was one of the most 

flooded years in Norfolk; Ezer 2015; Goddard et al. 2015). Further research is needed to 

understand climate modes impacts on coastal floods in a changing climate.
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