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Abstract: The use of very long spatial datasets from satellites has opened up numerous opportu-
nities, including the monitoring of vegetation phenology over the course of time. Considering the
importance of grassland systems and the influence of climate change on their phenology, the specific
objectives of this study are: (a) to identify a methodology for a reliable estimation of grassland
phenological dates from a satellite vegetation index (i.e., kernel normalized difference vegetation
index, kNDVI) and (b) to quantify the changes that have occurred over the period 2001–2021 in a
representative dataset of European grasslands and assess the extent of climate change impacts. In
order to identify the best methodological approach for estimating the start (SOS), peak (POS) and end
(EOS) of the growing season from the satellite, we compared dates extracted from the MODIS-kNDVI
annual trajectories with different combinations of fitting models (FMs) and extraction methods (EM),
with those extracted from the gross primary productivity (GPP) measured from eddy covariance
flux towers in specific grasslands. SOS and POS were effectively identified with various FM×EM
approaches, whereas satellite-EOS did not obtain sufficiently reliable estimates and was excluded
from the trend analysis. The methodological indications (i.e., FM×EM selection) were then used to
calculate the SOS and POS for 31 grassland sites in Europe from MODIS-kNDVI during the period
2001–2021. SOS tended towards an anticipation at the majority of sites (83.9%), with an average
advance at significant sites of 0.76 days year−1. For POS, the trend was also towards advancement,
although the results are less homogeneous (67.7% of sites with advancement), and with a less marked
advance at significant sites (0.56 days year−1). From the analyses carried out, the SOS and POS of
several sites were influenced by the winter and spring temperatures, which recorded rises during
the period 2001–2021. Contrasting results were recorded for the SOS-POS duration, which did not
show a clear trend towards lengthening or shortening. Considering latitude and altitude, the results
highlighted that the greatest changes in terms of SOS and POS anticipation were recorded for sites at
higher latitudes and lower altitudes.

Keywords: start of season (SOS); peak of season (POS); end of season (EOS); vegetation index;
GPP; kNDVI

1. Introduction

Phenology is defined as the “study of the timing of recurring biological events, the
causes of their timing with regard to biotic and abiotic forces, and the interrelation among
phases of the same or different species” [1]. Vegetation phenology specifically addresses
processes linked to the plant cycle, such as leaf emergence, flowering, leaf colouration and
fall [2]. These are controlled by molecular mechanisms inside the organism and driven by
factors such as temperature and photoperiod [3].

The study of plant phenology through on-field observations, although a reliable
approach [4], is time-consuming and costly when applied at large spatial scales or over
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long time series. Moreover, observed phenological data are site specific, often sparsely
distributed and measured for a few plant species only and at discrete phenophases [5].

To overcome these issues, the collection of data and information on phenology through
remote sensing devices and methodologies has become of great importance over the years
as a result of scientific advances in this field of study. Within remote sensing, different types
of technologies can be considered for phenological analysis, such as satellites equipped
with specific sensors [6–8] or Phenocam digital cameras [9–12]. Taking into account satellite
images and the different vegetation indices derived from them [13], the use of these data
has been widely experimented in the literature in different environments, such as evergreen
forests, deciduous forests, croplands and grasslands [14,15], to assess the vegetation cycles
through the extraction of phenological dates of the start, peak or end of the growing season.
Approaches to retrieving these relevant phenological dates from vegetation indices have
been previously investigated with regard to the smoothing and filtering functions of raw
satellite data [16] and date extraction techniques [15]. Furthermore, there has been the
development of specific software, such as Phenopix [17], that simplified and automated
data processing techniques for phenological studies.

In addition to data collected from on-field and remote sensing observations, another
important source of information for studying phenology is the gross primary productivity
(GPP), i.e., the total amount of CO2 fixed by plants through vegetation photosynthesis [18–20],
elaborated from eddy covariance measurements at flux tower sites. Since phenology is one
of the most important controls of the interannual variability of GPP [21,22], these measure-
ments have been used in a number of studies as a proxy for vegetation phenology [15,23].
Unlike phenological on-field observations that are based on the human eye, GPP is focused
on photosynthetic phenology, which is a result of both plant canopy development and
light use efficiency [24]. By measuring the photosynthetic carbon uptake of the vegetation
canopy, dates of start and end of season elaborated from GPP measurements provide indi-
cations of when ecosystems switch from a source to a sink of C, and vice versa [25]. Given
the importance of these data, GPP measurements are also used to evaluate the efficiency of
remote sensing data in estimating ecosystem phenological dates [26,27].

In the last decades, the study of phenological events in plant communities has become
increasingly important to assess the impacts of climate warming on vegetation cycles, with
consequences on agricultural, forest and grassland systems [28,29]. With a specific focus
on the latter, monitoring grassland ecosystems, which cover ca. 70% of the total world
agricultural area [30], has gained interest due to the large amount of ecosystem services
they provide, e.g., erosion protection, water regulation, carbon storage, biodiversity, food
for animal production systems and wildlife, aesthetic and recreational functions [31–34].
Given the huge spatial extent of these environments and the large number of functions they
perform, understanding trends and potential climate-induced shifts in grassland phenology
is impelling [35]. Studies of different environments in Europe have already shown changes
in phenological phases over the period 1951–2018 in a limited number of countries for
which long series of observed data were available [36].

In this regard, long time series of vegetation indices, such as those elaborated from
MODIS satellite images, allow the study of phenology over a relatively long period of time,
providing information at 250 m spatial resolution and 16-day temporal resolution. This
involves assessing changes in phenological dates over the past decades and quantifying
the extent of the impacts of climate change on the plant life cycle that are already visible in
grassland systems [37]. Analyses of satellite-derived phenology over the period 1982–2001
also showed a general advance driven by climate change [38]. However, a comprehensive
phenological analysis specific to European grasslands in recent decades is still lacking, as is
the evaluation of the impact of rising temperatures on these changes.

Building on these premises, the objectives of this research were, therefore, twofold:
(i) Identification of a reliable approach to determine the start (SOS), peak (POS) and

end of the growing season (EOS) through the use of specific vegetation indices (i.e., kernel
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normalized difference vegetation index, kNDVI) processed from MODIS satellite imagery,
relying on observed GPP data from grassland sites as comparison;

(ii) Analysis of phenological trends of different European grasslands in the period
2001–2021 using the methodology identified in point (i) in order to highlight possible
changes in the dates of SOS, POS and EOS and the relevant climatic drivers.

2. Materials and Methods
2.1. Preliminary Analysis and Optimisation of the Extraction Method

In order to analyse the trend of phenological dates of a representative dataset of
European grasslands over the last 20 years, it was necessary to identify the best strategy for
extracting key grassland phenological phases (i.e., SOS, POS and EOS) from satellite images
(Figure 1). The effectiveness of the use of satellite-derived vegetation indices (i.e., kNDVI)
in the assessment of grassland phenological stages was evaluated using as a benchmark
observed seasonal trend of grasslands’ gross primary production (GPP) as fitted by different
models (FM) and extraction methods (EM). The complete procedure is given below.
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and “SOS, POS, EOS trend analysis” (2.2).

2.1.1. GPP Data and Study Areas

Daily GPP data (g C m−2 d−1), used as observed values of grassland growing seasons,
were collected at study sites of the FLUXNET (https://fluxnet.org/, accessed on 5 July
2022 [39]) and European Fluxes Database Cluster (http://www.europe-fluxdata.eu/, ac-
cessed on 7 July 2022) networks. At these sites, CO2 flux of grasslands is regularly measured
from in situ towers by means of the eddy covariance method, and then further partitioned
into ecosystem respiration and GPP [40]. From these two networks, 9 study areas in Eu-
rope with different altitudinal and botanical conditions were selected in order to obtain a
representative European dataset. The list of study areas with the relative information is
reported in Table 1. From the GPP patterns elaborated from this dataset, SOS, POS and
EOS were extracted with the different approaches that are explained in Section 2.1.3.

https://fluxnet.org/
http://www.europe-fluxdata.eu/
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Table 1. List of grassland sites used to obtain daily GPP data. Mamsl represents meters above mean
sea level (m), while EFDC represents the European Fluxes Database Cluster.

ID Site Country Network Lat Lon Mamsl Years

AT-Neu Neustift [41] Austria FLUXNET 47.1167 11.3175 970 2002–2012
CH-Cha Chamau [42] Switzerland FLUXNET 47.2102 8.4104 393 2002–2008
CH-Fru Früebüel [43] Switzerland FLUXNET 47.1158 8.5378 982 2005–2014
CZ-BK2 Bily Kriz Czech Republic FLUXNET 49.4944 18.5429 855 2006–2012
DE-Gri Grillenburg [44] Germany FLUXNET 50.9500 13.5126 385 2004–2018
DE-Rur Rollesbroich [45] Germany FLUXNET 50.6219 6.3041 514 2011–2018
IT-Mal Malga Arpaco Italy EFDC 46.1140 11.70334 1662 2003–2004
IT-Mbo Monte Bondone [46] Italy FLUXNET 46.0147 11.0458 1550 2004–2013
IT-Tor Torgnon [25] Italy FLUXNET 45.8444 7.5781 2160 2009–2018

2.1.2. Satellite Data

For the purpose of the study, we selected the Moderate Resolution Imaging Spectro-
radiometer (MODIS) imagery to retrieve the vegetation index from which to extract SOS,
POS and EOS, corresponding to what was assessed for GPP data. Despite its lower spatial
resolution compared to other more recent satellites (e.g., Sentinel-2), MODIS provides a
long-time series of data allowing the analysis of phenological trends in European grasslands
over the last decades.

The vegetation index used to reproduce the growing season of grasslands was the
kernel NDVI (kNDVI), a specific vegetation index used to reconstruct GPP patterns in
different environments, including grasslands [47]. The kNDVI is calculated as follows:

kNDVI =
1− k(n, r)
1 + k(n, r)

(1)

where n and r refer to the reflectance in the near-infrared (NIR) and red bands (RED),
respectively, BAND 2 and BAND 1 in MODIS at 250 m spatial resolution and 8 days
of temporal resolution (product: MODIS/006/MOD09Q1), while the kernel function k
measures the similarity between these two bands. We used the RBF kernel proposed by the
same authors [47]:

k(a, b) = exp

(
−(a− b)2

)
((2σ)2)

(2)

where the σ parameter controls the notion of the distance between the NIR and RED bands,
elaborated as the mean distance between these two bands:

σ = 0.5(n + r) (3)

For each site, kNDVI values were then processed from the MODIS RED and NIR
bands according to the previous formulas, using the specific coordinates of the grassland
sites with eddy covariance stations.

2.1.3. Fitting Models and Extraction Methods

In order to perform an accurate satellite analysis of phenological date trends over the
period 2001–2021, different fitting models (FMs) and date extraction methods (EMs) were
applied both to raw data of GPP and kNDVI to find the most performing FM×EM approach.
The methodology was then chosen taking into account the results of the comparison
between SOS, POS and EOS extracted from GPP and kNDVI annual patterns.

Consequently, raw data of GPP and kNDVI underwent a process for retrieving the
phenological dates of SOS, POS and EOS. Specifically, using a work package for phenological
analysis within the R work environment (phenopix, [17]), the annual patterns of GPP and kNDVI
were subjected to the fitting operation and, subsequently, to SOS, POS and EOS extraction.
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The FM used in this comparison were 4: Elmore et al. [48] (ELM), Gu et al. [49] (GU),
Beck et al. [50] (BEC) and Klosterman et al. [51] (KLS). These methods fitted different double
logistic curves to the raw data of GPP and kNDVI according to the aforementioned studies.
Equations of ELM, GU, BEC and KLS [17] are shown below:

f(t) = mn + (mx−mn)·
(

1

1 + e(m
′
3−t)/m′4

− 1

1 + e(m
′
5−t)/m′6

)
(4)

f(t) = y0 +
a1[

1 + e−(t−t01)/b1
]
c1
− a2[

1 + e−(t−t02)/b2
]
c2

(5)

f(t) = mn + (mx−mn)·
(

1
1 + e(−rsp·(t−sos))

+
1

1 + e(−rau·(t−eos))

)
(6)

f(t) = (a1t + b1) +
(

a2t2 + b2t + c
)
·
(

1[
1 + q1e−h1(t−n1)

]
v1
− 1[

1 + q2e−h2(t−n2)
]
v2

)
(7)

The selected FMs optimise a different number of parameters and hence present diverse
flexibility in fitting raw data. For a more comprehensive understanding of the methods
and curve parameters, see the corresponding publications.

The GPP and kNDVI curves obtained after FM application were then used to extract
SOS, POS and EOS with four extraction methods [17]: three working on inflection points
of the derivatives (Klosterman, Gu, Derivatives), and one that identifies the dates when a
fixed threshold of the seasonal amplitude is reached (Thresholds). Specifically, Klosterman
is based on local extremes in the rate of change of curvature k [52], Derivatives on local
extremes in the first derivative, and Gu on a combination of local maxima in the first
derivative [49]. Regarding the Thresholds method, in this trial we tested different values for
the fixed threshold: 10 (TRS0.1), 20 (TRS0.2), 30 (TRS0.3), 40 (TRS0.4) and 50% (TRS0.5) of the
seasonal amplitude.

2.1.4. Evaluation Criteria

The statistical analysis performed to evaluate the FMxEM methodology that provides
the best match between SOS, POS and EOS from observed values (i.e., GPP) and satellite-
derived values (i.e., kNDVI) was conducted using four statistical indicators: the coefficient
of determination (R2), the mean absolute error (MAE), Akaike’s information criterion (AIC)
and root-mean-square error (RMSE).

The four indices are calculated as follows:

R2 =
∑n

i=1

(
yi−y

i

)2

∑n
i=1
(
yi−ŷi

)2 (8)

MAE =
∑n

i=1
∣∣yi−ŷi

∣∣
n

(9)

AIC = 2k− 2ln ln
(
L̂
)

(10)

RMSE =

√
1
n

n

∑
i
(yi − ŷi)

2 (11)

where n represents the number of observations, yi the observed value, y
i
the mean observed

value, ŷi the simulated value, k the number of estimated parameter and L̂ the maximum
value of the likelihood function. In order to exclude outlier points, FM×EM approaches
were evaluated by excluding years in which the difference between observed and simulated
phenological dates was higher than 70 days. The percentage of points used out of the total
was reported as pp (point percentage).



Remote Sens. 2023, 15, 218 6 of 22

2.2. SOS, POS, EOS Analysis in the 2001–2021 Period

The approach to extract SOS, POS and EOS from MODIS satellite imagery was selected
after the comparison between phenological dates extracted from kNDVI and observed
GPP and then applied to different grassland systems in Europe over the period 2001–2021.
Subsequently, the influence of seasonal mean temperatures was evaluated to understand
the impact of climate change (Figure 1).

2.2.1. Study Areas and Meteorological Time Series

The analysis of the period 2001–2021 was performed across different grassland sites
in Europe. Study areas were identified from WEkEO (https://www.wekeo.eu/services
accessed on 27 July 2022), the EU Copernicus DIAS reference service for environmental
data, virtual processing environments and skilled user support. From the specific layer that
identifies the category “grasslands”, we selected 31 different sites (Figure 2) from which
the MODIS-kNDVI annual patterns to retrieve SOS, POS and EOS were elaborated and
extracted. Sites were selected to include areas with different altitudinal and latitudinal
conditions to increase the representativeness of the dataset (Table 2).
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Table 2. European grassland sites selected for phenological analysis during the period 2001–2021.

Site ID Country Latitude Longitude Altitude Meteo Station Meteo Years

AUS1 Austria 46.7782◦N 14.9746◦E 1740 Feistritz Ob Bleiburg 2008–2021

AUS2 Austria 47.0373◦N 11.2085◦E 1931 Obergurgl 2002–2021

BOS Bosnia 44.2219◦N 16.5075◦E 1092 Livno 2001–2021

BUL Bulgaria 42.1875◦N 23.2977◦E 2434 Mussala Top Sommet 2001–2021

CZE Czech Republic 48.5850◦N 14.3765◦E 642 Budejovice Roznov 2001–2021

DEN Denmark 56.1995◦N 10.5378◦E 40 Aarhus 2001–2021

FRA1 France 45.5949◦N 6.6931◦E 1812 Bourg St Maurice 2001–2021

FRA2 France 45.1842◦N 2.7997◦E 1169 Aurillac 2001–2021

FRA3 France 42.2984◦N 9.0294◦E 1125 Ile Rousse 2001–2021

GEO Georgia 42.6512◦N 44.601◦E 2258 Pasanauri 2004–2016

https://www.wekeo.eu/services
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Table 2. Cont.

Site ID Country Latitude Longitude Altitude Meteo Station Meteo Years

GER1 Germany 50.7660◦N 10.7831◦E 518 Erfurt 2005–2021

GER2 Germany 51.7090◦N 10.5377◦E 697 Fritzlar 2001–2021

HUN Hungary 47.4892◦N 20.9926◦E 276 Debrecen 2001–2021

ITA1 Italy 45.1806◦N 7.2695◦E 1975 Bousson 2006–2021

ITA2 Italy 45.6908◦N 11.0631◦E 1576 Paganella Mountain 2001–2021

ITA3 Italy 42.4005◦N 13.6756◦E 1623 No station

ITA4 Italy 40.0129◦N 9.3181◦E 1464 Perdasdefogu 2006–2021

LAT Latvia 57.5046◦N 27.3139◦E 581 Aluksne 2004–2020

POL Poland 50.4299◦N 16.3272◦E 630 Klodzko 2001–2021

ROM Romania 46.8456◦N 25.1027◦E 1192 Batos 2014–2021

RUS1 Russia 53.6425◦N 35.5488◦E 165 Bryansk 2001–2021

RUS2 Russia 43.2756◦N 41.6877◦E 2544 Teberda 2013–2020

SCO Scotland 56.5194◦N 4.2276◦W 559 Glen Ogle 2001–2021

SLK Slovakia 49.1370◦N 20.2007◦E 1357 No station

SLV Slovenia 46.4887◦N 14.0553◦E 1238 Ratece 2013–2021

SPA1 Spain 43.0329◦N 1.147◦W 992 Pamplona 2001–2021

SPA2 Spain 42.5973◦N 0.0713◦E 1759 No station

SWE Sweden 64.9977◦N 14.5455◦E 854 Stekenjokk 2002–2021

SWI1 Switzerland 46.9242◦N 6.7304◦E 1219 Bullet La Fretaz 2002–2021

SWI2 Switzerland 46.9014◦N 8.9249◦E 1749 Disentis Sedrun 2001–2021

TUR Turkey 41.2610◦N 42.5550◦E 2524 Ardahan 2009–2021

Coordinates were reported in WGS84.

Meteorological data were extracted from the National Centers for Environmental
Information (NCEI) stations of the National Oceanic and Atmospheric Administration
(NOAA) dataset (https://www.ncei.noaa.gov/maps/daily/ accessed on 29 July 2022).
Wherever possible, mean daily temperatures were collected from stations located in the
closest proximity to the grassland site coordinates.

2.2.2. Procedure and Trend Analysis

In order to proceed with the extraction of phenological dates (i.e., SOS, POS and EOS),
an area of 250 × 250 m cleared of any interference (bare soil, rocks, shrubs, trees) was
identified within each grassland site on the WEkEO portal. From the centroid of this area,
coordinates were subsequently extracted and used to identify the MODIS pixel for the
processing of the kNDVI vegetation index. For each pixel, annual patterns of kNDVI for
the period 2001–2021 were then recreated. From these trends, dates of SOS, POS and EOS
were extracted according to the results obtained by the different approaches tested during
the preliminary analysis. Specifically, the choice of methods took into account the need
to use a single fitting model in order to extract SOS, POS and EOS from the same curve.
Instead, the extraction methods were selected in accordance with the best results obtained
in the preliminary analysis for each phenological date (i.e., SOS, POS and EOS) in order
to achieve better accuracy. The selected FM×EM approaches (same FM, different EM for
phenological date) were then applied to all sites and years to estimate SOS, POS and EOS.

For each site, values of SOS, POS and EOS depicting a difference with the mean
value higher than twice the value of deviance were discarded so as to exclude outliers
from the analysis. Furthermore, in order to smooth out short-term fluctuations, a moving

https://www.ncei.noaa.gov/maps/daily/
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average with a three-year window was applied on phenological dates during the time
period considered.

After extracting and filtering SOS, POS and EOS, advances or delays in the cycle of
grassland vegetation during the time period considered (2001–2021) were analysed.

The results were then correlated with the processed weather data extracted from
stations located in proximity to the study areas. Specifically, daily data of temperatures at
each site were aggregated seasonally: winter (January, February and March), spring (April,
May and June), summer (July, August and September) and autumn (October, November
and December). Then, as well as for phenological dates, a moving average with a three-
year window was performed on average seasonal values of mean temperature to smooth
fluctuations and highlight temporal trends. Data were elaborated with a linear regression
analysis in order to evaluate possible changes in mean seasonal temperatures over the
period 2001–2021.

Finally, mean temperature data were compared through a correlation analysis to
phenological dates extracted from kNDVI patterns to investigate the potential impact of
this factor on advances or delays in the grassland growing season. As in [38], analysis of
phenological trends considered 3 different levels of significance (statistical analysis F-test):
1, 5 and 10%.

3. Results
3.1. Optimisation of the Extraction Method

The analysis conducted by comparing SOS, POS and EOS extracted from GPP with
those extracted from the kNDVI index course (Figure 3) allowed the identification of reliable
methodologies to assess phenological dates.
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Regarding SOS, the FM×EM methodologies providing the best match between ob-
served (i.e., GPP) and estimated data (i.e., kNDVI) were: ELM×TRS0.3, GU×TRS0.3 and
BEC×TRS0.4.

In the case of the peak of the season (POS), the use of the TRS extraction method was
limited to one result, as this date was extracted from the maximum value reached by the
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curve (TRS = 1). As shown in Table 3, the best results in POS calculation were obtained
with ELM×GU and BEC×GU.

Table 3. Goodness of fit indicators between phenological dates extracted from GPP and kNDVI
patterns with different FM×EM approaches. The results underlined and in bold are those relating to
the approach chosen for the start (SOS) and peak (POS) of the season, respectively.

SOS POS EOS

ELM GU BEC KLS ELM GU BEC KLS ELM GU BEC KLS

GU MAE 15.2 17.1 15.2 17.4 13.4 14.4 13.9 12.5 19.2 21.6 25.3 24.7
R2 0.76 0.74 0.75 0.83 0.66 0.62 0.54 0.56 0.08 0.06 0.00 0.05

AIC 627 671 647 577 647 652 651 614 533 595 527 496
RMSE 19.2 21.5 20.0 20.7 18.5 19.3 19.3 18.0 26.0 26.3 29.2 29.7

pp 93 96 94 88 91 93 93 88 77 83 73 72

DER MAE 15.0 16.9 14.2 12.6 16.2 28.6 23.8 16.8 18.8 35.8 39.5 36.3
R2 0.63 0.69 0.73 0.77 0.55 0.49 0.30 0.61 0.09 0.05 0.12 0.16

AIC 682 668 674 568 512 480 530 416 557 498 560 479
RMSE 21.1 21.9 17.8 16.3 21.1 34.6 30.2 23.7 25.4 40.6 43.1 40.1

pp 95 95 99 86 73 64 69 56 79 69 80 72

KLS MAE 17.4 15.0 13.9 19.5 10.3 15.8 13.9 13.6 22.6 23.3 24.1 27.1
R2 0.85 0.73 0.57 0.6 0.89 0.57 0.57 0.71 0.00 0.00 0.02 0.17

AIC 116 300 582 505 110 345 582 431 104 222 458 351
RMSE 21.5 18.2 19.0 24.0 13.1 22.2 19.0 19.3 33.1 29.5 28.65 32.7

pp 17 46 83 69 16 47 83 60 16 30 64 47

TRS0.1 MAE 15.4 19.4 21.0 19.2 16.2 28.5 23.8 16.8 21.1 21.5 22.9 24.4
R2 0.35 0.57 0.56 0.51 0.55 0.49 0.30 0.61 0.06 0.06 0.00 0.00

AIC 635 612 651 598 512 480 530 416 589 302 325 235
RMSE 19.3 24.1 25.7 24.3 21.06 34.6 30.2 23.7 26.5 26.0 28.0 30.0

pp 91 83 94 81 73 64 69 56 84 46 48 33

TRS0.2 MAE 14.0 14.8 13.6 15.8 - - - - 22.8 21.9 24.9 25.9
R2 0.78 0.79 0.79 0.91 - - - - 0.14 0.14 0.01 0.09

AIC 609 611 625 497 - - - - 588 498 583 459
RMSE 17.7 19.7 17.6 19.5 28.3 27.0 30.4 30.2

pp 91 89 94 75 - - - - 85 72 80 68

TRS0.3 MAE 13.6 15.0 12.9 14.6 - - - - 27.5 29.4 28.9 31.6
R2 0.82 0.85 0.80 0.86 - - - - 0.12 0.16 0.07 0.15

AIC 599 593 627 553 - - - - 588 547 548 529
RMSE 16.9 19.0 16.2 17.9 32.0 33.8 33.9 35.8

pp 91 90 95 86 - - - - 85 79 78 78

TRS0.4 MAE 13.7 14.9 12.8 13.3 - - - - 34.2 36.1 35.5 36.6
R2 0.80 0.81 0.79 0.80 - - - - 0.10 0.22 0.14 0.22

AIC 629 624 626 580 - - - - 569 574 545 522
RMSE 18.1 19.3 15.9 16.7 38.4 39.4 39.1 39.8

pp 94 93 95 88 - - - - 83 83 79 78

TRS0.5 MAE 13.7 15.7 13.3 12.6 - - - - 39.8 42.0 40.3 40.3
R2 0.73 0.69 0.76 0.76 - - - - 0.12 0.21 0.21 0.19

AIC 652 674 648 566 - - - - 523 567 527 505
RMSE 18.6 20.5 17.1 16.7 43.5 45.0 43.1 43.6

pp 94 95 96 84 - - - - 75 81 78 74

The FMs reported are Elmore (ELM), Gu (GU), Beck (BEC) and Klosterman (KLS), the EMs Gu (GU), Derivatives
(DER), Klosterman (KLS) and Threshold (TRS). Pp represents the percentage of points used for the evaluation
(difference between dates extracted from GPP and kNDVI < 70 days).

The identification of EOS dates via remote sensing, on the other hand, was more
problematic, with sub-optimal statistical values (R2, MAE, AIC, RMSE) and a generally
lower number of usable points after filtering with respect to SOS and POS (Table 3). Due to



Remote Sens. 2023, 15, 218 10 of 22

the low performance in determining EOS through the kNDVI index, the end of the season
was not considered in the analysis over the 2001–2021 period.

Among the methodologies that performed best in predicting SOS and POS, those cho-
sen for the analysis of the period 2001–2021 were ELM×TRS0.3 and ELM×GU, respectively.
The choice fell on these two specific methodologies since for the extraction of start and
peak dates, it was relevant to maintain the same type of fitting model (i.e., ELM), even if
the extraction methods that worked better for SOS and POS were different (TRS0.3 and GU
for SOS and POS, respectively).

3.2. SOS and POS Trend Analysis (2001–2021)

The procedures selected during the methodological analysis (ELM×TRS0.3 and ELM×GU,
respectively, for SOS and POS) were used to investigate possible changes in the phenological
timing of European grasslands. Given that from the results obtained in 3.1 (Table 3), the
end of the season (EOS) was not well identified by MODIS-kNDVI when compared to EOS
extracted from GPP, the analysis considered exclusively the start (SOS) and peak (POS)
dates of the growing season.

Satellite-derived SOS showed a clear trend over the time span considered. As depicted
in Table 4 and Figure 4, 26 sites (out of 31, i.e., 83.9% of the total) evidenced a negative
correlation between SOS and years, indicating a progressive advance in the start of the
growing season from 2001 onwards. From the SOS-years regression analysis, 17 grasslands
sites showed a level of significance (F) < 0.1 in SOS anticipation. Specifically, 3 sites reported
F values between 0.05 and 0.1 (AUS1, POL, RUS1), 5 between 0.01 and 0.05 (GEO, GER2,
RUS2, SLV, TUR) and 9 < 0.01 (AUS2, BOS, CZE, DEN, FRA2, ITA3, HUN, SLK, SWI1).
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The advance in SOS was subsequently quantified (Figure 4) by applying the equation
identified from the specific SOS-years linear regression. From 2001 to 2021, the average ad-
vance of the growing season at significant sites (F ≤ 0.1) was 15.92 days (0.76 days year−1).
However, it should be noted that the significant sites analysed showed different levels
of SOS earliness, ranging for example from the 5.6-day advance of the RUS1 site to the
42.0-day advance of the DEN site.

As with SOS, the POS dates in the period 2001–2021 showed a trend towards an earlier
peak of the grassland growing season. In fact, although in a smaller percentage than in
SOS, 21 sites (67.7% of the total) evidenced an advance in POS dates (Table 4 and Figure 5).
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Table 4. Results of SOS and POS analysis over the period 2001–2021. Mean represents the mean
value of SOS and POS during the period 2001–2021, reported to give general information about
each site (data not included in the analysis). R columns show the correlation coefficient (R) between
phenological dates (i.e., SOS and POS) and years, Sign. the significance (F) of the SOS and POS-years
regression, and Days the difference between SOS and POS in the years 2001 and 2021 according to the
equation found with the linear regression.

SOS POS

ID Mean R Days Sign. Pp Mean R Days Sign. Pp

AUS1 139.32 −0.43 −15.89 0.06 0.9 169.35 −0.25 −4.54 0.3 0.95
AUS2 159.3 −0.66 −17.51 <0.01 0.95 187.16 −0.52 −14.02 0.03 0.9
BOS 116.05 −0.68 −10.08 <0.01 0.9 157.52 −0.4 −9.93 0.09 1
BUL 172.7 −0.17 −3.77 0.48 0.95 197.9 −0.11 −5.53 0.65 0.95
CZE 85.16 −0.66 −13.88 <0.01 0.9 129.68 −0.52 −17.2 0.02 0.9
DEN 91.63 −0.74 −42 <0.01 0.86 124.18 −0.44 −14.31 0.06 0.81
FRA1 124.3 −0.34 −4.42 0.15 0.95 154.19 0.5 4.44 0.03 0.95
FRA2 94.47 −0.61 −20.6 <0.01 0.9 140.42 −0.4 −6.66 0.09 0.9
FRA3 97.5 −0.61 −15.99 <0.01 0.95 130.85 −0.12 −3.57 0.64 0.95
GEO 148.95 −0.47 −5.55 0.04 0.95 177.65 −0.4 −7.42 0.1 0.95
GER1 84.75 −0.01 −0.42 0.96 0.76 117.67 −0.15 −5.47 0.53 0.86
GER2 99.05 −0.48 −14.76 0.04 0.9 131.48 −0.62 −27.73 <0.01 1
HUN 69.23 −0.65 −22.95 <0.01 0.65 154.11 0 −12.02 0.74 0.95
ITA1 138.84 −0.07 −2.42 0.77 0.9 167.9 0.17 4.51 0.49 0.95
ITA2 136.95 0.22 4.3 0.36 0.95 165.65 0.5 6.8 0.03 0.95
ITA3 11.56 −0.77 −25.14 <0.01 0.86 143 0.22 5.28 0.36 0.95
ITA4 107.35 0.08 1.71 0.73 0.81 128.05 −0.2 −5.74 0.41 1
LAT 113.11 −0.11 −1.12 0.65 0.9 146.35 −0.89 −27.1 <0.01 0.95
POL 102.58 −0.43 −14.06 0.07 0.9 138.8 −0.4 −10.82 0.09 0.95
ROM 128 0.22 6.64 0.38 0.95 166.85 0.07 1.58 0.78 0.95
RUS1 119.26 −0.39 −6.56 0.1 0.9 149.94 −0.24 −6.37 0.33 0.81
RUS2 148 −0.52 −7.59 0.02 0.95 181.76 −0.64 −13.49 <0.01 1
SCO 125.2 −0.34 −31.05 0.16 0.95 161.39 0.13 7.21 0.61 0.86
SLK 122.76 −0.66 −20.52 <0.01 0.81 157.82 0.37 17.35 0.18 0.81
SLV 130 −0.54 −13.89 0.02 0.86 164.25 −0.4 −8.3 0.09 0.9
SPA1 88.28 0.32 11.75 0.18 0.9 155.21 0.37 15.1 0.12 0.9
SPA2 125.67 0 −0.05 0.99 1 154.89 −0.24 −3.86 0.32 0.9
SWE 172.21 −0.02 −0.5 0.94 0.9 191.53 −0.55 −19.62 0.02 0.9
SWI1 110.35 −0.7 −12.11 <0.01 0.95 135.04 0.19 3.78 0.44 0.95
SWI2 124.6 0.32 7.37 0.17 0.95 152.86 −0.33 −11.51 0.17 1
TUR 151.8 −0.55 −7.4 0.02 0.95 185.9 −0.55 −9.54 <0.01 0.95

Pp is the percentage of points used out of the total after the filtering procedure. Results with significance <0.1 are
shown in bold.

From POS-years regression analysis, 13 grassland sites showed a level of significance
(F) of < 0.1 in POS advance during the period 2001–2021. Specifically, 6 sites reported F
values between 0.05 and 0.1 (BOS, DEN, FRA2), 3 between 0.01 and 0.05 (AUS2, CZE, SWE)
and 4 < 0.01 (GER2, LAT, RUS2, TUR). In the case of POS, in addition to sites that showed a
significant advance in the beginning of the season, two sites highlighted contrasting trends
(FRA1 and ITA2), showing a clear delay in the peak of the season (0.01 < F < 0.05). As for
SOS, changes in phenological dates during the period 2001–2021 were quantified for each site
(Figure 5). Considering all the significant sites (F≤ 0.1), including those that showed a delay,
the average advance in the peak of the growing season was 11.66 days (0.56 days year−1).

In order to carry out an assessment of temperature influence in determining the
phenological dates of European grasslands over the 2001–2021 period, statistical analyses
were performed to assess the temperature trend over the years considered and the impacts
of thermal factors on SOS and POS. From the results of the linear regressions performed
between temperatures and years (Table 5), the mean winter temperatures showed an
increasing trend in 21 of the 23 sites (sites with no or little weather data were excluded),
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corresponding to 91.30% of the total. Of these, 16 (69.57%) showed a significant change
(F < 0.1) over the time period analysed. On the other hand, the average spring temperatures
showed a less homogenous trend, with a lower tendency of temperature increase (65.21%)
and fewer sites (6) with significant change (26.08%).
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Winter Spring

ID T Mean R Years Sign. R SOS Sign. T Mean R Years Sign. R SOS Sign. R POS Sign.

AUS1 1.12 0.78 <0.01 −0.51 0.09 13.93 −0.11 0.74 −0.41 0.19 −0.22 0.5
AUS2 −4.15 0.72 <0.01 −0.36 0.16 5.9 0 0.99 −0.03 0.91 −0.52 0.03
BOS 3.73 0.74 <0.01 −0.63 0.01 16.1 0.62 0.01 −0.61 0.01 −0.64 0.01
BUL −9.07 0.68 <0.01 −0.28 0.25 −0.22 0.47 0.04 −0.16 0.51 0.18 0.45
CZE 1.73 0.66 <0.01 −0.55 0.02 13.82 0.33 0.18 - - −0.3 0.23
DEN 2.16 0.72 <0.01 −0.64 <0.01 11.44 0.76 <0.01 −0.29 0.24 −0.62 <0.01
FRA1 2.33 0.56 0.01 −0.27 0.27 13.79 0.05 0.84 −0.57 0.01 −0.06 0.82
FRA2 4 0.36 0.13 −0.67 <0.01 12.93 −0.24 0.32 −0.17 0.48 0.09 0.72
FRA3 10.82 0.65 <0.01 −0.08 0.75 18.07 0.11 0.65 0.09 0.71 −0.49 0.03
GEO 0.06 0.25 0.43 0.02 0.95 13.22 −0.01 0.97 −0.29 0.34 0.15 0.62
GER1 1.91 0.46 0.08 −0.03 0.91 12.92 0.24 0.39 - - −0.41 0.13
GER2 2.77 0.3 0.21 0 1 13.15 0.12 0.63 −0.32 0.18 0 0.99
HUN 2.26 0.61 0.01 −0.31 0.27 16.45 0.36 0.13 - - 0.04 0.87
ITA1 a −0.24 - - - - 9.46 - - - - - -
ITA2 −3.83 0.1 0.67 0.02 0.93 4.94 −0.36 0.13 −0.04 0.88 −0.16 0.52

ITA3 b - - - - - - - - - - - -
ITA4 8.17 0.67 0.01 0.32 0.27 17.48 −0.07 0.82 −0.35 0.22 −0.56 0.04
LAT −3.92 0.53 0.04 −0.52 0.05 10.8 0.51 0.05 −0.53 0.04 −0.55 0.03
POL −0.32 0.53 0.02 −0.32 0.18 12.32 0.23 0.34 −0.57 0.01 −0.55 0.02

ROM a 1.88 - - - - 15.02 - - - - - -
RUS1 −3.57 0.48 0.04 −0.33 0.17 14.09 0.44 0.06 −0.28 0.25 −0.74 <0.01

RUS2 a 1.24 - - - - 11.53 - - - - - -
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Table 5. Cont.

Winter Spring

ID T Mean R Years Sign. R SOS Sign. T Mean R Years Sign. R SOS Sign. R POS Sign.

SCO 1.22 −0.37 0.12 −0.18 0.47 6.71 0.24 −0.31 −0.14 0.56 −0.47 0.05
SLK b - - - - - - - - - - - -
SLV a −0.25 - - - - 11.69 - - - - - -
SPA1 7.08 −0.11 0.66 0.08 0.74 15.48 −0.87 <0.001 - - −0.45 0.05

SPA2 b - - - - - - - - - - - -
SWE −8.69 0.03 0.89 0.24 0.34 1 −0.34 0.17 −0.69 <0.00 −0.2 0.43
SWI1 −0.1 0.63 <0.001 −0.56 0.02 9.37 0.17 0.51 −0.46 0.06 −0.15 0.55
SWI2 0.15 0.52 0.02 0.01 0.97 10.51 0.03 0.92 −0.16 0.51 −0.02 0.92
TUR a −3.43 - - - - 13.17 - - - - - -

Site names with a and b represent the sites with insufficient (a) or no (b) weather data to conduct the analysis.
Results with significance <0.1 are shown in bold.

The results on the influence of winter and spring temperatures on SOS, showed a
negative correlation between SOS and temperatures, significant in 7 sites (F < 0.1, AUS1,
BOS, CZE, DEN, FRA2, LAT, SWI1) with winter temperature and in 6 (BOS, FRA1, LAT,
POL, SWE, SWI1) with spring temperature as the main driver.

Since POS always occurred several weeks after winter’s end, in the analysis we
considered only the effect of spring temperatures. Here, too, the relationship highlighted a
negative correlation between phenological dates (i.e., POS) and temperature. In particular,
10 sites (AUS2, BOS, DEN, FRA3, ITA4, LAT, POL, RUS1, SCO, SPA1) showed a significance
F in the POS-spring temperature relationship of less than 0.1.

Taking into account the grasslands where the change was significant at both the SOS
and POS dates (11 sites), we investigated the influence of two other potential phenological
season variables: the latitude and altitude of the test sites. As can be seen in Figure 6,
the change in advance during the period 2001–2021 is greater with increasing latitude for
both SOS and POS, with the former showing a higher correlation (R = −0.81) than the
latter (R = −0.55). Observing the correlations between changes in phenological dates and
altitude, sites at higher altitudes show less advance in SOS and POS than those at lower
altitudes. As in the case of the SOS and POS-latitude correlation, the absolute values of R
are greater for the change in SOS dates (R = 0.69) than for POS (R = 0.36).
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In addition to the analysis of the changes that occurred in SOS and POS over the
reference period, changes in the duration of the timeframe between SOS and POS (i.e.,
SOS-POS duration) were also analysed (Figure 7).

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 23 
 

 

 
Figure 7. Changes in SOS-POS (number of days) interval during the period 2001–2021 for all test 
sites. 

The data did not show any common trend within the framework of the European 
grasslands analysed. Indeed, within the dataset considered, some sites showed an 
increase in the SOS-POS duration (56.67%), while others showed a decrease (43.33%). The 
lengthening of the SOS-POS duration between 2001 and 2021 was determined by a less 
marked anticipation of the POS with respect to the SOS (e.g., DEN) or the postponement 
of the former (e.g., FRA1). The reduction in the SOS-POS duration, on the other hand, was 
generally caused by a higher advance in POS than in SOS (e.g., GER2). 

The change in the time duration of the SOS-POS interval was also analysed in the 
light of the individual changes in SOS dates. Figure 8 depicts the change in the SOS-POS 
interval, showing an increase in the number of days as the magnitude of the SOS advance 
grows and highlighting the influence of an advanced SOS on the lengthening of SOS-POS 
duration. The analysis was also conducted considering three different levels of altitudinal 
and latitudinal ranges, but no clear trends emerged. 

 
Figure 8. Relationships between changes in SOS-POS duration and changes in SOS during the 
period 2001–2021. Figures represent the same equation, highlighting sites graphically according to 
altitude (left) or latitude (right). Sites are divided into 3 different classes of altitude (low, 0–650 m; 
medium, 650–1300 m; high +1300 m) and latitude (low, 40–45°; medium, 45–50°; high +50°). 

Figure 9 shows an example of the trend in average temperatures for the 30 days 
following the SOS at the DEN site, highlighting how an earlier SOS date results in a 
generally colder initial growing season, which can lead to a delay in the POS date and a 
lengthening of the SOS-POS duration (e.g., DEN). Although colder average temperatures 
are generally present when the start of the season occurs early, the lengthening of the SOS-

Figure 7. Changes in SOS-POS (number of days) interval during the period 2001–2021 for all test sites.

The data did not show any common trend within the framework of the European
grasslands analysed. Indeed, within the dataset considered, some sites showed an in-
crease in the SOS-POS duration (56.67%), while others showed a decrease (43.33%). The
lengthening of the SOS-POS duration between 2001 and 2021 was determined by a less
marked anticipation of the POS with respect to the SOS (e.g., DEN) or the postponement of
the former (e.g., FRA1). The reduction in the SOS-POS duration, on the other hand, was
generally caused by a higher advance in POS than in SOS (e.g., GER2).

The change in the time duration of the SOS-POS interval was also analysed in the
light of the individual changes in SOS dates. Figure 8 depicts the change in the SOS-POS
interval, showing an increase in the number of days as the magnitude of the SOS advance
grows and highlighting the influence of an advanced SOS on the lengthening of SOS-POS
duration. The analysis was also conducted considering three different levels of altitudinal
and latitudinal ranges, but no clear trends emerged.
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Figure 8. Relationships between changes in SOS-POS duration and changes in SOS during the period
2001–2021. Figures represent the same equation, highlighting sites graphically according to altitude
(left) or latitude (right). Sites are divided into 3 different classes of altitude (low, 0–650 m; medium,
650–1300 m; high +1300 m) and latitude (low, 40–45◦; medium, 45–50◦; high +50◦).
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Figure 9 shows an example of the trend in average temperatures for the 30 days
following the SOS at the DEN site, highlighting how an earlier SOS date results in a
generally colder initial growing season, which can lead to a delay in the POS date and a
lengthening of the SOS-POS duration (e.g., DEN). Although colder average temperatures
are generally present when the start of the season occurs early, the lengthening of the
SOS-POS duration, visible for example at the DEN site, was not always visible at all test
sites (e.g., Figure 7), likely due to different grass species.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 23 
 

 

POS duration, visible for example at the DEN site, was not always visible at all test sites 
(e.g., Figure 7), likely due to different grass species. 

 
Figure 9. Example of relationships between SOS and the mean temperature of the 30 days after SOS 
at the DEN site. 

4. Discussion 
This study aimed to identify the best methodology for the estimation of phenological 

dates through satellite-processed vegetation indices. As in other studies [26,27], GPP 
measurements were used to extract SOS, POS and EOS as observed data to be compared 
with those elaborated from kNDVI patterns. Due to the valuable relationship between 
kNDVI and GPP found for grasslands in [47], the use of this index enabled phenological 
dates (i.e., SOS and POS) to be estimated in agreement with those extracted by GPP 
patterns at sites endowed with eddy covariance flux towers. Various fitting models and 
extraction methods were tested and evaluated in our study, providing different results for 
SOS, POS and EOS detection. For consistency, a trend analysis was performed by 
deploying only one fitting model (i.e., ELM) among those selected. Then, we identified 
the best extraction method for each specific phenological date (i.e., TRS0.3 and GU for SOS 
and POS, respectively). It is important to underline that the fitting model (i.e., the curve 
that fits kNDVI points and from which dates are extracted) is the same in all trend 
analyses (i.e., SOS and POS) and for all sites and years. The choice to use different 
extraction methods on the same curve for SOS and POS derived from the results obtained 
in Section 3.1. Although it was more coherent to select only one method, we decided to 
select the most robust extraction methods for each phenological date (i.e., SOS and POS) 
in order to achieve more precision in SOS and POS estimation during the analysis of the 
2001–2021 period. In fact, using the same extraction method could determine greater 
errors, since, for example, one method can be optimal for SOS but sub-optimal for POS 
estimation. SOS and POS dates extracted from kNDVI were in line with those estimated 
from GPP, even if some uncertainties were still present, as seen from MAE (13.6 and 13.4 
days, respectively for SOS and POS) and RMSE values (16.9 and 18.5 days, respectively 
for SOS and POS). EOS, conversely, proved to be more difficult to detect than SOS and 
POS. This is confirmed by Tian et al. [15], who achieved lower levels of accuracy in 
estimating EOS in different environments, and by Zheng and Zhu [53], who observed 
large differences and poor correlation between EOS extracted from satellite vegetation 
indices and ground-observed EOS in a specific study on grasslands. Differently from Tian 
et al. [15] and Gonsamo et al. [14] for forests and croplands, in this study the estimation of 
EOS from satellites did not reach a level of accuracy that can provide a reliable analysis 

Figure 9. Example of relationships between SOS and the mean temperature of the 30 days after SOS
at the DEN site.

4. Discussion

This study aimed to identify the best methodology for the estimation of phenological
dates through satellite-processed vegetation indices. As in other studies [26,27], GPP
measurements were used to extract SOS, POS and EOS as observed data to be compared
with those elaborated from kNDVI patterns. Due to the valuable relationship between
kNDVI and GPP found for grasslands in [47], the use of this index enabled phenological
dates (i.e., SOS and POS) to be estimated in agreement with those extracted by GPP patterns
at sites endowed with eddy covariance flux towers. Various fitting models and extraction
methods were tested and evaluated in our study, providing different results for SOS,
POS and EOS detection. For consistency, a trend analysis was performed by deploying
only one fitting model (i.e., ELM) among those selected. Then, we identified the best
extraction method for each specific phenological date (i.e., TRS0.3 and GU for SOS and POS,
respectively). It is important to underline that the fitting model (i.e., the curve that fits
kNDVI points and from which dates are extracted) is the same in all trend analyses (i.e.,
SOS and POS) and for all sites and years. The choice to use different extraction methods
on the same curve for SOS and POS derived from the results obtained in Section 3.1.
Although it was more coherent to select only one method, we decided to select the most
robust extraction methods for each phenological date (i.e., SOS and POS) in order to
achieve more precision in SOS and POS estimation during the analysis of the 2001–2021
period. In fact, using the same extraction method could determine greater errors, since,
for example, one method can be optimal for SOS but sub-optimal for POS estimation.
SOS and POS dates extracted from kNDVI were in line with those estimated from GPP,
even if some uncertainties were still present, as seen from MAE (13.6 and 13.4 days,
respectively for SOS and POS) and RMSE values (16.9 and 18.5 days, respectively for SOS
and POS). EOS, conversely, proved to be more difficult to detect than SOS and POS. This
is confirmed by Tian et al. [15], who achieved lower levels of accuracy in estimating EOS
in different environments, and by Zheng and Zhu [53], who observed large differences
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and poor correlation between EOS extracted from satellite vegetation indices and ground-
observed EOS in a specific study on grasslands. Differently from Tian et al. [15] and
Gonsamo et al. [14] for forests and croplands, in this study the estimation of EOS from
satellites did not reach a level of accuracy that can provide a reliable analysis for EOS trends
over the period 2001–2021. However, it should also be noted that the extraction of SOS and
EOS dates in grasslands is subject to greater uncertainties than in other environments, such
as deciduous-broadleaf and mixed forests [54]. Leaf senescence responses in herbaceous
species are influenced by several meteorological variables, with a complex dependence on
species, functional types and geographical gradients [55]. Differences in scale and content
(spectral response and phenological event) between satellite-derived and ground-observed
phenology can result in discrepancies between satellite-derived phenological dates and
changes in leaf colouring, although these measurements are related (e.g., EOS and the
beginning of leaf colouring) [56–58]. This is especially noticeable for EOS. In fact, the
change in canopy greenness is slower and longer in autumn with respect to spring [59,60],
thus causing a reduced variability in EOS compared to SOS and a greater difficulty in
detecting the end of season from satellite [15,53].

From our trend analysis, the European grasslands analysed showed a general advance
in the start (SOS) and peak of the season (POS) over the 2001–2021 time period. This
anticipation is in agreement with what was observed in different time frames in both grass-
land [37,61–64] and non-grassland biomes in Europe [36,38]. Specifically, in our study, SOS
and POS advance in significant sites (Table 4) was 0.76 days year−1 and 0.56 days year−1,
respectively for the 2001–2021 period. In some cases, however, an opposite trend was
observed, i.e., a slight tendency to delay in the SOS and/or POS dates. This could be
partially explained for SOS and, consequently POS, by an insufficient cooling effect due to
warming conditions in late autumn or winter [61]. On the other hand, as regards the POS
only, the anticipation of SOS in response to increasing temperatures may shift the following
SOS-POS duration to colder environmental conditions (e.g., Figure 9), which in turn may
lead in some cases to a progressive lengthening of SOS-POS durations. This is in agreement
with the modelling exercise of Sadras and Monzon [65], who suggested that an earlier
flowering in wheat due to temperature increase during the period 1971–2000 may have
determined shifts in post-flowering development at lower temperatures, neutralising the
trend of increasing temperatures and leaving post-flowering phase duration unchanged.
The same was observed in the field of grapevine [66]. This could explain part of our results
regarding SOS-POS duration, particularly for those sites showing a lengthening. However,
the trend is not evident in all the grassland sites analysed in this study, as a certain number
of sites (i.e., 13) showed a shortening of the SOS-POS length. These outcomes result from a
not too marked SOS anticipation (e.g., LAT, SWE, SWI2) and a consequent relapse of SOS
into a time range (i.e., DOY) similar to the ones observed at the turn of the year 2001. In
addition, the generally higher temperatures (i.e., global warming) and, probably, less water
availability occurring after each specific SOS probably caused an advance in the vegetation
peak [67,68], inducing a shortening in SOS-POS duration, as the SOS remains unchanged
and the POS is advanced. The presence of a spurious bias in SOS-POS length deriving from
the different extraction methods for SOS and POS in estimating SOS-POS length is possible.
However, investigating SOS-POS length per se was not our final goal, since our attention
was mainly focused on trends. In fact, if a bias was present, this error did not influence
the trend analysis, as it was present in the same way in all years from which SOS and POS
were extracted.

The study of seasonal average temperatures (i.e., winter and spring) showed a gen-
eral rise in temperatures across Europe for the period 2001–2021, resulting in a negative
correlation, significant in some cases (Table 5), with SOS and POS dates. Summer and
autumn temperatures were not considered since EOS, the phenological date that occurs
after these seasons, was excluded from the trend analysis since satellite estimations were
not sufficiently reliable.
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The effect of temperature was found to be a decisive factor in the change of phenological
dates of SOS and POS, in agreement with Ganjurjav et al. [69] and Ren et al. [63], also
influencing phenology spatially [70]. Consequently, the rise in temperatures recorded in the
2001–2021 time frame could also have had an indirect effect on the advancement of the SOS
date by causing an advancement in the snowmelt dates recorded in recent years [71], without
the risk of increasing frost exposure [72]. Snow melt and snow cover are indeed decisive in
determining the length of the growing season and the phenological development of high-
altitude and high-latitude grasslands [73,74], also influencing water availability or thermal
conditions by soil insulation [75]. However, according to Xie et al. [76], in a specific study
on the European Alps, spring temperature was the predominant factor in SOS advancement,
while snow cover and snow melt, although important, played a secondary role.

Temperature is therefore an important factor, but our results often do not show a
significant relationship between this parameter and SOS and POS (Table 5). This can be
explained by the fact that, in addition to temperature, there are other factors that may
influence phenological dates, such as CO2 concentration, the presence of nitrogen in soil,
solar radiation, wind speed, atmospheric pressure, snow cover or precipitation [67,68].
Snow cover for instance, as reported in Jerome et al. [77], can act through temperature
accumulation but also independently as a driver of plant phenology. Regarding precipita-
tion, Xu et al. [78] observed an earlier onset of the grassland growing season due to higher
temperatures only when water was not a limiting factor, with a non-linear response. In
contrast, Hua et al. [68] pointed out that high precipitation can have a delaying effect on
the peak season (POS) as a result of the high correlation between this phenological stage
and rainfall.

Our study highlighted the influence of altitudinal and latitudinal conditions on the
phenological stages of grassland with significant changes (F ≤ 0.1) in SOS and POS during
2001–2021. Correlations between the magnitude of change in SOS and altitude and latitude
indicated higher absolute values than the respective correlations with POS. The sites
that showed higher changes in the dates of SOS and, to a lesser extent, POS were those
located at higher latitudes and lower altitudes (e.g., DEN, 56.1995◦N, 40 m a.s.l.), while
at low latitudes and high altitudes (e.g., TUR, 41.2610◦N, 2524 m a.s.l.) showed smaller
phenological changes.

The contrasting behaviour of changes (i.e., advances and/or postponement) in SOS
and POS dates can also be explained by the variability in botanical composition as a result
of the different environments in which the study sites are located. This is confirmed by
several studies [55,79–82] that highlight the importance of species or functional types on the
phenological stages of plants. In addition, as observed by Cleland et al. [67], diverse plant
functional types have different phenological changes in response to multiple environmental
factors (e.g., CO2 concentration or soil resources). Moreover, the changes in temperatures
recorded over the last few decades, beyond having a direct effect on the early or late season,
may have influenced the change in the composition of functional groups [83], which in
turn may alter the grassland phenological stages. Nevertheless, the main aim of our work
was to highlight general trends in phenology, without a particular focus on the species
present in the test areas. Given the spatial-temporal extent of the trend analysis, reliable
and timely information on the specific botanical composition at the 31 study sites over the
years of investigation was, moreover, difficult to obtain. Indications regarding phenological
responses of different species can, however, also be gathered indirectly from observing
the results in Figure 6, which analyses the phenological changes observed at different
altitudinal and latitudinal gradients, conditions that reflect the type of vegetation that may
be present in those environments.

Although investigating the phenology of different species was not our main objective,
knowing the type of species or functional groups present would have provided useful infor-
mation to increase understanding of the results. In fact, as explained above, this information
may clarify the contrasting results obtained for some study sites. Nevertheless, the results
showed a clear general tendency of grassland phenology to advance, especially the SOS date.
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Overall, our results confirmed what was already observed in a sparse and limited
number of EU countries [36] and under a different time span in Europe [38], while remain-
ing in line with other studies in other areas of the world [61,68]. The analysis conducted
with an exclusive focus on the grassland environment provides important indications of
both the extent of these phenological changes and their distribution within the European
continent, as well as the influence of increasing temperatures.

The phenological estimates obtained from MODIS satellite data over the time period
2001–2021 represent key information for understanding the evolution of grassland phenol-
ogy that has occurred in recent years and the trend towards which it is heading, providing
policy makers and stakeholders with useful indications for the identification of possible
adaptation and mitigation strategies.

Despite the uncertainties, the methodology presented in this paper can represent a first
step in a European-wide assessment of grassland phenology, opening up the possibility of
investigating phenological trends over large and numerous grassland areas of the continent.
Concerning future perspectives, a specific end-of-season study could be important to reduce
uncertainties in EOS detection from satellites and refine the methodology. In addition,
the analysis performed can be extended by focusing on the differences that may occur in
grasslands characterised by the presence of different dominant species and groups. The
analysis of the factors driving the phenological changes can also be extended to water
conditions (i.e., precipitation and snowmelt date) in the case of high-quality data over an
extended period of time.

5. Conclusions

This study provided important information on the phenology of European grasslands.
kNDVI resulted in being a reliable vegetation index for estimating the phenological dates of
SOS and POS, but the same effectiveness cannot be applied to EOS. The analysis of MODIS
satellite data from 2001 to 2021 showed a clear trend towards an earlier start to the growing
season (SOS) across Europe. An advance in the date of the peak season (POS) is also evident,
although generally less marked and, in some cases, even delayed than at the beginning of
the reference period of analysis. The seasonal average temperature (i.e., winter and spring)
was generally found to be increasing at all sites, often proving to be a significant driver of
the advancement of grassland phenological dates over the European domain. Analyses
conducted with a specific focus on grasslands have provided very important insights into
the status of these systems throughout Europe and the evolution, in phenological terms,
that they have been undergoing in recent decades.
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