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Abstract

By altering or eliminating delicate ecological relationships, non-indigenous species are con-

sidered a major threat to biodiversity, as well as a driver of environmental change. Global cli-

mate change affects ecosystems and ecological communities, leading to changes in the

phenology, geographic ranges, or population abundance of several species. Thus, predicting

the impacts of global climate change on the current and future distribution of invasive species

is an important subject in macroecological studies. The African clawed frog (Xenopus laevis),

native to South Africa, possesses a strong invasion potential and populations have become

established in numerous countries across four continents. The global invasion potential of X.

laeviswas assessed using correlative species distribution models (SDMs). SDMs were com-

puted based on a comprehensive set of occurrence records covering South Africa, North

America, South America and Europe and a set of nine environmental predictors. Models were

built using both a maximum entropy model and an ensemble approach integrating eight algo-

rithms. The future occurrence probabilities for X. laeviswere subsequently computed using

bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differ-

ences between the statistical approaches, both SDMs predict the future potential distribution

of X. laevis, on a global scale, to decrease across all climate change scenarios. On a conti-

nental scale, both SDMs predict decreasing potential distributions in the species’ native range

in South Africa, as well as in the invaded areas in North and South America, and in Australia

where the species has not been introduced. In contrast, both SDMs predict the potential

range size to expand in Europe. Our results suggest that all probability classes will be equally

affected by climate change. New regional conditions may promote new invasions or the

spread of established invasive populations, especially in France and Great Britain.
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Introduction

Plenty of evidence exists for impacts of climate change on ecosystems and ecological communi-

ties [1–8] Climate change modifies climatic factors such as ambient temperatures, precipita-

tion, and the frequency of extreme weather events, which profoundly affects species’

geographical distributions [9]. Recent research reveals coherent patterns of ecological change

across systems [10] concerning phenological changes, geographic range shifts and modifica-

tions in species abundance [11]. Rising ambient temperatures might promote range expansions

beyond the northern range limits or favour altitudinal range shifts, while increasing tempera-

tures enhance winter survival [9].

Non-indigenous species are expanding worldwide [12], and have been identified as a major

driver of global biodiversity loss and environmental change [13–16]. Invasive species alter pro-

ductivity, hydrology and nutrient cycles and thus, influence survival of native species and dis-

rupt natural competition in host ecosystems [17].

Human-mediated transport for tourism or trade provides introduction pathways and there-

fore contributes to the rising number of introductions of alien species [18, 19]. Increases of bio-

logical invasions were found to coincide with the industrial revolution [18, 20, 21] and

unprecedented acceleration of merchandise trade within the last 50 years led to progressive

increases in the introduction of alien species [18]. Biological invasions are assumed to increase

in the future in response to globalisation and climate change [18, 20–23]. Climate change is

widely considered to exacerbate the impact of invasive species by making additional space suit-

able, enhancing survival and reproduction success, and by improving the competitive capacity

of non-indigenous species [9, 24–26].

Depending on the physiological sensitivity to climatic conditions, the impact of climate

change will vary among organisms (e.g. [27–29]) with poikilothermic taxa, such as amphibians,

being particularly affected [11, 28, 30]. Due to behavioural traits, physiological processes and

breeding phenology that closely depend on temperature and moisture, and a limited dispersal

capacity, amphibians are especially sensitive and will be heavily affected by climate change [11,

31, 32]. However, climate change might also create opportunities for niche differentiation and

evolution, by altering the composition of the resident biota, creating empty niches [33]. Fur-

ther, impacts of climate change will likely vary geographically (e.g. [5, 11, 34, 35]). Although,

considerable interest exists in predicting the spread and success of non-indigenous species,

research linking climate change and biological invasions remain scarce [9, 36]. While the inva-

sive potential of numerous species such as the invasive cane toad (Bufo marinus) in Australia

[37, 38] was predicted to increase (e.g. [9, 39–41]) other studies suggest an opposite pattern e.g.

for the American Bullfrog (Lithobates catesbeianus) in South America [42].

The African clawed frog, Xenopus laevis (Daudin, 1802), is one of the world's most widely

distributed amphibians with populations originating from the Cape region in South Africa hav-

ing become established on four continents (North America, South America, Asia and Europe)

due to both accidental escape and voluntary release of laboratory animals [43–51]. While the

establishment of introduced populations was most successful in areas with a Mediterranean cli-

mate, which closely resembles the environmental conditions of the Western Cape region, the

persistence of several populations in cooler environments for decades suggests a capacity for

long-term adaptation [52]. Recent research indicates that the global invasion potential of X.

laevis has been severely underestimated with vast areas being potentially susceptible to invasion

[50]. In addition, it has been claimed that climate change is likely to enhance this species’ inva-

sion potential, favouring range expansion and population growth [53] particularly in Mediter-

ranean climate regions.

Global Invasion Potential of Xenopus laevis
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Macroecological approaches represent a popular analytical tool to assess and predict the

impacts of climate change (e.g. [54–56]) as well as to assess spatial patterns of biological inva-

sions in order to prioritize regions for the early detection of invasion outbreaks (e.g. [42, 57,

58]). The utility of Species Distribution Models (SDMs) to predict future spread of non-indige-

nous species has been demonstrated repeatedly (e.g. [57, 59, 60]). For general assumptions and

methods see Elith and Lethwick [61]. Previous research targeting X. laevis showed large areas

in Asia, southern Australia, south-western Europe, North and South America to be particularly

vulnerable to colonization [52]. Owing to its ability to settle on various continents and its

expected impact on local wetland communities [46, 49, 62–65], X. laevis is recognized as a

major invasive amphibian species worldwide [50]. For such species it is crucial to develop accu-

rate models of potential colonization and range shifts accounting for short-term climate

changes. Such models may help to identify zones that could be colonized, refine risk assess-

ments, and target prevention measures. Aiming to contribute to the future management of X.

laevis, this study investigates the present and forecasts the future potential invasion range of

the species on a global scale, based on an updated and extended occurrence data set and a simi-

lar set of bioclimatic variables as those used by Measey et al. [50].

We hypothesize that rising ambient temperatures associated with climate change will likely

increase occurrence probabilities in currently cooler environments e.g. along the present day

northern range limits of the species. Thus, climate change will promote the expansion of existing

populations and increase the probability of additional invasions in the northern hemisphere, while

occurrence probabilities for populations from the southernmost range limits are likely to decrease.

Materials and Methods

In order to assess the present and future invasion potential of Xenopus laevis on a global scale

georeferenced occurrence records, covering the species’ native distributional range in South

Africa, as well as all known invasive populations in Europe, were obtained from recent litera-

ture [50] and supplemented by 286 new records collected during own field research (J.C., J.S.,

R.R., J.M., F.L., A.dV.). Until recently X. laevis was considered a species complex with a number

of genetically distinct lineages [66]. Measey et al. [50] noted that all invasive populations were

from the South African ‘Cape’ clade [67, 68] an area including the winter rainfall region and

southern coast of South Africa. Since that time, De Busschere et al. [69] determined that the

French invasion incorporated lineages from throughout the range of X. laevis. In addition,

recent phylogeographic research supports the recognition of X. petersii, X. victorianus and X.

poweri as separate species and therefore confines the native range of X. laevis sensu stricto to

southern Africa (South Africa, Lesotho, Swaziland, Namibia, Botswana, Zimbabwe, Mozam-

bique and Malawi) [70]. The occurrence data set for southern Africa used in this study was

adjusted accordingly. It is important to note that this is a novel interpretation of the taxonomy

and native range of X. laevis in comparison to that used by Measey et al. [50].

To prevent over‐fit and false inflation of model performance through spatially auto‐corre-

lated species records [71–73], the comprehensive dataset of 1382 records was filtered, and clus-

tered locality records were reduced to a single point within a specified Euclidian distance in

environmental space using the spatially rarefy occurrence data tool for the ArcGIS SDM toolbox

[74]. The final dataset used to build SDMs contained 826 records for South Africa, 37 for South

America, 24 for North America, and 38 for Europe. SDMs built exclusively on occurrence data

from the native range of invasive species tend to underestimate the potential invasive distribu-

tion, particularly when projecting onto climate change scenarios [75]. Hence, native and inva-

sive occurrence records were pooled [50, 76] for the computation of SDMs. In this way a

maximum amount of information on the species’ realized bioclimatic niche was integrated.

Global Invasion Potential of Xenopus laevis
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As environmental predictors, 19 bioclimatic variables available through the WorldClim-

database ([77] http://www.worldclim.org/bioclim) were used. They represent minima, maxima

and average values of monthly, quarterly, and annual ambient temperature as well as precipita-

tion recorded between 1950 and 2000. All predictors had a spatial resolution of 2.5 arc min

(approx. ~5 km resolution at the equator). Out of the total set of variables a set of nine predic-

tors with pairwise Spearman rank correlation coefficients R2
< 0.75 were selected to minimize

predictor correlation.

Subsequently, SDMs were computed using the machine learning algorithmMaxent version

3.3.3k [78, 79].Maxent is supposed to exhibit a higher predictive performance than more con-

ventional techniques [61] and has successfully been used to model the potential distribution of

invasive species and to assess impacts of climate change [78]. Only linear, quadratic and prod-

uct features were allowed in order to restrict model complexity, while extrapolation was not

allowed to reduce uncertainties due to projections onto non-analogous climates [80, 81]. The

Maxentmodel was trained by randomly splitting the species records into 70% used for model

training and 30% for model testing applying a bootstrap approach. The Area Under the

receiver operating characteristic Curve (AUC) [82] was used to evaluate the discrimination

ability of the resulting SDM. Averages across 100 replicates were used for further processing.

As the selection of an appropriate background is known to affect model performance [83], a

circular buffer of 250 km around each locality record was selected as training area following

Measey et al. [50].

Ensemble SDMs were computed using the biomod2 package version 3.2.2 [84] for Cran R

[85] including the following eight algorithms: Generalized Linear Models (GLM), Generalized

Boosting Models (GBM), Generalized Additive Models (GAM), Classification Tree Analysis

(CTA), Artificial Neural Networks (ANN), Factorial Discriminant Analysis (FDA), Maxent,

and Multivariate Adaptive Regression Splines (MARS) applying the same training background

as for theMaxent analyses. We applied a bootstrapping approach with 100 replicates randomly

subdividing the locality dataset in 70% for model training, whereas the remaining 30% were

used for model evaluation using the AUC [82], True Skill Statistic (TSS) and Cohen’s Kappa

[86]. The average projection across all replicates was used for further processing. The “Mini-

mum training presence” (mtp) referring to the lowest generated probability estimate of the

training data [87], was applied as presence-absence threshold. While threshold selection is a

potential source for biases, the mtp has been shown to represent a confident method perform-

ing well for presence only SDMs [88] particularly for modelling potential distributions of inva-

sive species [88, 89].

Areas requiring extrapolation beyond the training range of the variables were quantified

using amultivariate environmental similarity surface (MESS) analysis [90] forMaxent and

conceptually equivalent clamping masks for biomod2.

To predict the future potential distribution of X. laevis on a global scale, 11 general circula-

tion models (GCMs: BCC-CSM1-1, CCSM4, GISS-E2-R, HadGEM2-AO, hadGEM2-ES,

IPSL-CM5A-LR, MIROC-ESM-CHEM, MIROC-ESM, MIROC5, MRI-CGCM3 and Nor-

ESM1-M) representing simulations for four representative concentration pathways (RCP2.6,

RCP4.5, RCP6, RCP8.5) for 2070 were obtained from the fifth assessment of the Intergovern-

mental Panel for Climate Change (IPCC AR5WG1 2013; http://www.ipcc.ch, [91]). The

selected RCPs represent four possible greenhouse gas emission trajectories ranging from low

(RCP2.6) to high (RCP8.5) corresponding to increases in global radiative forcing, from pre-

industrial times to 2100. These climate projections were statistically downscaled to match the

bioclim variables using the delta method [77], (http://www.worldclim.org/downscaling) for

details also see [92,93]. As differences between the selected GCMs might cause uncertainty in

Global Invasion Potential of Xenopus laevis
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SDM projections [59], average values across all GCMs were calculated for each RCP respec-

tively. Finally, SDMs were projected onto the derived future climate change scenarios.

In order to quantify impacts of different RCP scenarios onto the global invasion potential of

X. laevis, the following predicted areas were determined: a) the entire SDM area using the ‘min-

imum training presence’ as threshold, b) the respective MESS area, and c) the SDM area–

MESS area. A probability cut-off of 25%, 50%, and 75% onto the ‘SDM area–MESS area’ was

applied to assess impacts for different probability classes. Further, the full model was parti-

tioned into estimates for each continent. Subsequently, the invasion potential for X. laevis was

determined on a continental scale as described above. Shift maps were generated to illustrate

predicted gains, losses and stability of environmentally suitable space for all climate change sce-

narios following Bertelsmeier et al. [94]. Comparisons between the results obtained by our

Maxent analyses, the results presented by Measey et al. [50] and the results obtained via bio-

mod2 were performed by rescaling the probability output and subtracting the potential distri-

bution grids from each other. Rescaling involved subtracting the minimum training presence

threshold from each model and computation of percentages per grid cell relative to the maxi-

mum probability. The resulting maps quantitatively indicate for each area which SDM shows a

higher probability.

Results

Model performance was 0.841 (AUCtest) and 0.846 (AUCtraining) for the maximum entropy

model while weighted means of 0.631 for Cohen’s Kappa, 0.892 for AUC, and 0.685 for TSS

were obtained for the ensemble model, demonstrating that both SDMs discriminate moder-

ately well between suitable versus unsuitable space [79]. For the maximum entropy model the

contribution of eight predictors exceeded 5%, while for the ensemble approach seven predic-

tors had a contribution exceeding 5% (Table 1, S1 Table). Predictor contribution for the maxi-

mum entropy model was particularly high for ‘precipitation of the driest quarter’ (27.65%),

‘mean temperature of the wettest quarter’ (16.82%), ‘mean temperature of the coldest quarter’

(14.52%), and ‘precipitation of the warmest quarter’ (11.38%) (Table 1). Variables with high

contribution in the ensemble model were ‘mean temperature of the coldest quarter’ (19.05%),

‘precipitation of the warmest quarter’ (16.57%), ‘mean temperature of the warmest quarter’

(13.92%), ‘precipitation of the driest quarter’ (12.56%) (Table 1). For the respective response

curves see S1 Fig & S2 Fig.

Both modelling approaches yielded similar global patterns for the present potential distribu-

tion of X. laevis. However, the more complex ensemble SDM predicted larger areas with

Table 1. Variable contribution for the maximum entropy and the ensemble SDM.

Variable Contribution (%)

ID Bioclimatic Variable Maxent SDM Ensemble

Bio 17 precipitation of driest quarter 27.65 12.56

Bio 8 mean temperature of the wettest quarter 16.82 7.61

Bio 11 mean temperature of coldest quarter 14.52 19.05

Bio 18 precipitation of warmest quarter 11.38 16.57

Bio 19 precipitation of coldest quarter 8.25 8.25

Bio 7 temperature annual range 6.99 4.96

Bio 9 mean temperature of driest quarter 6.24 8.33

Bio 16 precipitation of wettest quarter 6.21 7.95

Bio 10 mean temperature of warmest quarter 1.93 13.92

doi:10.1371/journal.pone.0154869.t001
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slightly higher probabilities than the maximum entropy SDM (Fig 1 & S3 Fig). While the

ensemble SDM predicted 28% of the world’s surface to be presently environmentally suitable

for X. laevis, the maximum entropy SDM predicted only 12% (Table 2). As expected, high

occurrence probability was predominantly predicted for areas resembling climatic characteris-

tics of the South African Cape region with high annual variation in ambient temperatures,

comparatively warm and dry summers, and mild and wet winters (S1 Fig & S2 Fig). More pre-

cisely, probability was correlated with mild winter temperatures (10–20°C), low precipitation

during the wettest (<350 mm), and the coldest quarter (<500 mm) and high precipitation dur-

ing the warmest quarter (400–600 mm) (S1 Fig & S2 Fig).

Fig 1. Global projection of the potential distribution of X. laevis A) derived from the maximum entropy SDM; B) derived from the ensemble SDM. Probability
ranging frommoderate (dark blue) to highly suitable (yellow).

doi:10.1371/journal.pone.0154869.g001
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According to both models, there are regions exhibiting high occurrence probabilities under

current climatic conditions located on all continents (Fig 1), but percentages of environmen-

tally suitable space varied greatly (Table 2). Both SDMs predict only moderate coverage with

environmentally suitable space for X. laevis to presently exist in the northern hemisphere,

while high coverage was predicted for Australia and South America (Table 2). Potentially

highly suitable areas cover the south central United States (Texas, Kansas), western (stretching

from Peru through Colombia and into Venezuela), eastern (eastern Brazil, stretching along the

Paraná River), and southern South America (north-eastern Argentina). In Europe, particularly

high probabilities are predicted in Portugal, eastern Spain, southern France, and Italy. In accor-

dance with Measey et al. [50], both SDM approaches predict only moderate occurrence proba-

bility in Great Britain. In addition to the native distribution of X. laevis covering vast areas in

southern Africa, there is a high occurrence probability in Morocco and the eastern Afromon-

tane region (where no invasions by X. laevis have been reported so far). Moreover, both SDMs

predict high suitability in China (Nanzhao plateau, Sichuan, Chinese plain), Japan, and south-

ern Australia. The maximum entropy SDM highlights additional regions with high probabili-

ties in Florida and south-eastern China (Zhejiang Province) (Fig 1, S3 Fig).

On a global scale, both SDM approaches predict suitable range sizes for X. laevis to decrease

across all four RCP scenarios (Table 2, Fig 2 & Fig 3). However, the magnitude of decrease var-

ies between RCP scenarios and between SDM approaches. For the maximum entropy SDM,

the potentially suitable range size is predicted to decrease by 7 to 13% from RCP 2.5 to RCP

8.5, respectively. This corresponds to a maximum decrease of 1% in relation to the world’s sur-

face area (Table 2). The ensemble SDM predicts a rather moderate decrease of 1 to 10%. Since

the areas predicted by the ensemble SDM are generally larger, the portion of the world’s surface

area predicted to be suitable shrinks by 3% (Table 2). A comparison between the full model

and the respective probability cut-offs does not reveal significant differences between RCP sce-

narios (Fig 4), suggesting that probability classes will be equally affected by climate change.

Table 2. Environmentally suitable space given as percent of the world’s surface area for current climatic conditions and projections onto climate
change scenarios. Percentages refer to the SDM-MESS area; values increasing with climate change scenarios are displayed in bold.

Maximum entropy SDM

Continent % current % RCP 2.5 % RCP 4.5 % RCP 6 % RCP 8.5

Africa 9 6 5 5 3

Europe 4 8 9 10 11

North America 10 8 7 7 7

South America 26 23 21 21 20

Australia 40 33 31 30 28

Asia 8 9 10 10 11

global 12 12 11 11 11

Ensemble SDM

% current % RCP 2.5 % RCP 4.5 % RCP 6 % RCP 8.5

Africa 24 16 12 12 9

Europe 21 30 33 35 38

North America 24 29 31 30 30

South America 30 31 28 28 26

Australia 74 72 66 66 56

Asia 24 20 19 19 18

global 28 27 26 26 25

doi:10.1371/journal.pone.0154869.t002
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On a continental scale, both SDM approaches suggest range sizes to decrease for the species’

native range in South Africa, as well as for the invaded areas in South America and Australia,

where the species has not been introduced (Fig 5, Table 2, S2 Table & S3 Table). In contrast,

the potential range in Europe will expand in response to climate change (Table 2). Concor-

dantly, shift maps highlight different magnitudes of expected gains in Europe (Fig 2 & Fig 3).

However, there are minor differences between the results of both approaches: while the

maximum entropy SDM predicts range sizes to decrease for all probability classes, the ensem-

ble SDM suggests range sizes to increase for North America when applying the mtp threshold

(Fig 5). Furthermore, the ensemble SDM predicts increasing range sizes for the>25% proba-

bility class in Asia (Fig 5), while the maximum entropy model predicts increases for the mtp

threshold, as well as for the probability classes>25% and>50% (Fig 5). Finally, the ensemble

SDM predicts increasing range sizes only for the mtp threshold, while the maximum entropy

SDM suggests an area expansion across all probability classes in Europe (Fig 5, S2 Table & S3

Table).

Discussion

Our predictions of the present potential distribution of Xenopus laevis generally agree with the

findings presented by Measey et al. [50] highlighting analogous spatial extents and geographic

locations. Both SDMs reveal large areas that can potentially be colonized on several continents.

However, the overlap comparison of our SDMs with the prediction by Measey et al. [50] yields

higher probability values on all continents for both our ensemble and our maximum entropy

SDM (S3 Fig). These differences might be attributed to the different occurrence data sets used.

While Measey et al. [50] applied a restricted definition within X. laevis using only records from

a single clade occurring in the winter rainfall zone and southern coast of South Africa [66], the

data used in this study was adjusted according to the findings of Furman et al. [70] resulting in

a larger coverage for the species native range. Thus, the environmental space covered by the

occurrence dataset used was larger than in Measey et al. [50].

Under current climatic conditions, both theMaxent and the ensemble model identify

regions with suitable climatic conditions favouring invasion in Portugal, France, Sicily, Califor-

nia, Chile, and Japan, where invasive populations already exist. Both SDMs predict only mod-

erate probability for Great Britain, where populations fromWales and Lincolnshire have

recently been extirpated [53]. Furthermore, our results highlight areas in Spain (including the

Balearic Islands), mainland Italy (including Sardinia), and southern France (including Corsica)

to be highly vulnerable to potential invasions, as these regions exhibit suitable climatic condi-

tions for X. laevis and are adjacent to established invasive populations. Globally, the same

applies to Baja California and central Mexico.

Future projections of both SDM approaches identify regions that will likely become vulnera-

ble to colonization in response to climate change. With an expected decrease of 1–3% (given as

percentage of the worlds’ surface area) the overall magnitude of expected changes appears to be

moderate, while the predicted global area suitable for X. laevis remains stable or slightly

decreases with increasing RCP scenarios. However, predictions for Europe are the major excep-

tion to this general trend with particularly good prospects for the invasive populations in

north-western Europe (Figs 2 & 3). Xenopus laevis is capable of enduring extreme conditions

([50] and references therein). However, reproduction seems to be triggered by rainfall and

Fig 2. Global shift maps derived fromMaxent illustrating predicted gains (dark violet) and losses (dark blue) of
environmentally suitable space for different climate change scenarios; A) IPCC RCP2.6, B) IPCC RCP4.5, C)
IPCC RCP6,D) IPCC RCP8.5.

doi:10.1371/journal.pone.0154869.g002
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increasing temperatures [95, 96]. These physiological restrictions are well reflected in the vari-

able contributions of the models. These were highest in the precipitation of driest and warmest

quarter and in the temperature of the wettest, coldest and warmest quarters affecting reproduc-

tion cycles. While reproduction occurs throughout the year in California [97] the lower lethal

limit of temperature tolerance in embryos was reported to be 10°C [95]. Harsh conditions only

Fig 3. Global shift maps derived from the ensemble SDM illustrating predicted gains (dark violet) and losses
(dark blue) of environmentally suitable space for different climate change scenarios; A) IPCC RCP2.6, B) IPCC
RCP4.5,C) IPCC RCP6,D) IPCC RCP8.5.

doi:10.1371/journal.pone.0154869.g003

Fig 4. Predicted development of area sizes suitable for X. laevis on a global scale; a) for the Maximum entropy SDM and; b) for
the ensemble SDM. Mtp = minimum training presence, all areas sizes refer to SDM area–MESS area.

doi:10.1371/journal.pone.0154869.g004
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Fig 5. Predicted development of area sizes suitable for X. laevis on a continental scale; left) for the Maximum entropy SDM, right) for the
ensemble SDM. Mtp = minimum training presence, all areas sizes refer to SDM area–MESS area.

doi:10.1371/journal.pone.0154869.g005
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permitted infrequent reproduction in Great Britain [53] and rising temperatures will likely

improve physiological performances, fecundity, breeding success, and increase the rate of larval

development.

Thus, regional patterns may facilitate new invasions or promote a spread of the established

invasive populations, especially in France and Great Britain, where populations persisted for

decades [52]. While invasive populations are already spreading in France, British populations

are presently considered extirpated [53]. Due to an increased environmental suitability caused

by climate change along the northernmost boundaries of the species’ range, chances of success-

ful establishment in Great Britain in case of re-introductions will increase in the future. Climate

change is widely considered to exacerbate the impact of invasive species [9, 25] enhancing the

invasive potential of some species (e.g. [9, 39–41]), including the invasive cane toad (Rhinella

marina) in Australia [37, 38]. However, some studies suggest an opposite pattern e.g. for the

global invasion potential of an assemblage of ant species [98], or the American Bullfrog (Litho-

bates catesbeianus) in South America [42].

For X. laevis, it has been claimed that climate change will likely favour range expansion and

population growth [53] particularly in Mediterranean climate regions. While on a global scale

our predictions reveal the species’ potential range to decrease in response to climate change,

populations from the northern hemisphere are predicted to expand.

As X. laevis is kept as a model organism in laboratories all across the world and is still traded

intensively [51, 98] Measey et al. [51] emphasize the importance of biosecurity at breeding

facilities to prevent further escape and voluntary release of frogs and tadpoles [99]. While by

now scientists working with X. laevis are likely to be aware of the species’ invasion potential

[100], this frog is also readily available via the pet trade [98]. Once introduced, the species rap-

idly disperses using irrigation canals, ponds, and rivers as migration corridors, but also per-

forms terrestrial migrations [101] even without rainfall [102]. Estimated annual spread of feral

populations varied between 1 km [101] in France and 5.4 km [62] in Chile. Recent research

found the maximum overland dispersal in native populations to be 2.3 km (Euclidean distance)

within 6 weeks [102].

Although invasive X. laevis have demonstrably negative impacts on resident amphibian and

fish communities [49, 63, 64, 103], attempts to eliminate invasive populations are limited.

Recent studies stressed the urgent need for rigorous and comprehensive invasive species risk

assessments to contribute to the development of management strategies [104, 105]. Prevention

is generally considered more effective and cheaper than control and eradication of established

populations [8, 25]. SDMs represent a quick and cost efficient tool to evaluate the current and

future invasion potential of non-indigenous species. In addition, SDMs facilitate the identifica-

tion of areas with high susceptibility to invasion and help to prioritize management actions.

According to our results preventive measures should predominantly focus on the species’

northern range limits, particularly north-western Europe to prevent further spread and estab-

lishment of new populations as well as a re-introduction in Great Britain.

Even though considered particularly difficult in Mediterranean areas, eradication of invasive

populations of X. laevis has been proposed [101] and an eradication program was established

by the Portuguese Governmental Nature Conservation Institute in Oeiras, western Portugal in

2010 [50]. In addition, eradication was successfully executed in Scunthorpe, Humberside area,

Great Britain [50]. According to our results eradication of established populations of X. laevis

should focus on areas where populations are still small and scattered, but likely to expand in

response to climate change e.g. Portugal and Sicily.
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Supporting Information

S1 Fig. Maximum entropy SDM response curves for selected predictor variables displaying

relationships between predictor variables and occurrence probability of Xenopus laevis.

Model contribution was assessed by building the model using a single corresponding predictor

variable. The logistic output (probability of presence) is displayed on the Y axis. Red curves

refer to mean responses of 100 replicate Maxent runs while the mean +/- one standard devia-

tion is displayed in blue.

(PDF)

S2 Fig. Response curves for ensemble SDM showing the relationships between environmen-

tal predictors and occurrence probability of Xenopus laevis. The logistic output (probability

of occurrence) is displayed on the Y axis.

(PDF)

S3 Fig. A) Overlap analysis of the ensemble SDM and the maximum entropy SDM, with red

highlighting areas where the ensemble SDM yields higher probabilities and blue depicting

areas where the maximum entropy SDM yields higher probabilities; B) Overlap analysis of the

ensemble SDM and the SDM by Measey et al. (2012), with red indicating higher probability of

the ensemble SDM and blue showing higher values for the SDM by Measey et al. (2012); C)

Overlap analysis of the maximum entropy SDM and the SDM by Measey et al. (2012), with red

highlighting regions with higher probability of the ensemble SDM and blue showing higher

probability values for the SDM by Measey et al. (2012). Colour saturation increases with devia-

tion of the models. Areas where both SDMs yield similar probability values are displayed in

white.

(PDF)

S1 Table. Variable contribution for single algorithms of the ensemble SDM.

(XLSX)

S2 Table. Predicted area sizes in mio. km² for the maximum entropy SDM; maximum val-

ues for each threshold (mtp, 25%, 50%, 75%) are displayed in bold.

(XLSX)

S3 Table. Predicted area sizes in mio. km² for the ensemble SDM; maximum values for

each threshold (mtp, 25%, 50%, 75%) are displayed in bold.

(XLSX)
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