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SUMMARY

1. Agricultural practices such as cattle farming may have direct or indirect negative effects

on larval amphibians by decreasing water quality through deposition of nitrogenous

waste, causing eutrophication, and grazing shoreline vegetation that contributes to detrital

cover and food.

2. We sampled amphibian larvae on the Cumberland Plateau, Tennessee, U.S.A., twice per

week, water quality twice per month and algal and detrital biomass once per month at

seven wetlands (three cattle-access and four non-access) from March to August 2005 and

2006.

3. In general, species richness and diversity of amphibian larvae were greater in wetlands

without cattle. Mean relative abundance of green frog (Rana clamitans) and American bullfrog

(Rana catesbeiana) tadpoles was greater in non-access wetlands. Body size of some ranid

larvae was larger in cattle-access wetlands but this trend did not exist for juveniles or

adults. Dissolved oxygen was lower, while specific conductivity and turbidity were higher

in cattle-access wetlands. Mean biomass of detritus was lower in cattle-access wetlands

compared to non-access wetlands; no differences were detected in algal biomass.

4. Given the negative impacts of cattle on water quality, detrital biomass, larval

amphibian species richness and relative abundance of some amphibian species, we

recommend that farmers consider excluding these livestock from aquatic environments.
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Introduction

As human populations increase and alter the sur-

rounding landscapes and catchments, it is imperative

that ecologists quantify how wildlife populations

respond to anthropogenic disturbance and formulate

conservation strategies that reduce negative human

impacts (Javorek et al., 2007; McShea et al., 2007).

Agriculture is a widespread human land use, and

fundamental to the sustainability of the global

economy and population (Pretty, 2007). In the

conterminous United States, field crops cover approx-

imately 128 million ha or 14% of the land mass

(USDA, 2007). There also are approximately 1.06

million beef cattle farms, with a total of 97 million

head (USDA, 2007). Agriculture can negatively affect

wildlife by destroying and degrading aquatic and

terrestrial habitat, increasing exposure to toxic levels

of organic and inorganic compounds and decreasing

connectivity among habitat patches (Freemark &

Boutin, 1995; Findlay & Houlahan, 1997; Gray, Smith

& Leyva, 2004). Although agriculture is vital to

human sustenance, prudent use of agricultural prac-

tices is important to ensure coexistence with wildlife

(Pretty, 2007).

Correspondence: Matthew J. Gray, Department of Forestry,

Wildlife and Fisheries, The University of Tennessee Wetlands

Program, 274 Ellington Plant Sciences Building, Knoxville, TN

37996, U.S.A. E-mail: mgray11@utk.edu

Freshwater Biology (2008) doi:10.1111/j.1365-2427.2008.02072.x

� 2008 The Authors, Journal compilation � 2008 Blackwell Publishing Ltd 1



Amphibians have received considerable attention

lately, because quantitative evidence indicates their

populations are declining globally (Houlahan et al.,

2000; Stuart et al., 2004). While many hypotheses have

been proposed to explain these declines, the effects of

agriculture have generally been overlooked. Amphi-

bians may be particularly sensitive to agricultural land

use, because many species depend on aquatic and

terrestrial environments to complete their biphasic life

cycle (Semlitsch, 2000). Pesticide application, sedimen-

tation and fertilizer runoff have been cited as factors

affecting amphibian assemblages in agricultural land-

scapes (Berger, 1989; Boone & James, 2003; Gray, Smith

& Brenes, 2004; Relyea, 2005). In addition, cattle graze

shoreline and terrestrial vegetation and deposit nitrog-

enous waste in wetlands (Belsky, Matzke & Uselman,

1999), which could negatively impact amphibians as

larvae, juveniles or adults. Previous studies have

reported possible negative effects of cattle on repro-

ductive success and post-metamorphic abundance of

amphibians (Healey, Thompson & Robertson, 1997;

Jansen & Healey, 2003; Murphy, Simandle & Becker,

2003; Knutson et al., 2004; Burton et al., 2008). Jofre,

Reading & di Tada (2007) also provided evidence that

survival of Pampa de Achala toad (Bufo achalensis Cei)

tadpoles was negatively associated with cattle grazing

at riparian breeding sites in Argentina. Thus, there is

growing evidence that agricultural practices that allow

cattle access in wetlands may negatively affect some

amphibian species.

Cattle could negatively impact larval amphibians in

several ways. If allowed access, cattle deposit nitrog-

enous waste in aquatic environments while foraging

vegetation or drinking water (Bagshaw, 2002). The

amount of nitrogenous input can be substantial given

that the average beef cattle defecates 12 times per day

(Hoorman, 2005), which is equivalent to approxi-

mately 23 kg of wet faeces per animal per day

(Hermanson & Kalita, 2004). Elevated ammonia,

nitrite and nitrate have been shown to decrease

survival of amphibian embryos and larvae, negatively

affect larval body size and increase malformation

rates (Jofre & Karasov, 1999). An increase in nitrog-

enous compounds also can lead to trophic cascades

that cause a change in algal biomass and aquatic

invertebrate composition (Bourassa & Cattaneo, 2000;

Chase, 2003), both of which are known to impact

larval amphibian abundance (Kupferberg, 1997;

Alford, 1999). Elevated nitrogen also can result in

eutrophication, which can decrease dissolved oxygen

concentrations (Carpenter et al., 1998; USDA, 1999).

Finally, cattle graze emergent wetland vegetation

(Burton et al., 2008), which can provide detritus for

escape cover and feeding sites for larval amphibians

(Alford, 1999). In order to understand the possible

impacts of cattle on larval amphibians, research is

needed on the relationship between the aquatic

environment and amphibian community when cattle

are given access to wetlands.

Most studies on cattle–amphibian interactions have

focused on the post-metamorphic community, and

related impacts to differences in shoreline vegetation

structure (e.g. Jansen & Healey, 2003; Burton et al.,

2008). Few studies have examined the relationship of

cattle access in wetlands on the aquatic environment

and larval amphibians (e.g. Knutson et al., 2004). Thus,

our objectives were to compare larval amphibian

species richness, diversity, abundance and body size

between agricultural wetlands with and without direct

cattle access. We also measured and compared differ-

ences in water quality and biomass of filamentous algae

and detritus, because these variables are known to

affect larval amphibian survival (McDiarmid & Altig,

1999). We hypothesized that cattle would negatively

impact the aquatic environment, and thereby have

negative effects on the larval amphibian community.

Methods

Study site

We conducted this study at the University of Tennes-

see Plateau Research and Education Center on the

Cumberland Plateau near Crossville, Tennessee,

U.S.A. (36�00¢57¢¢N, 85�07¢56¢¢W). We used seven farm

ponds (hereafter referred to as wetlands) for the study:

three with cattle access and four where cattle were

excluded from wetlands (‡20 m buffer) with fencing.

Non-access wetlands had not been exposed to direct

cattle grazing for over 10 years, whereas cattle were

present in access wetlands for over 10 years. Average

cattle density at access wetlands during our study was

86 head (SD = 48.6) per wetland ha per month, and

consisted of Black Angus, Gelbvieh and Balancer

breeds. All study wetlands were typical farm ponds,

containing a permanently flooded centre with

emergent shoreline vegetation composed of cattail

(Typha latifolia L.), rushes (Juncaceae) and sedges
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(Cyperaceae; Burton, 2007). Wetlands were in close

proximity to each other (<2 km total separation), and

landscape composition did not differ between land-

use types (Burton, 2007). Thus, the land-use treatment

in our study represented the presence or absence of

direct access of cattle in wetlands. Wetlands were

stocked with fish, and sampling revealed that compo-

sition was similar between cattle-access and non-

access wetlands (Schmutzer, 2007).

Larval amphibians

Amphibian larvae were sampled twice per week

(Monday and Thursday) in each wetland from 28

March to 26 August 2005 and from 27 March to 25

August 2006 using seine and dip nets. Sampling

locations were determined by dividing each wetland

into four cardinal quadrants (Fig. 1). One quadrant

was randomly selected and seine net sampling

occurred in it and its opposing quadrant. Dip net

sampling was performed in the remaining two quad-

rants. For placement of the seine net plot, we

randomly selected one of the cardinal azimuths

forming the quadrant (e.g. north or east for the

northeast quadrant), and placed the seine plot so that

it began 2.0 m from the cardinal azimuth and

extended into the quadrant. Seine net plots were

10 · 3 m and positioned 2.0 m from and parallel to

the shore. For dip net sampling, we randomly selected

four transects within the boundaries of the other two

quadrants. These transects laid along azimuths that

passed through the centre of the wetland, and

sampling occurred at the shoreline and every 1.5 m

out to 4.5 m from shore (Fig. 1). We sampled one

transect per quadrant and both seine net plots each

day. Because there were four transects per quadrant

for dip netting, all transects were sampled every

2 weeks (i.e. two transects per week).

All captured larvae were counted and identified to

species, with the exception of Bufo spp., which were

identified to genus. We did not separate Bufo spp.

larvae (B. fowleri Hinckley and B. americanus

Holbrook), because we were unable to confidently

distinguish between these species in the field. The first

five larvae processed per species also were measured

(body and total length), weighed and Gosner (1960)

stage recorded. We measured body size of larvae,

because it is often correlated with post-metamorphic

survival and reproduction, and used as an index of

evolutionary fitness in amphibians (Wilbur, 1976;

Morin, 1983; Morey & Reznick, 2001). All organisms

caught were released at their approximate point of

capture.

Macroscopic filamentous algae and detritus

Once per month, we measured biomass of filamen-

tous algae and detritus. We sampled these variables

at one randomly selected location in two opposing

quadrants in each wetland. Similar to dip net

sampling, we randomly generated a transect each

month along an azimuth that passed through the

Fig. 1 Design schematic for dip net, seine,

water quality, algae and detritus sampling

in seven wetlands on the University of

Tennessee Plateau Research and

Education Center, Crossville, Tennessee,

March–August 2005 and 2006.
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centre of the wetland (Fig. 1). At each sampling

location, a plastic circular garbage can with the

bottom removed (0.25-m2 surface area) was placed

in the water at 0.5-m depth, and all contents (algae

and detritus) collected with a dip net. We always

sampled at 0.5-m depth so an equal volume was

sampled among sites, and 0.5 m was the approximate

depth at which dip and seine netting for larvae

occurred. We placed contents in plastic bags on ice

and transported them to the University of Tennessee,

where they were frozen at )20 �C until they could be

sorted. In the lab, we separated all macroscopic

filamentous algae and detritus from samples, and

placed them separately on sheets of pre-weighed

aluminium foil. Algal and detrital samples were not

sorted by taxonomic level. Samples were dried to

constant mass at 80 �C for 48 h.

Water quality

We measured water quality every 2 weeks in each

wetland. Sampling occurred 2.5 m from shore along a

cardinal azimuth, and rotated clockwise to the next

cardinal azimuth each subsequent sampling period

(Fig. 1). We used the 2.5-m distance because it was

exactly the midpoint distance between the shore and

the farthest point where larval sampling occurred (i.e.

the outermost reach of the seine net).

We measured the following water quality variables:

dissolved oxygen (mg L)1), turbidity (FTU), specific

conductivity (mS cm)1), pH, temperature (�C), ammo-

nia nitrogen (mg L)1), nitrite (mg L)1), nitrate

(mg L)1) and phosphate (mg L)1). In 2005, water

sampling occurred during larval sampling (i.e. 08:00–

19:00 hours). In 2006, we changed the protocol to

begin measuring water quality 1 hour before sunrise,

because dissolved oxygen and temperature are lowest

at this time (Allan, 1995). Due to this change in

methodology, we only present results for dissolved

oxygen and temperature from 2006. Both years are

presented for the other variables (pH, turbidity,

specific conductivity, phosphate and nitrogenous

compounds), because they do not fluctuate as drasti-

cally through the diel cycle (Horne & Goldman, 1994).

Specific conductivity, temperature, pH and dis-

solved oxygen were measured using an YSI� probe

[Yellow Spring Instrument (YSI), Yellow Springs, OH,

U.S.A.] and turbidity measured using a LaMotte�

Smart2 colorimeter (LaMotte Company, Chestertown,

MD, U.S.A.). Water was collected and measured for

ammonia nitrogen (0.00–4.00 mg L)1), nitrite (0.00–

1.25 mg L)1), nitrate (0.0–60.0 mg L)1) and phosphate

(0.00–70.00 mg L)1) using the LaMotte� colorimeter.

An error occurred in the 2006 nitrate measurements,

thus those were excluded from the analyses. Results

for ammonia nitrogen were expressed as un-ionized

ammonia (NH3) by multiplying ammonia nitrogen

(NH3–N) by a 1.2-conversion factor (LaMotte Com-

pany, 2004).

Statistical analyses

The response variables included larval species rich-

ness and diversity, species-specific relative abundance

of amphibian larvae, larval body size, filamentous

algal biomass, detrital biomass and water quality.

Experimental units were wetlands (n = 3 access and

n = 4 non-access). Data were collected for 2 years

(2005 and 2006) and analysed separately, because

levels of year could not be randomized. We treated

months as a repeated effect, because we were inter-

ested in documenting potential temporal trends

within years in the response variables. It was not

reasonable to assume that samples taken within

months at each wetland were independent; hence,

we treated them as sub-samples. Thus, for those

response variables with >1 sample per month or

wetland, we averaged across sub-samples such that

each response variable had only one value per

wetland per month. We also calculated the Shan-

non–Weiner index as an estimate of larval amphibian

diversity (Hair, 1980).

We used a repeated measures ANOVAANOVA with Hunyh–

Feldt correction to test for differences (a = 0.10)

between land uses for all response variables, except

body size (Zar, 1999). Normality of response variables

was tested using a Shapiro–Wilk W-test, and a

nonparametric Wilcoxon test was used if normality

was violated. When an interaction between land-use

and month effects occurred, analyses were separated

by month for land-use tests (Zar, 1999). Differences in

body size (mass, body length and total length) were

tested between cattle land uses using an ANCOVAANCOVA

(Zar, 1999). Gosner (1960) stage was used as the

covariate to partition variation in larval body size

associated with development (Altig & McDiarmid,

1999). All statistical analyses were performed using

the SASSAS� system (SAS Institute, 2003).
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Results

Mean species richness of amphibian larvae was 2.7·
greater in wetlands without cattle in 2006 (F1,5 = 4.99;

P = 0.08; Fig. 2a). Although differences were not

detected (F1,5 £ 3.24; P ‡ 0.13), mean species richness

in 2005 and mean species diversity in both years was

2–4· greater in non-access wetlands (Fig. 2a,b). Mean

larval abundance in non-access wetlands was 2.9·

greater than in cattle-access wetlands for American

bullfrog (Rana catesbeiana Shaw) in 2005 and 5· greater

for green frog (Rana clamitans Latreille) in 2006

(Wilcoxon Z = 1.94; P = 0.05; Fig. 3). No other differ-

ences were detected in larval abundance between land

uses (Wilcoxon Z £ 1.61; P ‡ 0.11). For all tests, month

and land-use effects did not interact (F4,20 < 2.42;

P > 0.12), thus richness, diversity and abundance

trends between land uses were similar among

months.

Differences in mean body length, total length and

mass of amphibian larvae existed between cattle land

uses for some species (Table 1). For green frog tadpoles,

mean body length, total length and mass were 19.9%,

27.7% and 63.5% greater in cattle-access wetlands

respectively (Wilcoxon Z ‡ 3.42; P £ 0.001). Similarly,

body length, total length and mass of pickerel frog

(R. palustris LeConte) tadpoles were 12%, 21% and

42.4% greater in cattle-access wetlands respectively

(Wilcoxon Z ‡ 1.77; P £ 0.08). Body mass of American

bullfrog tadpoles was 8.3· greater in cattle-access

wetlands (Wilcoxon Z ‡ 2.00; P £ 0.05). In contrast,

body length and total length of spring peeper (Pseuda-

cris crucifer Wied-Neuwied) tadpoles were 13.4% and

18.5% greater in non-access wetlands respectively

(Wilcoxon Z ‡ 1.77; P £ 0.08). No other differences

were detected between cattle land uses in larval body-

size metrics (Wilcoxon Z £ 1.54; P ‡ 0.12; Table 1).

Biomass of detritus was 10.9· greater in non-access

wetlands in 2006 (F1,5 = 14.33; P = 0.01; Fig. 4). In

2005, month and land-use effects interacted

(F4,20 = 3.19; P = 0.09), thus analyses were separated

by month. In May, July and August 2005, detrital

biomass in non-access wetlands was 21.8·, 5.3· and
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9.9· greater than in access wetlands respectively

(F1,5 ‡ 5.25; P £ 0.07). No differences were detected

in filamentous algal biomass between land uses

(Wilcoxon Z £ 1.05; P ‡ 0.35).

Several water quality variables were different be-

tween cattle-access and non-access wetlands (Table 2).

Turbidity was 3.7· and 3.5· greater in cattle-access

wetlands in 2005 and 2006 respectively (Wilcoxon

Z = 1.94; P = 0.05). Specific conductivity was 67.8%

and 70.4% greater in cattle-access wetlands in 2005 and

2006 respectively (F1,5 ‡ 4.52; P £ 0.09). Conversely,

dissolved oxygen was 28.2% greater in non-access

wetlands in 2006 (F1,5 = 9.44; P = 0.03). No other

significant differences were detected in water quality

between land uses (F1,5 £ 2.83; P ‡ 0.15); however,

generally unionized ammonia, nitrite and nitrate were

greater in cattle-access wetlands (Table 2). For all tests,

Table 1 Mean body size of amphibian

larvae between cattle land uses at seven

wetlands on the University of Tennessee

Plateau Research and Education Center,

Crossville, Tennessee, March–August

2005 and 2006
Size metric Species†,‡

Land use§

Access Non-access

n �x– SE n �x SE

Body length (mm) BUFO* 36 7.65 A 0.24 16 7.27 A 0.30

PSCR** 18 8.58 A 0.80 20 9.73 B 0.43

RACA** 28 16.46 A 3.01 255 13.79 A 0.76

RACL** 48 22.35 A 0.83 149 18.63 B 0.60

RAPA** 8 14.35 A 1.51 39 12.80 B 0.47

RASP** 2 17.15 A 2.15 12 16.73 A 1.28

Total length (mm) BUFO* 36 18.22 A 0.63 16 16.73 A 0.78

PSCR** 18 20.88 A 1.68 20 24.75 B 1.39

RACA** 28 43.74 A 9.67 255 31.68 A 1.30

RACL** 48 61.85 A 2.85 149 48.41 B 1.56

RAPA* 8 37.42 A 4.69 39 31.00 B 1.29

RASP** 2 46.40 A 1.40 12 40.71 A 3.32

Mass (g) BUFO** 23 0.26 A 0.02 1 0.25 A 0

PSCR** 14 0.65 A 0.45 18 0.34 A 0.05

RACA** 16 13.57 A 4.67 214 1.64 B 0.26

RACL** 27 3.76 A 0.38 148 2.30 B 0.18

RAPA** 7 0.96 A 0.13 37 0.68 B 0.05

RASP** 2 1.00 A 0.50 12 1.13 A 0.15

*A N C O V A ;A N C O V A ; **Wilcoxon test.
†Larval amphibians identified to species, except for BUFO, which was identified to

genus.
‡BUFO, American toad (Bufo americanus) and Fowler’s toad (B. fowleri); PSCR, spring

peeper (Pseudacris crucifer); RACA, American bullfrog (Rana catesbeiana); RACL, green

frog (R. clamitans); RAPA, pickerel frog (R. palustris); RASP, southern leopard frog

(R. sphenocephala).
§Access were wetlands (n = 3) which had direct cattle access while non-access, wetlands

(n = 4) had not been exposed to direct cattle grazing for at least 10 years.
–Means within rows with unlike letters are significantly different by analysis of

covariance (A N C O V AA N C O V A) with Gosner (1960) stage as the covariate for body size variables;

Wilcoxon two-sample test was performed when normality was violated (i.e. Shapiro–

Wilk test, P £ 0.08).
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month did not interact with land use (F4,20 < 2.37;

P > 0.15), thus water quality trends between land uses

were consistent among months.

Discussion

Larval amphibian species richness in non-access

wetlands was greater than in cattle-access wetlands

in 2006. Although not statistically significant, the same

trend existed for species richness in 2005 and for

species diversity both years. Our results correspond

with research on post-metamorphic amphibians.

Knutson et al. (2004) and Jansen & Healey (2003)

documented lower adult amphibian species richness

in aquatic habitats exposed to cattle grazing. Jansen &

Healey (2003) also reported that more species of

anuran larvae were found in areas of low grazing

intensity compared to areas with high cattle densities.

In amphibian conservation, preservation of species

richness is a primary concern (Gallant et al., 2007).

Results from our study suggest that excluding cattle

from wetlands helps protect species richness of larval

amphibian communities.

Abundance of American bullfrog and green frog

tadpoles was greater in non-access wetlands com-

pared to cattle-access wetlands both years. No studies

have reported possible impacts of cattle on ranid

larvae, but our results are similar to post-metamor-

phic studies. Burton et al. (2008) found that relative

abundance of green frog metamorphs was lower at

wetlands with cattle access compared to those where

cattle access was prevented. Reaser (2000) speculated

that decreased recruitment of Columbia spotted frogs

(Rana luteiventris Thompson) was due to cattle tram-

pling egg masses. Bull, Deal & Hohmann (2001) also

suggested that reduced abundance of Columbia spot-

ted frog metamorphs may have been a result of cattle

grazing. We captured eight additional species during

Table 2 Water quality between cattle land

uses at seven wetlands on the University

of Tennessee Plateau Research and Edu-

cation Center, Crossville, Tennessee,

March–August 2005 and 2006 Variable† Year

Land use‡

Access Non-access

�x§,– SE �x SE

DO 2005* NT NT NT NT

2006* 6.33 A 0.61 8.12 B 0.23

NH3 2005** 0.54 A 0.17 0.25 A 0.01

2006* 0.57 A 0.01 0.40 A 0.03

NO2 2005** 0.07 A 0.04 0.04 A 0.004

2006** 0.14 A 0.02 0.10 A 0.004

NO3 2005* 7.30 A 0.32 6.93 A 0.55

2006* NT NT NT NT

pH 2005* 7.27 A 0.24 7.11 A 0.08

2006** 6.98 A 0.18 7.00 A 0.11

PO4 2005* 0.30 A 0.16 0.14 A 0.07

2006* 0.26 A 0.19 0.31 A 0.12

SPCOND 2005* 119.36 A 19.81 71.11 B 13.12

2006* 128.61 A 6.22 75.48 B 9.82

TEMP 2005* NT NT NT NT

2006* 19.73 A 0.39 19.46 A 0.24

TURB 2005** 85.82 A 39.85 23.40 B 2.91

2006** 97.69 A 47.74 27.52 B 3.96

*A N O V A ;A N O V A ; **Wilcoxon test.
†DO, dissolved oxygen levels (mg L)1); SPCOND, specific conductivity levels

(mS cm)1); TEMP, temperature (�C); TURB, turbidity (Formazin turbidity units); units of

all chemicals were mg L)1.
‡Access were wetlands (n = 3) which had direct cattle access and non-access wetlands

(n = 4) had not been exposed to direct cattle grazing for at least 10 years.
§NT, no test was performed because an error occurred in the equipment during data

collection or the variable was measured at a non-optimum time in the field.
–Means within rows followed by unlike letters are significantly different by repeated-

measures of analysis of variance (A N O V AA N O V A); Wilcoxon two-sample test was performed

when normality was violated (i.e. Shapiro–Wilk test, P £ 0.07).
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our study (Schmutzer, 2007); however, capture rate of

these species was low, which reduced our ability to

document additional trends between cattle land uses.

Although American bullfrog and green frog are

currently not species of conservation concern, their

responses may be representative of less common

species with a similar life history (e.g. R. luteiventris,

R. muscosa Camp).

American bullfrog and green frog tadpoles may

have been negatively associated with cattle-access

wetlands due to differences in water quality. Specific

conductivity was 70% greater in cattle-access wet-

lands. Higher specific conductivity in cattle wetlands

was likely due to greater turbidity associated with

more organic matter and sediment in the water

column (Line, 2003). Several studies have documented

a negative relationship between specific conductivity

and relative abundance of amphibians (Glooschenko

et al., 1992; Laposata & Dunson, 2000; Knutson et al.,

2004; Pearl et al., 2005). Direct effects of specific

conductivity on larval amphibians are unlikely, but

may be related to turbidity and elevated nutrients,

which increase electrical conductance in water (Cole,

1994).

Turbidity was around 3.5· greater in cattle-access

wetlands compared to non-access wetlands in both

years. Cattle increase turbidity in wetlands by tram-

pling vegetation and disturbing sediment (Belsky

et al., 1999; Line, 2003). Cattle also can affect turbidity

by adding organic matter to the water column

through defecation. The potential effects of turbidity

on tadpole populations are unclear, because wetlands

that amphibians inhabit often are turbid. Knutson

et al. (2004) reported that high turbidity, nitrogen and

phosphorus collectively contributed to lower repro-

ductive success in Minnesota, U.S.A., amphibians.

Habitat models they presented for green frogs, spring

peepers and American toads had negative parameters

for turbidity (Knutson et al., 2004). In our study, lower

ranid populations were associated with the more

turbid cattle-access wetlands. Most research on the

potential effects of turbidity on aquatic vertebrates has

been on fish. High turbidity decreased the foraging

success of the rosyside dace (Clinostomus funduloides

Girard; Zamor & Grossman, 2007), which is known to

feed on aquatic invertebrates, algae and detritus

(Etnier & Starnes, 1993) similar to anuran larvae

(Dickman, 1968; Seale, 1980; Petranka & Kennedy,

1999). Thus, high turbidity may have reduced the

ability of ranid tadpoles to acquire food resources.

Sediment associated with high turbidity also could

have covered and suffocated newly laid amphibian

eggs, and decreased hatching success. Studies

reviewed by Belsky et al. (1999) indicate that excessive

sediment in water can suffocate fish embryos in

riparian systems. More research is needed to explore

the importance of turbidity in driving larval amphib-

ian abundance in cattle-access wetlands.

We also found that dissolved oxygen was 28%

greater in non-access wetlands. Cattle frequently create

eutrophic conditions in aquatic systems by introducing

nutrients (Carpenter et al., 1998), which can result in

oxygen deficits through increased biological respira-

tion of aquatic plants and associated organisms

(USDA, 1999). Reduced dissolved oxygen can nega-

tively influence growth and survival of aquatic organ-

isms (Cole, 1994). High dissolved oxygen was found to

be positively related with amphibian species richness

in Argentina wetlands (Peltzer & Lajmanovich, 2004).

However, in our study wetlands, mean dissolved

oxygen was 6.3 and 8.1 mg L)1 in cattle-access and

non-access wetlands respectively. It has been sug-

gested that the critical level of dissolved oxygen for

anuran larvae in lentic systems is <2 mg L)1 (Costa,

1967; Mann & Bidwell, 2001). Thus, we hypothesize

that lower dissolved oxygen in cattle-access wetlands

most likely was not a primary mechanism driving

differences in tadpole abundance.

Although statistical differences were not detected,

all nitrogen compounds that were measured (un-

ionized ammonia, nitrite and nitrate) were elevated

(5–216%) in cattle-access wetlands, and ammonia may

have reached levels that were biologically significant.

Mean ammonia in cattle-access wetlands was

0.55 mg L)1 during our study. Jofre & Karasov

(1999) reported a decrease in growth and develop-

ment and an increase in malformations in green frog

larvae exposed to levels of ammonia that were

‡0.5 mg L)1. Even though nitrite and nitrate were

elevated, they did not exceed levels known to nega-

tively impact larval amphibians (Marco, Quilchano &

Blaustein, 1999; Rouse, Bishop & Struger, 1999; Griffis-

Kyle, 2007). Thus, we hypothesize that, if nitrogenous

compounds had a direct negative effect on green frog

and American bullfrog tadpoles in cattle-access wet-

lands, it was a result of elevated ammonia.

Biomass of detritus was 4· and 11· greater in cattle-

access wetlands compared to non-access wetlands in

8 A. C. Schmutzer et al.
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2005 and 2006 respectively. This may have been a

consequence of cattle grazing vegetation and reducing

litter fall in wetlands. Burton et al. (2008) found that

plant height, percent vertical structure and horizontal

cover of emergent vegetation were significantly lower

in cattle-access wetlands. To our knowledge, no

previous studies have measured differences in detri-

tus between grazed and ungrazed wetlands. How-

ever, it has been reported that cattle grazing can

significantly reduce the amount of ground leaf litter

(Popolizio, Goetz & Chapman, 1994; Green & Kauff-

man, 1995). If cattle can reduce shoreline vegetation

(Burton et al., 2008) and litter fall in wetlands (Green

& Kauffman, 1995), this may have been the mecha-

nism driving detrital trends.

In our study, most ranid captures were buried

within detritus (A.C. Schmutzer, pers. obs.). Hero

et al. (2001) suggested that detritus can be important

escape cover from predators of anuran larvae. Detri-

tus also is consumed by anuran larvae (Wassersug,

1975) and aquatic invertebrates (Brinson, Lugo &

Brown, 1981; Voshell, 2002), which serve as prey for

some anuran larvae (Petranka & Kennedy, 1999).

Ranid tadpoles are especially known to be macropha-

gous insectivores (Petranka & Kennedy, 1999). How-

ever, Schmutzer (2007) found that mean total

abundance of aquatic invertebrates was similar

between cattle-access and non-access wetlands. Thus,

if detritus had a positive influence on ranid tadpole

abundance, it may have been a consequence of greater

herbaceous food resources or perhaps more escape

cover.

There may be a benefit of cattle grazing in wetlands

for some species. Mean body size for ranid and Bufo

tadpoles was greater in cattle-access wetlands than in

non-access wetlands. Except for Bufo, our body size

results followed a negative density-dependent trend

(i.e. larger body size at lower relative abundance).

Several classic studies have reported negative rela-

tionships between larval amphibian density and body

size (Wilbur, 1976; Morin, 1983). Gray & Smith (2005)

also reported negative density-dependent relation-

ships with post-metamorphic amphibians. It is

hypothesized that low conspecific and congener den-

sity result in less competition per capita for food

resources (Wilbur, 1976), which may have been the

case in cattle-access wetlands, allowing tadpoles to

reach greater length and mass. Unfortunately, the

ecological significance of larger body size in our

cattle-access wetlands is unknown, because tadpoles

were not followed through development to the adult

stage. However, larger body size of larval amphibians

in cattle-access wetlands probably was short-lived,

because in a concurrent study, Burton et al. (2008)

found few differences in juvenile or adult body size

between cattle land uses at our wetlands. For the one

hylid species we captured (P. crucifer), body length

was shorter in cattle-access wetlands. Thus, hylids

may be more sensitive than other species to changes

that cattle cause in the aquatic environment.

Body size of bufonid tadpoles did not follow a

density-dependent trend. Bufonid growth rate may

have been reduced by the presence of invertebrate

predators (e.g. Libellulidae), which are more abun-

dant in non-access wetlands compared to cattle-access

wetlands (Schmutzer, 2007). Skelly & Werner (1990)

reported that dragonfly predators reduced the size of

American toads at metamorphosis because of

decreased foraging activity. Higher abundance of

ranid tadpoles in non-access wetlands also may have

caused greater inter-specific competition for food

resources (Alford & Wilbur, 1985). Finally, it is

possible that larger ranid tadpoles elicited a predatory

response from toad tadpoles (Petranka et al., 1994),

resulting in less foraging activity and a smaller body

size similar to studies with predatory aquatic inver-

tebrates (Skelly & Werner, 1990). Thus, the lack of a

density-dependent trend in toad tadpole body

size may have been the result of interactions with

predators or competitors.

One additional factor that may have contributed to

lower green frog tadpole abundance in cattle-access

wetlands is the emerging pathogen Ranavirus. Gray

et al. (2007) reported that green frog tadpoles in our

cattle-access wetlands were 3.9· more likely to be

infected with Ranavirus than those inhabiting non-

access wetlands. Ranaviruses are known to cause

lethal and sub-lethal effects in tadpoles (Converse &

Green, 2005), and are associated with the majority of

reported ranid die-offs in the United States (Green,

Converse & Schrader, 2002). Thus, ranaviral disease

may have played a role in lower green frog tadpole

abundance at cattle-access wetlands.

Conservation and future directions

Allowing cattle access in wetlands negatively impacted

water quality, detrital biomass, amphibian species
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richness and abundance of some amphibian species.

For species where abundance was negatively asso-

ciated with cattle, larval body size was larger.

Premetamorphic body size often is correlated with

post-metamorphic evolutionary fitness if body size is

maintained in the terrestrial environment. However,

in a concurrent study, Burton et al. (2008) reported

few differences in juvenile and adult body size of

amphibians between cattle-access and non-access

wetlands, perhaps due to post-metamorphic catch-

up growth (Werner, 1986). Thus, there may not be an

evolutionary advantage of larger larval body size in

cattle-access wetlands. Further, body size of some

species (P. crucifer) was lower in cattle-access

wetlands.

Given the negative impacts of cattle on the aquatic

environment and some amphibian species, we

recommend that farmers consider excluding these

livestock from wetlands using electric or barbed wire

fencing. Cattle are usually given access to wetlands

for water; therefore, providing alternate water

sources, such as solar powered wells with troughs,

is a conservation strategy that may reduce the nega-

tive impacts on aquatic communities (Nader et al.,

1998). We hypothesize that a cattle-density threshold

exists where the negative impacts on larval commu-

nities are not observed. Thus, regulating animal

density in space and time may be a viable technique

to reduce negative effects of cattle. For example, cattle

could be rotated into fields with wetlands for shorter

duration, and depending on the time of year, may

have minimal impacts (Nader et al., 1998; Belsky et al.,

1999). Alternatively, cattle could be partially excluded

from wetlands with fencing, or the total number of

cattle reduced. Replicated studies quantifying the

effects of cattle density and rotational grazing are

needed. Future research also should quantify the

effect of buffer widths between cattle and aquatic

habitats on larval and post-metamorphic amphibians.

For our study, cattle were separated from non-access

wetlands by 20–200 m, with no relationship between

buffer-size width and larval amphibian community

metrics. Although a 20-m buffer may be sufficient to

minimize impacts on the larval community, juvenile

and adult amphibians can use terrestrial habitat up to

200 m from breeding sites (Rittenhouse & Semlitsch,

2007). Thus, the effect of cattle on terrestrial habitat

quality and post-metamorphic survival of amphibians

needs to be quantified.
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